
Overview of A Pattern Language for Engineering Software for the
Cloud
Tiago Boldt Sousa, tbs@fe.up.pt, Department of Informatics Engineering, Faculty of Engineering, University of
Porto
Hugo Sereno Ferreira, hugosf@fe.up.pt, Department of Informatics Engineering, Faculty of Engineering,
University of Porto
Filipe Figueiredo Correia, filipe.correia@fe.up.pt, Department of Informatics Engineering, Faculty of Engineering,
University of Porto

Software businesses are continuously increasing their cloud presence in the cloud. While cloud computing is not a new research topic,
designing software for the cloud still requires engineers to make an investment to become proficient working with it.
This paper introduces a pattern language for cloud software development and briefly describes details pattern. Design patterns can
help developers validate or design their cloud software. The language is composed by ten patterns novel patterns organizes in three
categories: Orchestration and Supervision, Monitoring and Discovery and Communication.
Finally, the paper demonstrates how to adopt the pattern language using a pattern application sequence.
Categories and Subject Descriptors: D.2.11 [Software Architectures] Patterns
General Terms: Design
Additional Key Words and Phrases: Cloud Computing, Design Patterns, Software Engineering
ACM Reference Format:
Sousa, T.B., Ferreira, H.S., Correia, F.F.. 2018. Overview of a Pattern Language for Engineering Software for the Cloud. HILLSIDE
Proc. of Conf. on Pattern Lang. of Prog. 22 (October 2015), 54 pages.

1. INTRODUCTION
Today, over 49% of the world population has access to at least one Internet enabled device [Internetlivestats.com
2016]. Exploiting this scale with cloud applications made the Internet an appealing channel for running businesses.
Such resulted in an explosion in the adoption of public cloud services, with it’s market surpassing US$204 billions
in 2016 [Woods and Meulen 2016].

Motivated by such widespread of the Internet and the explosive growth of software businesses built on top of it,
software engineering became one of the fastest expanding branches of engineering. In fact, the demand for new
engineers grows at an higher rate than the pace at which they are graduating [Taft 2015].

Using the cloud as a foundation for application development introduces new challenges and is essential for any
Internet business. Still, there is a clear lack of research supporting developers design decisions while for cloud
software, namely, identifying what forces drive successful cloud software, and the guidelines to optimize them in
order to craft better cloud software.

With this research, the author proposes a pattern language for building cloud software, helping development
teams make informed architectural decisions that will improve their software operations. The pattern language
can be used by less experienced teams to bootstrap their design decisions or by experts to validate their own
existing architectures. Finally, it provides a framework for reasoning, given that the concepts introduced by the
pattern language can be used to argue about cloud architectures using the ontology it introduces.

Pending PLoP18 details.
pending PLoP 18 details

2. A PATTERN LANGUAGE FOR ENGINEERING SOFTWARE FOR THE CLOUD
This research contributes to the field of software engineering with a pattern language that helps in the design
process of cloud software architectures. This section introduces the research questions of this work, presents the
pattern language structure and briefly describing each pattern and, finally, demonstrates how it can be applied
using an example scenario. The patterns that compose the pattern language are described in Appendix A.

2.1 Mining the Patterns
While capturing this pattern language, some considerations where taken in order to ensure the individual quality
of each pattern. Inspired by the evaluation framework proposed by Seidel [Seidel 2017], the following attributes
were considered:

Completness: Is the pattern description complete? [Alexander 1979] A complete pattern provides a level of
detail that enables the reader to identify with the problem and reproduce the solution.
Briefness: Does the pattern contain more information than what’s strictly needed? A brief pattern goes straight
to the point, being easy to read and reproduce.
Validity: Is the stated solution valid and with enough known uses described? A valid pattern documents an
accepted good solution and justifies it with accurate examples.

2.2 How To Read These Patterns
The patterns described in this work have all been documented using the pattern structure described below, strongly
inspired by classical pattern templates [Meszaros 1998; Wellhausen and Fiesser 2011]. Each pattern is composed
by the following sections:

Abstract: A brief description of the pattern and its applications.
Context: The circumstances that result in the manifestation of the problem. By reading this section, the reader
would be able to understand what is the driver for the problem. Experienced users will often relate the context
with their previous experiences.
Example: Describes a concrete scenario aligned with the context, where the problem is observable, highlighting
the intricacies that makes it a complex problem to solve.
Problem: Formalizes the problem, detailing on why it is complex to be solved.
Forces: Identifies the forces that influence the design of the solution. Forces commonly oppose each other,
leaving for the reader to decide how to properly balance them to customize the pattern’s implementation to
his specific needs.
Solution: Describes how the pattern addresses the problem and describes its implementation details, which
often need to be adapted considering how the forces are balanced.
Example Resolved: Describe how the pattern can be instantiated in order to address the scenario described in
the example above.
Resulting Context: Elaborates on the benefits and liabilities introduced by the implementation of this pattern.
Related Patterns: Identifies which patterns can be used with or are incompatible with the implementation of
this pattern.
Known Uses: Pattern should be extracted from recurring solutions to the same problem observed in the wild.
The section identifies implementations that motivated the writing of this pattern.
Further Considerations: An optional section in the pattern, where additional details are shared or a discussion
is held, elaborating on the intricacies of the pattern.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 2

This structure is a superset of A Pattern Language for Pattern Writing [Meszaros 1998], which suggested the
common structure of context, problem, forces and solution and it is so structures in order to facilitate the reader’s
navigations through the pattern, easily identifying or skipping the information he is looking for or is not interested
in, respectively.

2.3 Pattern Language Overview
This pattern language has been organized into four pattern categories. This subsection describes each of those
categories as well as it briefly describes the patterns in the category. The full version of each pattern can be found
in Appendix A.

2.3.1 Automated Infrastructure Management. The patterns referenced in this section are not introduced by
this pattern language, but a reference to them is essential, as they provide the grounds to much of what this
pattern language builds upon. Automated Infrastructure Management if often associated with DevOps and has
been extensively researched and has such will remain outside the scope of this research [Cycligent ; Loukides 2012;
Reed 2014; XebiaLabs ; Technology 2014; Erich et al. 2014].

Infrastructure as Code is one of the most relevant contributions from the DevOps mindset to software
engineering for the cloud. This pattern handles the management of infrastructure using software [Smeds et al.
2015; Hüttermann 2012; Riley 2015; Amazon 2018]. For that, the creation and changes to the infrastructure are
defined during the development process, following the development practices in place by the team. This will usually
ensure the quality of the software created to manage the infrastructure through practices such has peer review.
Furthermore, Infrastructure as Code, following the DevOps mindset, deprecates the need for knowledge
operation workers that would be dedicated to setup and handle infrastructure. The team owns that responsibility,
managing it as part of the development cycle. This automation will further increase confidence in changes, as it
eliminates the possibility of human introduced error.

Another known pattern required by this pattern language, this time available from cloud providers, is Auto-
mated Scalability. This pattern enables a cloud provider to monitor a set of instances for their resource
allocation, scaling them appropriately to balance performance and costs [Zhang et al. 2010; Cycligent ; Fehling
et al. 2014]. As an example of how this pattern works, an infrastructure with ten instances that is experiencing
increased CPU usage can be automatically scaled, one machine at the time, until the average CPU load in the
infrastructure is below a configured maximum threshold. On the other hand, if the average CPU usage is below a
minimum threshold, the infrastructure size can be reduced, one machine at the time, until the average CPU load
it above a desired average threshold. This will ensure that the infrastructure is maintains an overall CPU usage
within the desired threshold interval.

2.3.2 Orchestration and Supervision. Infrastructure empowering software in the cloud is typically volatile and
dynamically allocated. As such, orchestration plays a key role at dynamically identifying the execution setup and
adapt the software to cope with it. The patterns in this section describe how to setup the necessary hardware and
software to orchestrate services in the cloud and insure they run flawlessly.

Creating development or production environments manually is a time consuming process. The probability of
error is high, given the commonly large number of dependencies and configurations required. Furthermore, these
get scattered in the host making managing the machine and hosting multiple applications troublesome. While
virtualization can be used to create a portable environment of the entire hardware and software stack, it always
virtualizes the whole hardware and software stack, which is very resource demanding. Containerization is
a better alternative, enabling the creation of immutable, reproducible, portable and secure software execution
environments. Containers are considerably more lightweight than full stack virtualization, as there is no need to
virtualize the operative system layer. Containers avoid the need to install dependencies and have configurations
scattered within the host, making them easier to manage and deploy at scale [Boldt Sousa et al. 2015; Scheepers
2014]. Having at most one service per container ensures that all services are isolated from each-other, preventing

Overview of A Pattern Language for Engineering Software for the Cloud — Page 3

Infrastructure as
Code

Log
Aggrega2on

Failure Injec2on

Preemp2ve Logging

Orchestra2on
Manager

configures

Automated
Recovery

DISCOVERY AND
COMMUNICATION

Local Reverse
Proxy

Containeriza2on

ORCHESTRATION AND SUPERVISION

MONITORING

feeds

Automated
Scalability

Messaging
System

instructs

Process PaNernsArchitecture
PaNerns

uses

hosts

adopts

observes

External
Monitoring

uses

instructsJob Scheduler

disrupts

configures

feeds

extends

uses

configures

AUTOMATED
INFRASTRUCTURE

MANAGEMENT

Fig. 1: Pattern map for engineering software for the cloud. Patterns are identified as architecture or process patterns and aggregated
into one of the four categories. Arrows identify the relationships between the patterns.

secondary effects in their behaviors. This approach is also essential for individually scaling each microservice.
Adopting containers facilitates the service’s portability. Configurations should not exist inside the container, but
instead services should acquire their configuration from environment variables made available to the container in
each specific execution environments. Environment-based configuration enables not only the service’s configuration
to be injected into the environment, but the host resources’ details to be made available in the same way.

Servers in an infrastructure might differ in hardware. While some might provide more CPU, others might have
higher amounts of RAM available. Likewise, services requirements also are unique. While some might require
a specific amount of memory to be available, other might have the need to be co-located in the same host
Overview of A Pattern Language for Engineering Software for the Cloud — Page 4

for latency purposes. As such, services need to be co-located within hardware fulfills their resource and logical
requirements. An Orchestration Manager should be responsible for allocating services to the proper hosts,
considering their overall and available resources, as well as any other allocation restrictions that the service might
have [Boldt Sousa et al. 2015; Odewahn 2014; Hausenblas]. This pattern works best when services are distributed
using the already described Containerization pattern.

Asynchronous tasks, such as database maintenance, sending emails or performing backups, are common in
cloud software. These might run at a given frequency or at a single point in time. Job Scheduler can be used
to orchestrate the execution of these tasks in an infrastructure and evaluate their result, generating error reports
when need [Boldt Sousa et al. 2018b].

Software fails. That assumption is even further relevant while orchestrating software in the cloud, given its
typically large scale. Accepting that it is not possible to prevent software from failing, supervision ensures that
services are running as expected, executing the proper action to recover them in case of failure.

Services running inside containers should be resilient in case of failure, providing Automated Recovery.
Exploiting the immutability of containers, the container shall restart itself automatically to try to recover the
service whenever it detects a malfunction. Advanced strategies might be applied to recover a service, or set of
services, such as restarting a list of services in a specific order. The Orchestration Manager should decide
on the best strategy for each scenario [Boldt Sousa et al. 2018b].

Cloud Software has typically a desired uptime of 100%. Redundancy is often a first step to guarantee availability.
Still, it is a fact that software fails [Charette 2005]. As such, developers need to ensure that their application
is resilient to failures and able to recover to a working status without human intervention, with mechanisms for
improving resilience being built into the cloud application. To increase confidence in these mechanisms they need
to be themselves tested. And since the environment might influence how the system behaves, the production
system’s resilience itself must be tested. To do so a Failure Injection mechanism can periodically inject
unexpected events in the system, evaluating if it continues to behave appropriately [Boldt Sousa et al. 2018a].
Such events can range from sending invalid inputs to the application to shutting down one of the servers hosting
the application. In both scenarios, if there is any unexpected impact into the application, the resilience mechanisms
should be triggered and the application have little to no impact in its availability. Whenever that doesn’t happen,
the developers can work on improving the resilience behavior. Failure Injection is commonly executed under
close supervision and in redundant systems to prevent actual damage to the application.

In summary, the following patterns are introduced in this section:
Orchestration Manager: This pattern deals with service allocation in an infrastructure when each server can
host multiple isolated applications. It takes into consideration the resources available in each machine in the
infrastructure and the service’s requirements, ensuring an optimal placement and execution.
Job Scheduler: A Job Scheduler enables the programed execution of single time and recurrent tasks in an
infrastructure. In the context of the cloud the scheduler cooperates with an Orchestration Manager in
order to leverage the available infrastructure and its service placement to optimally execute the programmed
tasks.
Automated Recovery: Configure health checks along with service definition to periodically evaluate its health,
attempting an automated recovery of unhealthy containers by restarting them.
Failure Injection: Failure Injection is responsible for generating atypical events at both the application
and infrastructure level, exercising the implemented recovery mechanisms in such way that the resilience of the
application is continuously verified.
Containerization: This pattern addresses the need for a portable, efficient and secure environment for executing
applications. An issue that is most troublesome when deploying multiple applications in the same host, which
a) can result in extremely complex dependency management scenarios and clutter the system or b) requires
virtualization which requires part of the host’s resources.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 5

2.3.3 Monitoring. Monitoring continuously evaluates the status of the services composing a cloud application,
reporting back to the team when an issue is identified. It works reactively by detecting issues on data produced
by the services, using log entries or alarms as inputs, or proactively by interacting with the services to verify their
status.

While designing the application, all public endpoints and their expected behavior should be identified, so that
an External Monitoring tool can be configured to monitor them. This enables the unbiased observation of
the application’s state from outside its infrastructure, ensuring that the monitoring tool observes the same as an
user would [Boldt Sousa et al. 2018a].

Debugging an application in production requires as much information as possible in order to trace the actions
that lead to an issue. Services should Log Aggregation, producing verbose execution logs that should be kept
for the longest period of time possible [Boldt Sousa et al. 2017].

Having distributed services producing logs will required developers to leverage multiple log files to trace an
issue. To prevent this, the team should adopt Log Aggregation, by having a centralized view of all the logs
generated by all services in a queryable format [Boldt Sousa et al. 2017].

The following patterns are introduced in this section:
External Monitoring: Monitor the application’s public interfaces from an external source, imitating the user’s
experience, and notify the team about unexpected behavior.
Preemptive Logging: Adjust log verbosity preemptively, making relevant execution information available for
later debugging, statistics, and event playback.
Log Aggregation: Aggregate and index all service and server logs, providing the team with a single point to
query and visualize information from the logs.
2.3.4 Discovery and Communication. Most cloud applications are composed by multiple services cooperating

towards providing the whole application in what it is typically called a microservice architecture [Lewis and Fowler
2014]. Being deployed in containers hosted in dynamically provisioned hardware, the services must first discover
and create a communication channel before they can start to cooperate.

While using an Orchestration Manager that dynamically allocates containers, the exact network location
at where a service will be running is unknown. Using a Local Reverse Proxy, a service can be abstracted
through a local network port exposed on every machine that is always forwarded to one instance of the service,
possibly balancing traffic between multiple instances [Schumacher et al. 2006; Boldt Sousa et al. 2015]. This is
easily achieve by preemptively creating a table that maps local ports to services. Whenever the port is mapped,
the service is up and the communication can be established.

Some use cases require services to communicate amongst themselves synchronously for RPC and asynchronously
for delegating information to collaborating services. A Messaging System can be used to send both types of
messages between micro-services, eliminating the complexity associated with service discovery [Gawlick 2002;
Boldt Sousa et al. 2017].

This section introduced the following sections:
Messaging System: Use a messaging mechanism, colloquially known as message queue, to abstract service
placement and orchestrate messages with multiple routing strategies between them.
Local Reverse Proxy: This pattern deals with service discovery when deploying services that should cooperate
in dynamically provisioned hardware, who lack each-others’ network addresses.

3. ADOPTING THE PATTERN LANGUAGE
Resistance to change is by itself a pattern [Dent and Goldberg 1999]. Adopting a pattern language for developing
software for the Cloud requires teams to adapt their mindset regarding their organization, processes and software
architectures. While it is imperative that the team is motivated to change, this pattern language eases its adoption
Overview of A Pattern Language for Engineering Software for the Cloud — Page 6

as it can be partially implemented. The team can identify its most critical problem and implement the pattern or
set of patterns that solve it without addressing the whole pattern language. The next section demonstrates how
a development team could gradually adopt the described patterns in a sequence of iterations.

Amongst the more experienced users, the pattern language can be used as a ontology for reasoning about cloud
architectures, as well as a validation tool for their already existing architectures. Using it as reference will also
facilitate how experts share their ideas with less experienced engineers.

This section was inspired by The Unfolding of a Japanese Tea Garden by Christopher Alexander [Alexander
2006]. It uses a sequence as a way to help the reader understand how the patterns relate and complement each
other. Sequences describe a set of actions that should follow each other in order to achieve a specific goal.

Consider the scenario where a cloud practitioner needs to create and deploy a redundant Web Application,
composed by a client-facing HTTP server and a database.

The practitioner should design his HTTP server and database as two cooperating microservices. By using
Containerization and one service per container, he would create two container images, one of each service.
These containers would be highly portable between multiple environments such as local, staging or production
environments, configured using the available environment variables.

Using Infrastructure as Code the practitioner would describe the initial infrastructure required to setup
the system. By executing this programmatic description, the required infrastructure would become available.
Automated Scalability could be setup to ensure that the hardware where the web server executes would
scale horizontally if needed according to the provided scalability rules.

To deploy his services in an isolated and scalable way, the infrastructure would be abstracted thought an Or-
chestration Manager, which would be responsible for allocating the containers machines in the infrastructure
optimally, taking into consideration the total and available resources in each machine.

Job Scheduler would be responsible for executing the daily database backup process to an external site.
To facilitate discovery in the dynamically allocated hardware, the web server would use the local network port

12345 to connect to the database. Such would be possible given a Local Reverse Proxy configured in all
machines that would expose a static service port for each service instantiated. This scenario would not require
the Messaging System.

To ensure the service is working properly, the practitioner would implement the following monitoring techniques.
An External Monitoring service can monitor all public application endpoints, ensuring that they are both

online and responding appropriately.
To further increase awareness over the system’s state, Preemptive Logging could be adopted to configure

the developed and adopted services to use an appropriate level of logging to make the required historical infor-
mation available to the team to develop issues after they have happened. Log Aggregation can bring all this
information to a centralized, indexed and queryable location for easier use.

Finally, and in order to validate the resilience in the system, Failure Injection can exercise the resilience
mechanisms by randomly introducing errors in the infrastructure, such as randomly shutting down machines, and
verifying that the system recovers automatically.

4. SUMMARY AND FUTURE WORK
This paper describes a pattern language for engineering software for the cloud. The language is divided into
four categories: Automated Infrastructure Management, which references known DevOps patterns upon which
this work build; Orchestration and Supervision, proving strategies to abstract an infrastructure’s resources and
automate service placement within it; Monitoring, which helps the team be aware of the system’s status and
Discovery and Communication which facilitates inter-service communication within the infrastructure.

This language aims practitioners to make informed decisions while designing their cloud environments, facilitat-
ing the creation of resilient and reliable cloud applications.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 7

Plans for future work are twofold. First, continue increasing the completeness of this pattern language by
increasing the number of patterns the compose it. Second, increase the patterns quality by surveying experts to
gather their input on each individual pattern’s attributes: completeness, briefness and validity.

5. ACKNOWLEDGEMENTS
The authors would like to acknowledge Robert Hanmer for his feedback while shepherding this paper.

REFERENCES
Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio Pescapè. 2013. Cloud monitoring: A survey. Computer Networks 57,

9 (2013), 2093–2115. DOI:http://dx.doi.org/10.1016/j.comnet.2013.04.001
Christopher Alexander. 1979. The Timeless Way of Building. New York Oxford University Press (1979).
Christopher Alexander. 2006. The Nature of Order: The Process of Creating Life. Center for Environmental Structure. 636 pages.
Amazon. 2015. Amazon EC2 Container Service. (2015). https://aws.amazon.com/docker/
Amazon. 2017a. https://aws.amazon.com/cloudtrail/. (2017). https://aws.amazon.com/cloudtrail/
Amazon. 2017b. Scheduled Tasks (cron). (2017). http://docs.aws.amazon.com/AmazonECS/latest/developerguide/scheduled_

tasks.html
Amazon. 2018. AWS Auto Scaling. (2018). https://aws.amazon.com/autoscaling/
Arcitura Education Inc. Dynamic Failure Detection and Recovery. (????). http://cloudpatterns.org/design_patterns/dynamic_

failure_detection_and_recovery
Arcitura Education Inc. 2017. Cloud Patterns. (2017). http://cloudpatterns.org/
Azure. 2017. Azure Logging and Auditing. (2017). https://docs.microsoft.com/en-us/azure/security/azure-log-audit
Tiago Boldt Sousa, Filipe Figueiredo Correia, and Hugo Sereno Ferreira. 2015. Patterns for Software Orchestration on the Cloud. In

Proceedings of the 2015 Conference on Pattern Languages of Programs.
Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar. 2017. Engineering Software for the Cloud:

Messaging Systems and Logging. Proceedings of the 22Nd European Conference on Pattern Languages of Programs (2017).
DOI:http://dx.doi.org/10.1145/3147704.3147720

Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar. 2018a. Engineering Software for the Cloud
: External Monitoring and Fault Injection. In Proceedings of the 23rd European Conference on Pattern Languages of Programs.
1–13.

Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar. 2018b. Engineering Software for the Cloud:
Automated Recovery and Scheduler. In Proceedings of the 23rd European Conference on Pattern Languages of Programs. 1–13.

Jonas Bonér, Martin Thompson, Dave Farley, and Roland Kuhn. 2014. The Reactive Manifesto v2.0. (2014). http://www.
reactivemanifesto.org

Thanh Bui. 2015. Analysis of Docker Security. Computing Research Repository abs/1501.0 (2015), 7. http://arxiv.org/abs/1501.
02967

F Bushmann, R Meunier, and H Rohnert. 1996. Pattern-oriented software architecture: A System of Patterns, Volume 1. John
Wiley&Sons 1 (1996), 476. DOI:http://dx.doi.org/10.1192/bjp.108.452.101

James Casey, Lionel Cons, Wojciech Lapka, Massimo Paladin, and Konstantin Skaburskas. 2011. A Messaging In-
frastructure for WLCG. Journal of Physics: Conference Series 331, Part 6: Grid and Cloud Middleware (2011).
DOI:http://dx.doi.org/https://doi.org/10.1088/1742-6596/331/6/062015

Chaos Community. 2017. Principles of Chaos Engineering. (2017). http://principlesofchaos.org/
Robert N. Charette. 2005. Why Software Fails. (2005). http://spectrum.ieee.org/computing/software/why-software-fails
Chronos. 2017. Chronos. (2017). https://mesos.github.io/chronos/
CoreOS Community. 2015. CoreOS Project Page. (2015). https://coreos.com/
Ward Cunningham. 2014. Let It Crash. (2014). http://wiki.c2.com/?LetItCrash
Cycligent. Continuous Delivery Patterns for Design & Deployment. Technical Report.
DataDog. 2018. Docker Adoption. (2018).
Maximilien De Bayser, Leonardo G. Azevedo, and Renato Cerqueira. 2015. ResearchOps: The case for DevOps in scientific applications.

Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management, IM 2015 (2015), 1398–1404.
DOI:http://dx.doi.org/10.1109/INM.2015.7140503

Eric B Dent and Susan Galloway Goldberg. 1999. Challenging “ Resistance to Change ”. 35, 1 (1999), 25–41.
DOI:http://dx.doi.org/10.1177/0021886399351003

Overview of A Pattern Language for Engineering Software for the Cloud — Page 8

http://dx.doi.org/10.1016/j.comnet.2013.04.001
https://aws.amazon.com/docker/
https://aws.amazon.com/cloudtrail/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/scheduled_tasks.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/scheduled_tasks.html
https://aws.amazon.com/autoscaling/
http://cloudpatterns.org/design_patterns/dynamic_failure_detection_and_recovery
http://cloudpatterns.org/design_patterns/dynamic_failure_detection_and_recovery
http://cloudpatterns.org/
https://docs.microsoft.com/en-us/azure/security/azure-log-audit
http://dx.doi.org/10.1145/3147704.3147720
http://www.reactivemanifesto.org
http://www.reactivemanifesto.org
http://arxiv.org/abs/1501.02967
http://arxiv.org/abs/1501.02967
http://dx.doi.org/10.1192/bjp.108.452.101
http://dx.doi.org/https://doi.org/10.1088/1742-6596/331/6/062015
http://principlesofchaos.org/
http://spectrum.ieee.org/computing/software/why-software-fails
https://mesos.github.io/chronos/
https://coreos.com/
http://wiki.c2.com/?LetItCrash
http://dx.doi.org/10.1109/INM.2015.7140503
http://dx.doi.org/10.1177/0021886399351003

Docker. 2018. Dockerfile reference. (2018). https://docs.docker.com/engine/reference/builder
Elastic. 2017. The Open Source Elastic Stack. (2017). https://www.elastic.co/products
Floris Erich, Chintan Amrit, and Maya Daneva. 2014. Report : DevOps Literature Review. (2014).
Thomas Erl, Robert Cope, and Amin Naserpour. 2015. Cloud Computing Design Patterns. 552 pages. informit.com/phLibrary
Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter Arbitter. 2014. Cloud Computing Patterns. 239–286

pages. DOI:http://dx.doi.org/10.1007/978-3-7091-1568-8
Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2014. An Updated Performance Comparison of Virtual Machines

and Linux Containers. Technology 25482 (2014).
E.B. Fernandez. 2013. Security patterns in practice: Building secure architectures using software patterns. Wiley Series on Software

Design Patterns.
Eduardo Fernandez-Buglioni. 2013. Security Patterns in Practice: Designing Secure Architectures Using Software Patterns. 582 pages.
Martin Fowler. 2017. What do you mean by “Event-Driven”? (2017). https://martinfowler.com/articles/201701-event-driven.

html
Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dongmei Zhang, and Tao Xie. 2014. Where do developers

log? an empirical study on logging practices in industry. Companion Proceedings of the 36th International Conference on Software
Engineering - ICSE Companion 2014 (2014), 24–33. DOI:http://dx.doi.org/10.1145/2591062.2591175

Dieter Gawlick. 2002. Message Queuing for Business Integration. {eAI} Journal October 2002 (2002), 30–33.
Gitlab. 2017. Postmortem of database outage of January 31. (2017). https://about.gitlab.com/2017/02/10/

postmortem-of-database-outage-of-january-31/
Sébastien Goasguen. 2016. Docker in the Cloud (second edi ed.). O’Reilly Media.
Google. 2015. Google Cloud Container Service. (2015). https://cloud.google.com/container-engine/
Google. 2018. Reliable Task Scheduling on Google Compute Engine. (2018). https://cloud.google.com/solutions/

reliable-task-scheduling-compute-engine
Robert Hanmer. 1998. An Input and Output Pattern Language. Plop2 c (1998), 1–35.
Michael Hausenblas. Docker-Networking-and-Service-Delivery.
Peter Herrmann, Alexander Svae, Henrik Heggelund Svendsen, and Jan Olaf Blech. 2016. Collaborative Model-based Development

of a Remote Train Monitoring System. In Evaluation of Novel Approaches to Software Engineering, COLAFORM Track.
Edward Hieatt and Rob Mee. Repository Pattern. (????). https://martinfowler.com/eaaCatalog/repository.html
Benjamin Hindman, Andy Konwinski, and Matei Zaharia. 2011. Mesos: A Platform for Fine-Grained Resource Sharing in the Data

Center. Nsdi (2011). DOI:http://dx.doi.org/10.1109/TIM.2009.2038002
Robert Hof. 2016. Meet Project Storm, Facebook’s SWAT team for disaster-proofing data centers. (2016).
Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Designing, Building, and Deploying Mes-

saging Solutions. Enterprise integration patterns designing building and deploying messaging solution (2003), 736.
DOI:http://dx.doi.org/10.1525/vs.2009.4.3.toc

Michael Hüttermann. 2012. Infrastructure as Code. In DevOps for Developers. Apress, Berkeley, CA, 135–156.
DOI:http://dx.doi.org/10.1007/978-1-4302-4570-4{_}9

IEEE and The Group Open. 2016. crontab. (2016). http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.
html

Open Container Initiative. 2015. Open Containers Project Page. (2015). http://www.opencontainers.org/
Internetlivestats.com. 2016. Number of Internet users in the world. (2016). http://www.internetlivestats.com/internet-users/
Petros Koutoupis. 2018. Everything You Need to Know about Linux Containers, Part

II: Working with Linux Containers. (2018). https://www.linuxjournal.com/content/
everything-you-need-know-about-linux-containers-part-ii-working-linux-containers-lxc

Kubernetes. Run a Stateless Application Using a Deployment. (????). https://kubernetes.io/docs/tasks/run-application/
run-stateless-application-deployment/

Kubernetes. 2017. Kubernetes Cron Jobs. (2017). https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
Kubernetes. 2018. Pod Lifecycle. (2018). https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
Nelson G M Leme, Eliane Martins, and Cecília Rubira. 2001. A Software Fault Injection Pattern System (1) II . Architectural Pattern

: Fault Injector. In Pattern Languages of Programs. https://hillside.net/plop/plop2001/accepted_submissions/PLoP2001/
ngmleme3/PLoP2001_ngmleme3_3.pdf

James Lewis and Martin Fowler. 2014. Microservices. (2014). http://martinfowler.com/articles/microservices.html
Mike Loukides. 2012. What Is DevOps? O’Reilly Media. 15 pages. http://shop.oreilly.com/product/0636920026822.do

Overview of A Pattern Language for Engineering Software for the Cloud — Page 9

https://docs.docker.com/engine/reference/builder
https://www.elastic.co/products
informit.com/phLibrary
http://dx.doi.org/10.1007/978-3-7091-1568-8
https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/articles/201701-event-driven.html
http://dx.doi.org/10.1145/2591062.2591175
https://about.gitlab.com/2017/02/10/postmortem-of-database-outage-of-january-31/
https://about.gitlab.com/2017/02/10/postmortem-of-database-outage-of-january-31/
https://cloud.google.com/container-engine/
https://cloud.google.com/solutions/reliable-task-scheduling-compute-engine
https://cloud.google.com/solutions/reliable-task-scheduling-compute-engine
https://martinfowler.com/eaaCatalog/repository.html
http://dx.doi.org/10.1109/TIM.2009.2038002
http://dx.doi.org/10.1525/vs.2009.4.3.toc
http://dx.doi.org/10.1007/978-1-4302-4570-4{_}9
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
http://www.opencontainers.org/
http://www.internetlivestats.com/internet-users/
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-ii-working-linux-containers-lxc
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-ii-working-linux-containers-lxc
https://kubernetes.io/docs/tasks/run-application/run-stateless-application-deployment/
https://kubernetes.io/docs/tasks/run-application/run-stateless-application-deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://hillside.net/plop/plop2001/accepted_submissions/PLoP2001/ngmleme3/PLoP2001_ngmleme3_3.pdf
https://hillside.net/plop/plop2001/accepted_submissions/PLoP2001/ngmleme3/PLoP2001_ngmleme3_3.pdf
http://martinfowler.com/articles/microservices.html
http://shop.oreilly.com/product/0636920026822.do

L Magnoni. 2015. Modern Messaging for Distributed Sytems. Journal of Physics: Conference Series 608 (2015), 012038.
DOI:http://dx.doi.org/10.1088/1742-6596/608/1/012038

Y.K. Malaiya, M.N. Li, J.M. Bieman, and R. Karcich. 2002. Software reliability growth with test coverage. IEEE Transactions on
Reliability 51, 4 (2002), 420–426. DOI:http://dx.doi.org/10.1109/TR.2002.804489

Paul Menage. 2004. CGROUPS. Technical Report. https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
Mesosphere. 2017. Marathon Health Checks. (2017). https://mesosphere.github.io/marathon/docs/health-checks.html
Mesosphere. 2018. Marathon API. (2018). https://docs.mesosphere.com/1.11/deploying-services/marathon-api/
G Meszaros. 1998. A pattern language for pattern writing. Pattern languages of program design (1998).

http://xunitpatterns.com/~gerard/plopd3-pattern-writing-patterns-paper.pdfpapers2://publication/uuid/
420266E9-5BD8-41A3-AA9B-F03763E9E78E

Microsoft. 2017a. Health Endpoint Monitoring pattern. (2017). https://docs.microsoft.com/en-us/azure/architecture/
patterns/health-endpoint-monitoring

Microsoft. 2017b. Microsoft Azure Scheduler. (2017). https://azure.microsoft.com/en-us/services/scheduler/
Adrian Mouat. 2015. Docker Security. Technical Report. http://www.oreilly.com/webops-perf/free/docker-security.csp
Netflix. 2011. The Netflix Simian Army. (2011).
Netflix. 2017. Chaos Monkey. (2017). https://github.com/Netflix/chaosmonkey
Andrew Odewahn. 2014. Field Guide To The Distributed Development Stack. Vol. 53. 160 pages.

DOI:http://dx.doi.org/10.1017/CBO9781107415324.004
Pingdom. 2017. Pingdom. (2017). https://www.pingdom.com/
Eduardo Pinheiro, WD Weber, and LA Barroso. 2007. Failure trends in a large disk drive population. In

Proceedings of the 5th USENIX Conference on File and Storage Technologies (FAST 2007), Vol. 7. 17–29.
DOI:http://dx.doi.org/10.1016/j.engfailanal.2005.10.010

Pivotal. 2007. RabbitMQ Tutorials. (2007).
J Paul Reed. 2014. DevOps in Practice. 34 pages. DOI:http://dx.doi.org/10.1017/CBO9781107415324.004
Nathan Regola and Jean-Christophe Ducom. 2010. Recommendations for Virtualization Technologies in High Performance Com-

puting. Cloud Computing Technology and Science CloudCom 2010 IEEE Second International Conference on (2010), 409–416.
DOI:http://dx.doi.org/10.1109/CLOUD.2011.29

New Relic. 2017. New Relic. (2017). https://newrelic.com/
Chris Riley. 2015. Version Your Infrastructure. (2015). https://devops.com/version-your-infrastructure/http://devops.com/

2015/11/12/version-your-infrastructure/
C Roderick, L Burdzanowski, and G Kruk. 2013. The CERN Accelerator Logging Service- 10 Years in Operation: A Look at the Past,

Present and Future. Technical Report. CERN. http://cds.cern.ch/record/1611082
MJ Scheepers. 2014. Virtualization and Containerization of Application Infrastructure:

A Comparison. (2014). http://referaat.cs.utwente.nl/conference/21/paper/7449/
virtualization-and-containerization-of-application-infrastructure-a-comparison.pdf

Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank Buschmann, and Peter Sommerlad. 2006. Security
Patterns: Integrating Security and Systems Engineering. 600 pages.

Niels Seidel. 2017. Empirical Evaluation Methods for Pattern Languages: Sketches, Classification, and Network Analysis. In Proceedings
of the 22nd European Conference on Pattern Languages of Programs. 24.

Jens Smeds, Kristian Nybom, and Ivan Porres. 2015. DevOps: A definition and Perceived Adoption Impediments. Lecture Notes in
Business Information Processing 212 (2015), 166–177. DOI:http://dx.doi.org/10.1007/978-3-319-18612-2{_}14

Stephen Soltesz, Stephen Soltesz, Herbert Pötzl, Herbert Pötzl, Marc E Fiuczynski, Marc E Fiuczynski, Andy Bavier, Andy Bavier,
Larry Peterson, and Larry Peterson. 2007. Container-based operating system virtualization: a scalable, high-performance alternative
to hypervisors. SIGOPS Oper. Syst. Rev. 41 (2007), 275–287. DOI:http://dx.doi.org/10.1145/1272998.1273025

Ivan Špeh and Ivan Heđ. 2016. A Web - Based IoT Solution for Monitoring Data Using MQTT Proto-
col. In Smart Systems and Technologies (SST), International Conference on. IEEE Computer Society, 249–253.
DOI:http://dx.doi.org/10.1109/SST.2016.7765668

Statuscake. 2017. StatusCake. (2017). https://www.statuscake.com/
Darryl Taft. 2015. How the Skills Gap Is Threatening the Growth of App Economy. (2015). http://www.eweek.com/developer/

slideshows/how-the-skills-gap-is-threatening-the-growth-of-app-economy.html
Saugatuck Technology. 2014. Why DevOps Matters : Practical Insights on Managing Complex & Continuous Change. Technical

Report.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 10

http://dx.doi.org/10.1088/1742-6596/608/1/012038
http://dx.doi.org/10.1109/TR.2002.804489
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://mesosphere.github.io/marathon/docs/health-checks.html
https://docs.mesosphere.com/1.11/deploying-services/marathon-api/
http://xunitpatterns.com/~gerard/plopd3-pattern-writing-patterns-paper.pdfpapers2://publication/uuid/420266E9-5BD8-41A3-AA9B-F03763E9E78E
http://xunitpatterns.com/~gerard/plopd3-pattern-writing-patterns-paper.pdfpapers2://publication/uuid/420266E9-5BD8-41A3-AA9B-F03763E9E78E
https://docs.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring
https://docs.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring
https://azure.microsoft.com/en-us/services/scheduler/
http://www.oreilly.com/webops-perf/free/docker-security.csp
https://github.com/Netflix/chaosmonkey
http://dx.doi.org/10.1017/CBO9781107415324.004
https://www.pingdom.com/
http://dx.doi.org/10.1016/j.engfailanal.2005.10.010
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1109/CLOUD.2011.29
https://newrelic.com/
https://devops.com/version-your-infrastructure/http://devops.com/2015/11/12/version-your-infrastructure/
https://devops.com/version-your-infrastructure/http://devops.com/2015/11/12/version-your-infrastructure/
http://cds.cern.ch/record/1611082
http://referaat.cs.utwente.nl/conference/21/paper/7449/virtualization-and-containerization-of-application-infrastructure-a-comparison.pdf
http://referaat.cs.utwente.nl/conference/21/paper/7449/virtualization-and-containerization-of-application-infrastructure-a-comparison.pdf
http://dx.doi.org/10.1007/978-3-319-18612-2{_}14
http://dx.doi.org/10.1145/1272998.1273025
http://dx.doi.org/10.1109/SST.2016.7765668
https://www.statuscake.com/
http://www.eweek.com/developer/slideshows/how-the-skills-gap-is-threatening-the-growth-of-app-economy.html
http://www.eweek.com/developer/slideshows/how-the-skills-gap-is-threatening-the-growth-of-app-economy.html

Tim Wellhausen and Andreas Fiesser. 2011. How to write a pattern? Proceedings of the 16th European Conference on Pattern
Languages of Programs - EuroPLoP ’11 (2011), 1–9. DOI:http://dx.doi.org/10.1145/2396716.2396721

E O Winstedt. 1899. A Bodleian MS. of Juvenal. The Classical Review 13, 4 (1899), 201–205. http://www.jstor.org/stable/
694154

Viveca Woods and Rob Meulen. 2016. Gartner Says Worldwide Public Cloud Services Market Is Forecast to Reach $204 Billion in
2016. (2016). http://www.gartner.com/newsroom/id/3188817

M G Xavier, M V Neves, F D Rossi, T C Ferreto, T Lange, and C a F De Rose. 2013. Performance Evaluation of Container-based
Virtualization for High Performance Computing Environments. Proceedings of the 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing LXC (2013), 233–240. DOI:http://dx.doi.org/Doi10.1109/Pdp.2013.41

XebiaLabs. Periodic Table of DevOps. (????). https://xebialabs.com/periodic-table-of-devops-tools/
Graham Yarbrough and Sandy Hook. 2002. Message Queue Server System. (2002). https://www.google.com/patents/

US20020004835
Qi Zhang, Lu Cheng, and Raouf Boutaba. 2010. Cloud computing: state-of-the-art and research challenges. Journal of Internet

Services and Applications 1, 1 (4 2010), 7–18. DOI:http://dx.doi.org/10.1007/s13174-010-0007-6

Overview of A Pattern Language for Engineering Software for the Cloud — Page 11

http://dx.doi.org/10.1145/2396716.2396721
http://www.jstor.org/stable/694154
http://www.jstor.org/stable/694154
http://www.gartner.com/newsroom/id/3188817
http://dx.doi.org/Doi 10.1109/Pdp.2013.41
https://xebialabs.com/periodic-table-of-devops-tools/
https://www.google.com/patents/US20020004835
https://www.google.com/patents/US20020004835
http://dx.doi.org/10.1007/s13174-010-0007-6

A. PATTERN LANGUAGE FOR ENGINEERING SOFTWARE FOR THE CLOUD
A.1 Containerization

 Deploying a service to a host couples it with the operative system, possibly introducing side effects
with other services in the same host, or the host itself. Containerization proposes the usage of
containers to package the service and its dependencies and enable its isolated and programmatic
deployment.

A.1.1 Context. Today’s hardware, with multi-core and multi-CPU architectures, is built to execute multiple
programs concurrently. Cloud computing often exploits resource sharing for executing multiple services in a single
host. Sharing the host’s operating system with the hosted services might introduce software incompatibilities
between them or quickly clutter the host, as it must mutate its file system to accommodate each service’s
dependencies. Such introduced the need for isolated environments. Full stack virtualization quickly became the de
facto standard approach to enabling resource sharing, allowing services to be executed in a dedicated installation
of the operating system. Paravirtualization further improved that approach by exposing hardware resources directly
to the virtualized environment. Still, isolation is achieved with an increased cost of hardware usage required to
virtualize the operating system stack on each hosted environment.

A.1.2 Example. Consider a web application that has three services: an HTTP server, a database and an object
caching service. These services share some core libraries, but each depend on different versions. The development
team uses a few different Linux distributions for development but production environments are to use a specific
distribution. All three services should be deployed on a temporary host for testing purposes and afterwards deployed
in the production environment. It becomes a complex task to develop and deploy each service such that it is easily
executed by each team member, as well as quickly installed in the development and production, despite existing
configurations or the adopted distribution.

A.1.3 Problem. Deploying a service to a host couples it with the operative system, possibly introducing side
effects with other services in the same host, or the host itself.

Software deployments tend to couple services with their host environment, modifying it according to their
needs [Koutoupis 2018]. When hosting multiple services that share resources, namely file-system, CPU, memory
and network availability, unexpected behavior might be observed as they compete for those resources. Furthermore,
situations exist where two services cannot coexist in the same environment due to incompatible dependencies,
either virtual or physical.

A.1.4 Forces. The following forces, represented in Figure 2, need to be balanced while considering the adoption
of this pattern:

Resource Management: Not using all the resources is a server is not cost-efficient, while over-allocating services
will degrade their performance.
Overhead: Decoupling services from the operating system might lead to computation overheads.
Supervision: The service status must be monitored, triggering a recovery on failures.
Isolation: Installation of dependencies changes the host, possibly resulting in side effects with other services in
the same host.
Portability: Programmatic system deployment requires the packaged software to be easily deployed in different
environments.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 12

Isola&on Resource
Management

Overhead

facilitates

introduces

Supervision

Portability

Configurability

Security

Solipsism

Persistency

hinders

facilitates

facilitates

hinders

facilitates

facilitates

enables

Fig. 2: Relationship between Containerization forces.

Configurability: Programmatic system deployment requires a strategy for configuration in execution time.
Security: Different approaches to isolation introduce different levels of security by default.
Solipsism: Each running environment should only manage itself, communicating with external services re-
siliently.
Persistency: Persist data in the host beyond the service’s execution lifetime, possibly being reused in future
executions.

A.1.5 Solution. Use a container to package the service and its dependencies and enable its isolated program-
matic deployment.

Full stack virtualization provides isolated environment for running software. Despite that, the cost of virtualizing
the operating system for each environment introduces considerable overheads in CPU, memory. Portability is also
limited, given the increased disk usage. As such, this approach is not optimal solution for cloud software.

A better solution exists in operating system level virtualization, also known as containers. A container is a
self-contained isolated environment with a virtual file-system, network and resources allocation which is executed
within an host operating system [Soltesz et al. 2007].

The container can be created and started programmatically, with configurations provided to the inner software
as environment variables, making it portable between hosts. Strict resource allocation ensures that the container
will not overuse the available hardware resources. Figure 3 demonstrates how to configure and print environment
variables for a container.

Persistent storage can be setup in the container by exposing files or folders from the hosting server inside the
container. File system access is limited to those. When the container is deleted from the host, all its data is deleted
as well, leaving behind only the files and folders created in the in the exposed storage to the container, if any.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 13

On failure, it can restart itself with the same configurations and a clean environment.
There are multiple container implementations available today, with Docker1 being the most adopted.

A.1.6 Example Resolved. Each service would be packaged into a separate container. In a development envi-
ronment, the three containers could be started in the same host. A separate production environment could have
each container being executed in an independent host. No changes would have to be made to the containers,
other than starting them with the proper configuration as environment variables, which can easily be automated.

If needed, each service can be scaled independently from the others by increasing the number of instances for
that specific container.

A.1.7 Resulting Context. This pattern introduces the following benefits:

—Resource use is optimized, with overheads being decreased when compared to full stack virtualization, as only
a thin layer needs to be virtualized, improving the performance achievable by a host.

—Resources can be allocated to the container, leveraging the available host’s resources between multiple contain-
ers, as well as what is exposed from the container to the host and vice-versa.

—Arguments can be provided to the container on execution to configure the service running inside it. Due to its
immutability, in case of failure the container can restart with the original configuration.

—Isolated environment can be easily ported between development and production as the image size only packages
the service and its dependencies, leaving out all operating system’s components.

The pattern also introduces the following liabilities:

—Paravirtualization is a virtualization technique that exposes part of the host’s hardware directly to the virtual
machine. In some low-level hardware access scenarios, paravirtualization might provide increased performance.

1Learn more about docker at https://www.docker.com/.

Fig. 3: Running a containerized Ubuntu image with injected environment variables. Environment variables are provided using the -e
argument. This example executes the env command and exits, which simply prints the environment variables. Environment variables
can be read by software running inside the container as a way of providing runtime configurations.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 14

https://www.docker.com/

—Packaging services as containers will still introduce overheads when compared to installing services directly in
the host.

A.1.8 Related Patterns. Configuration might be required for a container to be adaptable to multiple hosts and
scenarios. Using the Environment-based Configuration pattern it is possible to use environment variables
to configure running services at execution time.

Some containers might have the need to persist information between executions in the host. That is the case
of isolated databases that cannot lose their data if the machine reboots. With this goal in mind, the Local
Volumes pattern may be used to expose a folder from the host inside the container.

A.1.9 Known Uses. Containerization was first introduced in 1982 in the Seventh Edition Unix by Bell Labs,
as a tool for testing the installation and build system of the operating system, providing an isolated file-system
environment where services could be executed. By 2008 Linux Containers (LXC) were introduced in Linux Kernel
version 2.6.24, reducing the virtualization overhead and increasing efficiency [Felter et al. 2014]. By 2013 Docker
was built, based on LXC, in order to make containerization easier for a broader audience.

Docker is now the cloud standard for container-based deployment, with native support with multiple cloud
providers, such as Amazon Web Services and Google Cloud Platform, both with native support for running docker
containers [Amazon 2015; Google 2015]. A draft is being worked on to create a standard format for containers,
with RunC being the reference implementation for it, which can also run Docker-created containers [Initiative
2015].

A study by DataDog in April 2018 showed that almost 25% of their clients were already using containers, with
about 50% using some sort of Orchestration Manager [DataDog 2018].

A.1.10 Discussion. While container adoption is rising, virtual machines will always be part of cloud computing
as the unit of provision of computation. For the development team, the question at hand is if services should be
deployed at the virtual machine or container level, what their differences are and how to decide. This section sheds
some light over this decision. Given the specific context of cloud computing, deploying natively is not within the
scope of this discussion.

Providing some context over virtualization, it is built by leveraging a hypervisor to create and execute virtual
machines. Hypervisors are responsible for the virtualization of the hardware in a virtual machine and are available
in two different flavors: those who run on bare metal, such as Xen, and those who require an underlying operating
system such as KVM2. In both scenarios, a virtual machine is a fully virtualized computing environment, meaning
that every hardware component the virtual machine would see, namely the CPU, RAM or graphical card, would
in fact be a virtual representation of such element. It is part of the hypervisor responsibility to them map those
virtual components to the actual ones available.

Containers work differently, by having the hosted services sharing resources with the host environment, with
the actual service execution being managed by the host’s kernel, although in an isolated environment.

A.1.10.1 Performance. Performance is key in any system. Virtualization efficiency is typically inverse to the
overhead introduced by the virtualization system. As previously described, each virtual machine requires its hy-
pervisor to virtualize the hardware and operating system layers, which introduces an immense overhead. As such,
virtualization is less efficient than containers. In fact, containers provide almost no overhead when compared to
running in bare metal given that they actually share their host’s operating System kernel and, at time, binaries
and libraries as well. Theoretically, containers are a much more efficient solution to deploy multiple isolated
environments in a server.

2Xen and KVM are both open source virtualization servers. Learn more about the projects at https://www.xenproject.org/ and
https://www.linux-kvm.org/.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 15

https://www.xenproject.org/
https://www.linux-kvm.org/

This theory has been validated by Xavier, whom made an extensive evaluation of native systems performance
when compared to three container implementations (LXC, OpenVZ and VServer3) and the aforementioned Xen
virtual environments [Xavier et al. 2013], visually represented in figure 4.

Regarding computing performance, Xavier concluded that there were no statistically significant differences
between native and the container implementations, but observed a 4.3% overhead with Xen virtualization.

The same study evaluated the memory performance of these three systems and also concluded that containers
have similar performance to native, but observed a 31% overhead with Xen based virtualization. The author
identifies this overhead to be a product of the hypervisor layer responsible for virtual machine to native memory
address translation.

Finally, regarding disk IO, again containers presented a similar performance to native, with OpenVZ actually
outperforming native. Xen on the other hand presented poor results with read and write performance being about
50% when compared to native.

A.1.10.2 Resource Isolation. When running multiple virtualized or containerized services in a server, they
shouldn’t negatively impact the performance of their neighbors. Such is possible by setting hard-limits on resource
usage.

With Xen, resource allocation is a requirement for the creation of the virtual machine. These resources are
reserved by the hypervisor, which will only expose to the virtual machine the allocated resources.

Containers typically rely on the Linux Kernel Control Groups (cgroups) to enforce resource allocation. Control
Groups allow the creation of a resource pool to be allocated to a given subsystem, enabling resource attribution
to those. In practice, it limits the resources available to a service and it’s descending processes [Menage 2004].

Enforcing resource limitation introduces an overhead per se, which might have impact remaining existing
systems. In his research, Xavier ran more than one virtualized or container systems, with one trying to use more
resources than the ones allocated. He observed that for both Xen and LXC, CPU limitation is effective, not
imposing any performance impact on the other hosted system. The same is not true for memory management,
with the Xen hosted service having a minimal 0.9% performance impact, but with LXC presenting an impact of

3LXC, OpenVZ and Vserver are three alternative container implementation. LXC was used internally by Docker until version 0.9,
being replaced by lib-container since. You can learn more about these projects respectively at https://linuxcontainers.org/,
https://openvz.org/ and http://linux-vserver.org/

Fig. 4: Comparison of (a) computation performance, (b) memory management and (c) disk throughput, from Xavier’s work.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 16

https://linuxcontainers.org/
https://openvz.org/
http://linux-vserver.org/

88.2% [Xavier et al. 2013]. Several other studies showed similar results, demonstrating that containers introduce
negligible performance impact [Soltesz et al. 2007; Regola and Ducom 2010; Felter et al. 2014].

A.1.10.3 Security. Security is essential when executing services inside isolated environments. The service
should not be able to access its host unless explicitly configured to do so.

Virtual machines, by design, provide optimal security to the host. A service running inside a virtual machine
will not be able to understand if it is executing in a native or virtualized environment.

Opposed to virtual machines, containers do present an increased security thread. Given that the containerization
engine is executed by the host’s operating system kernel and that it requires root permissions, the kernel itself
becomes an attack vector. In the Docker Security report [Mouat 2015], the author listed a set of security measures
recommended for container administrators, namely ensuring that the host’s kernel is always using the latest version
and that hosted containers are from trusted sources and do not present security flaws in them and that programs
within them always executing using the least privilege possible, meaning that they should only have the required
permissions to execute their functions.

A.1.10.4 Flexibility. Virtual machines provide the most flexibility for hosts and hosted environments. Given
the existence of an hypervisor for a given machine, it will be able to create virtual machines and host any operating
system with compatible architecture within it. As for containers, they currently only run natively in Linux systems,
requiring some sort of virtualization in other operating systems to execute. Furthermore, and focusing on the
Docker implementation, containers will only Linux as well [Bui 2015].

A.1.10.5 Conclusion. We can conclude that container environments are still more prone to security flaws than
virtual machines. New techniques for securing containers have been made available recently and more are expected
to become available in the future, but it is imperative that the user acknowledges the problem and evaluate its
risks while using containers.

A.2 Orchestration Manager

 Deploying and updating software at scale is an error-prone, slow and costly process. Such can be
facilitated by adopting an orchestration manager to coordinate, manage and distribute multiple
cloud services while abstracting the underlying infrastructure, fulfilling the service requirements.

A.2.1 Context. Along with cloud computing came very large applications, typically composed by several ser-
vices, that needed to scale out to multiple servers.

Traditional teams would have an operations team that would deploy and operate the software built by the
development team. This approach revealed itself impractical due to slow deployments and recurrent conflicts
between the two teams [De Bayser et al. 2015] due to miscommunication and finger pointing. DevOps suggested
merging both teams, having a single team responsible for the software life cycle. For that to happen, operations
needed to be fully programmatic [De Bayser et al. 2015].

For achieving this level of automation, abstractions where required to facilitate building fully automated opera-
tion strategies. Containerization played an essential role in enabling programmatic deployment of software.

A.2.2 Example. An application is composed by two services that need to be orchestrated in an infrastructure
with four servers. The service requirements might change with time and must be allocated into suitable hardware.
Their current requirements are described in Table I.

The servers might also change with time, with more powerful or specialized hardware being allocated if need.
The current servers available are described in Table II.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 17

Service Name CPUs RAM Disk Space Instances Constraints
HTTP 2 2 GB 5 GB 4 hostname=unique; location=Europe
Database 2 8 GB 50 GB 2 hostname=unique; SSD=true; location=Europe

Table I. : List of services and their possible configurations for a production environment.

Server name CPUs RAM Disk Space Server Details
Alpha 4 4 GB 500 GB location=Europe
Beta 4 4 GB 500 GB location=Europe
Charlie 4 16 GB 1000 GB SSD=true; location=Europe
Delta 4 16 GB 1000 GB SSD=true; location=Europe

Table II. : List of servers available in the infrastructure, along with their meta-data.

A.2.3 Problem. Deploying and updating software at scale is an error-prone, slow and costly process.

Multiple variants can constraint the allocation of services to servers in an infrastructure. Each service has its
own requirements and each service provides a specific set of resources. Furthermore, given the wide adoption of
continuous integration and deployment strategies, teams are increasing the frequency at which they deploy their
services to several times per day [Cycligent], which demands automation in the deployment process.

A common requirement is to ensure that services are allocated to host machines which fulfills its hardware
requirements and that this happens without human interaction. Such enables servers to run multiple services
while ensuring their execution within the host’s resource limits, guaranteeing the expected performance.

Cloud applications can also scale and the infrastructure empowering it must facilitate such scaling as well to
adapt to a change in the volume of activity, while optimizing costs.

A.2.4 Forces. The following forces, represented in Figure 5, need to be balanced while considering the adoption
of this pattern:

Infrastructure Decoupling: The development process should not be constraint by the running environment.
Resource Allocation: Allocating services without ensuring their requirements will result in unexpected behavior.

Infrastructure
Decoupling

Resource Alloca4on Alloca4on
dependencies

Scalability

facilitates

facilitates

enables

Fig. 5: Relationship between Orchestration Manager forces.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 18

Allocation dependencies: Allocating services without ensuring their dependencies will result in unexpected
behavior.
Scalability: It must be possible to scale the system either up or down.

A.2.5 Solution. Adopt an orchestration manager to coordinate, manage and distribute multiple cloud
services while abstracting the underlying infrastructure, fulfilling the service requirements.

Adopting an Orchestration Manager provides abstraction and automation over the orchestration of
services. The abstraction is provided by having the Orchestration Manager evaluating each available server,
service and its requirements and use that information to optimize service allocation. Automation is provided by
exposing a programmatic interface that facilitates orchestrating software in the infrastructure.

Services can be deployed programatically after being packaged using containerization. Using a declarative
strategy, the Orchestration Manager can be told what services need to be deployed and their requirements,
leaving to it the responsibility of managing the allocation. Resource allocation is enforced, ensuring that all
services are provided their required resources to execute properly. Most orchestration managers enable the
specification of additional restrictions such as co-allocations or startup sequences. Listing 1 demonstrates how to
tell the Kubernetes Orchestration Manager to instantiate two Nginx web servers [Kubernetes].

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: nginx-deployment
5 spec:
6 selector:
7 matchLabels:
8 app: nginx
9 replicas: 2 # tells deployment to run 2 pods matching the template

10 template:
11 metadata:
12 labels:
13 app: nginx
14 spec:
15 containers:
16 - name: nginx
17 image: nginx:1.7.9
18 ports:
19 - containerPort: 80

Listing 1: A Kubernetes specification for starting two instances of the Nginx web server.

Orchestration Managers work using a master-slave architecture, being the master elected automatically
and responsible for handling service allocation. Deployment requests can often be issued to any slave, which
proxies them to the master [Mesosphere 2018]. This approach facilitates electing a new master automatically if
the current master fails.

Whenever a new slave joins the infrastructure, the master identifies its available resources. When a new service
allocation request is received, the master decides where the service should be executed and instructs the slaves to
start it. Figure 6 illustrates this interaction.

If no slave is capable of hosting the service due to a mismatch on the service requirements and those available
in the servers of requirements, the master periodically retries the service allocation until it succeeds.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 19

:Master S1:Slave S2:Slave<<Actor>>

Service description

Start service

Start service

status
status

ok

Fig. 6: Sequence diagram representing communication between master and slaves for service allocation.

A.2.6 Example Resolved. The team starts by deploying an Orchestration Manager that abstracts four
existing servers. By doing so, one of the servers will be automatically elected as master, with the others proxying
orchestration requests to it.

A descriptive file can be created for each service, describing how to obtain the respective container, as well as
describing its requirements.

Finally, to deploy the services, a request similar to the one from Listing 1 is sent to the Orchestration Man-
ager with each service description. The Orchestration Manager master evaluates the resources required
by the services and the ones available in each server, instructing the selected servers to deploy the services.

In the example we can see that the hostname must be unique, meaning that it is not possible to deploy two
HTTP or database servers in the same host. Also, the selected servers must be Europe, with the database service
in a server with SSD storage.

Considering those restrictions, the Orchestration Manager would compute a viable solutions, which could
be the one identified in Table III.

In this example, when deploying the services, all servers are at full capacity and are able to fulfill the requested
resources regarding CPU, RAM and disk space. When the service is deployed to Alpha and Beta, the orches-
tration Manager subtract 2 CPUs, 2 GB RAM and 5 GB of storage from their available resources, influencing
the allocation of services in the future. When deploying the database service, only European servers with SSD
storage can be used, resulting in Charlie and Delta being the two only eligible hosts.

A.2.7 Resulting Context. This pattern introduces the following benefits:

Infrastructure decoupling: Service development can be agnostic of the host where the service is going to be
placed, describing only its requirements and packaging its dependencies using containerization.

Service Name Server Name Applied constraints
http server Alpha hostname=unique; location=Europe
http server Beta hostname=unique; location=Europe
database Charlie hostname=unique; SSD=true; loca-

tion=Europe
database Delta hostname=unique; SSD=true; loca-

tion=Europe

Table III. : List of available servers in the infrastructure.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 20

Resource allocation: Services are allocated in servers that meet their requirements.
Allocation dependencies: Dependencies are respected, managed as constraints for the allocation process.
Scalability: Scalability is achieved by adding slaves to the infrastructure and individually change the number
of instances for each service.
The pattern also introduces the following liabilities:
Suboptimal allocation: Allocation using a greedy placement algorithm might result only in a locally-optimal
solution.
Single point of failure: In some implementation where the master is not automatically reelected in case of
failure, using a single master node would result in a single point of failure.
A.2.8 Related Patterns. Some Orchestration Manager implementations might support additional strate-

gies for running software, but Containerization is the most common strategy.
A.2.9 Known Uses. Kubernetes by Google is the fastest growing implementation of a orchestration man-

ager. It abstracts a set of machines, receiving requests for allocating containers in the infrastructure. Kubernetes
is under active development, widely adopted and supported across most cloud providers [Goasguen 2016].

Mesos and Marathon together provide another robust solution for achieving the same goal. New services
are submitted to the infrastructure using an HTTP API describing its requirements and constraints. With this
information, the master communicates with the slaves, identifying a valid host and issuing the order for placing
the service [Hindman et al. 2011].

CoreOS offers similar technology, with a centralized registry made available using Etcd [CoreOS Community
2015].

A.3 Automated Recovery

 Services may fail during execution and need to be recovered in a timely and orderly fashion. In-
cluding health checks and recovery configurations in the instructions used for the Orchestration
Manager to orchestrate containers, enables it monitor and recover failing containers.

A.3.1 Context. At the scale that cloud software is operated, it is reasonable to accept that it will eventually
fail. Resilience is then an essential requirement while writing scalable cloud software. The development team must
introduce the necessary strategies to ensure that the application is functioning properly or that, at least, it can
recover back to a functioning state automatically.

This pattern extends the Orchestration Manager [Boldt Sousa et al. 2015] pattern, responsible for
executing services packaged using Containerization [Boldt Sousa et al. 2015].

A.3.2 Example. Consider a web server exposing an API is running inside a container in an Orchestration
Manager. Suppose that the service had a memory leak, which gradually consumed the memory allocated for the
service, and thus making the service unresponsive. The Orchestration Manager sees the container running,
but while it is still executing, it is unable to respond to requests.

A.3.3 Problem. Services may fail during execution and need to be recovered in a timely and orderly fashion.

Cloud software is exposed to variety of stress conditions, from public Internet exposure to dynamic cloud
infrastructure. As such, software should be designed with resilience in mind to ensure it can to recover from
failures.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 21

With a traditional operations approach, a team member is responsible for identifying failures and deciding the
best action to recover a failing system using the defined recovery protocol. This approach is troublesome as it
requires manual intervention, which is slow and error prone.

A.3.4 Forces. The following forces, represented in Figure 7, need to be balanced while considering the adoption
of this pattern:

Resilience: Failing containers should recover to an healthy state when failure is observed.
Reliability: Monitoring strategies that are prone to false positives can trigger an unnecessary service recovery.
Automation: Requiring manual intervention for recovering a failing service is error-prone, slow and costly.

A.3.5 Solution. Including health checks and recovery configurations in the instructions used for the Orches-
tration Manager to orchestrate containers, enabling it monitor and recover failing containers.

Automated Recovery is available in most Orchestration Manager implementations [Mesosphere
2017; Kubernetes 2018]. The development team implements health checks for each container to verify if its
service is behaving correctly. Most implementations provide at least plain TCP and HTTP checks. The health
checks can be provided along with the service description directly to the Orchestration Manager.

To implement the recovery strategies the team needs to evaluate each service individually, deciding which check
can be used to identify that the service is failing, how many times each check needs to be retried and how much
time to wait between executing the checks and actually considering a service as failing. A recovery protocol must
be made available along with the health checks to be automatically executed by the Orchestration Manager
to attempt the service recovery. Health checks and recovery protocols need to be considered part of the service’s
development process.

Health checks will be very specific to the service running in a container. These might range from checking if a
port is receiving connections in the container, to more a advanced HTTP-based checks, to executing a command
inside the container and monitoring its exit code.

TCP checks verify if a network port is open and accepting TCP connections. These are typically binary checks
that just validate the service ability to receive connections.

Resilience Reliability

Automa0onimproves

improves

improves

Fig. 7: Relationship between Automated Recovery forces.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 22

HTTP checks are more advanced than their TCP counterparts since they can actually make HTTP requests
and validate the HTTP return code and body, making way for more advanced tests.

Developers can implement dedicated health checking endpoints to be queried by Automated Recovery,
providing responses that can be easily interpreted to verify the service’s status.

While deciding on the supervision strategy, the team can leverage common features that prevent false positives
from mistakenly restarting the service. A false positive might be a momentary request that fails to have a response,
followed by normal service operation.

The recovery operation itself is prone to failure. Implementing this pattern is another step towards improving
cloud software reliability, but cannot be relied upon as unbreakable.

When a failure is identified and that results in an Automated Recovery, the Orchestration Manager
or the adopted Automated Recovery service will log that event and its details. The team can use this log
as input for improving their software or to configure notifications to be aware as soon as they happen. This is
relevant as restarting the container might only be a temporary solution or not able to fix the problem.

1 {
2 "id": "toggle",
3 "container": {
4 "docker": {
5 "image": "busybox"
6 }
7 },
8 "cpus": 2,
9 "mem": 32.0,

10 "healthChecks": [
11 {
12 "protocol": "HTTP",
13 "path": "/health",
14 "portIndex": 0,
15 "gracePeriodSeconds": 5,
16 "intervalSeconds": 10,
17 "timeoutSeconds": 10,
18 "maxConsecutiveFailures": 3
19 }
20]
21 }

Listing 2: A Marathon service description, describing the health check policies for Automated Recovery.

Listing 2 demonstrates how a service can be started using the Marathon Orchestration Manager, con-
figuring an HTTP health check that verifies the response code from the /health endpoint. From this example,
the parameters used are: gracePeriodSeconds, which ignores errors for a given number of seconds after the ser-
vice starts; intervalSeconds, which configures the delay between checking the endpoint; timeoutSeconds, which
configures the maximum time to wait for a response from the service; and maxConsecutiveFailures, which defines
the number of times the health check can fail before being restarted.

While implementing this pattern, one needs to decide on how to balance:

Interface coverage: We want to ensure the tests are as complete as possible, covering all application’s interfaces,
while balancing this investment with the available development effort.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 23

Frequency: We want to run the health checks as often as possible, while balancing this frequency with the
increase in resource utilization.
Accuracy: We want to prevent false positives by confirming issues redundantly, such as those who might result
from a temporary slowdown in the system, automatically recovered inside the container.

A.3.6 Example Resolved. While deploying a service with an Orchestration Manager with support for
Automated Recovery, the service definition specifies the set of health checks used to verify the service’s
status.

During execution, if a health check identifies a problem with a container, the respective container is restarted
automatically. While the intrinsic issue might persist, the service will once again become available without team
intervention. Given the notification sent to the team, they will be immediately aware of the issue and can focus
on implementing a proper solution.

A.3.7 Resulting Context. This pattern introduces the following benefits:

Resilience: The Orchestration Manager will be able to recover failing containers automatically.
Reliability: Failing containers will be automatically identified using the implemented health checks, which can
have an advanced strategy to prevent false positives.
Autonomy: Failing services are restarted using the implemented recovery protocol, so that the system recovers
its correct execution state automatically and without requiring manual intervention.

On the other hand, the following liabilities are also introduced:

Relaxation: It might happen that the development team disregards software failures given that they are being
automatically recovered.
Unawareness: Without the proper monitoring and logging in place, considering that failing services are auto-
matically recovered, it might happen that the team isn’t aware of the failure in the system.
Performance degradation: Running health checks against the container will introduce additional load in the
system, which might result in performance degradation.
False positives: It might happen that the health checks aren’t accurate and the containers restarted while
behaving correctly.
Unintended Consequences: It might happen that the service is improperly designed and unable to be restarted,
leaving it inconsistent and requiring manual intervention after a restart. In extreme scenarios each recovery
attempt might further increase the problem. An example of such is the case where a backup system that is
consistently failing during its execution will keep increasing the disk space it occupies without ever actually
having a complete backup, until no more space is available.

A.3.8 Related Patterns. The Orchestration Manager pattern describes how containers can be orches-
trated in an infrastructure automatically, leveraging allocation rules, container scaling and resource availability.
Automated Recovery is commonly related with orchestration Manager, given that most of its imple-
mentations provide some sort of supervision strategy to ensure the containers are working as expected [Mesosphere
2017; Kubernetes 2018].

Automated Recovery enables the automatic recovery of services if their health is degraded. This pattern is
essential to implementing Failure Injection, where the reliability and resilience of the system is tested though
a set of random inputs and events in order to identify possible attack vectors or failures in the system.

Dynamic Failure Detection and Recovery describes a subset of Automated Recovery, by proposing the
existence of a resilient watchdog component that monitors IT resources and in case of failure notifies the team
and attempts automated recovery [Arcitura Education Inc].
Overview of A Pattern Language for Engineering Software for the Cloud — Page 24

A.3.9 Known Uses. Most Orchestration Manager pattern implementations provide Automated Re-
covery natively, as orchestration and supervision complement each other while deploying services in an infras-
tructure.

Marathon supports multiple health check strategies. TCP and HTTP are implemented as described in this
pattern’s solution. Additionally, Marathon supports the COMMAND check, which consists on running a command
within a container and evaluate its output [Mesosphere 2017]. Listing 2 demonstrates how an health check can
be configured for Marathon.

Kubernetes provides a similar approach to Automated Recovery [Kubernetes 2018], but with additional
features to it. With Kubernetes, developers can set two flavors of health checks: readiness and liveliness. Readiness
checks are considered only right after the container is instantiated and enable Kubernetes to check if the container
is ready to start accepting traffic. Only after the readiness checks pass is the container considered healthy and
ready to be used. Liveliness then work as health checks do in Marathon, periodically testing the container for its
status, automatically restarting it when unhealthy.

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 labels:
5 test: liveness
6 name: liveness-http
7 spec:
8 containers:
9 - name: liveness

10 image: k8s.gcr.io/liveness
11 args:
12 - /server
13 livenessProbe:
14 httpGet:
15 path: /healthz
16 port: 8080
17 httpHeaders:
18 - name: X-Custom-Header
19 value: Awesome
20 initialDelaySeconds: 3
21 periodSeconds: 3

Listing 3: A Kubernetes service description, describing the health check policies for Health Check using HTTP.

1 from nginx
2

3 HEALTHCHECK --interval=5m --timeout=3s CMD curl -f http://localhost/ || exit 1
4

5 CMD nginx -g "daemon off;"

Listing 4: A Dockerfile for building a container based on the Nginx image, leveraging Docker’s implementation of
Automated Recovery by periodically checking the web server’s health.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 25

Just like with Marathon, health checks are defined with the service definition, along with the specification of
what container to use and how to configure it, as demonstrated in Listing 3.

Docker has its own supervision mechanism. Docker’s supervision provides a simple restart strategy, which
automatically restarts a container either if it fails or when an health check is failing. Health checks can be
specified while creating the container [Docker 2018]. Docker health checks consist on the periodic of a command
within the container, verifying its exit code. Listing 4 demonstrates how to create a Dockerfile which builds a
Docker image using the Nginx image has base and simply executes Nginx on start, verifying every five minutes
if the web server is responding to requests. If a request takes longer than three seconds to respond, the health
check fails and the container is automatically restarted.

A.4 Job Scheduler

 Cloud applications require frequent short-running jobs to be scheduled, which must be orchestrated
across a dynamic infrastructure without permanently allocating resources. A scheduler service running
along with the Orchestration Manager can instruct it to allocate one time or periodic jobs,
recovering their resources to the infrastructure when they complete.

A.4.1 Context. It is often required that jobs are executed on a periodic basis inside an infrastructure managed
by an Orchestration Manager. These jobs can range from internal system verifications, maintenance, in-
frastructure scaling and many others. These are not long running services, hence, do not need to be continuously
executing on the infrastructure, as doing so preallocates valuable resources that would be idle part of the time.

In a non-cloud context, job scheduling was typically provided by Cron (see subsubsection A.4.10) or similar
application. In the context of the cloud Cron is not a viable option, given that it is local to a specific server and
not aware of the whole infrastructure and its resource availability.

This pattern considers the adoption of containerization for packaging the jobs to execute and the presence
of an orchestration manager.

A.4.2 Example. Consider a distributed database, replicated between multiple servers. Despite the replication,
keeping frequent backups in a secure remote location is relevant to recover the database from an unexpected
scenario in the infrastructure. This backup must happen frequently and automatically, without the team’s inter-
vention.

A.4.3 Problem. Cloud applications require frequent short-running jobs to be scheduled, which must be orches-
trated across a dynamic infrastructure without permanently allocating resources.

It is common for short-running jobs to be executed in a infrastructure, alongside the hosted microservices.
These can vary from database backups to internal system checks. Traditionally, these operations would be the
responsibility of the operations team. Some degree of automation could be achieved by leveraging a job scheduler,
such as Cron. In the cloud using Cron is not ideal given that the infrastructure is continuously evolving, that
containers are dynamically allocated to their host servers and that co-location with specific containers or resource
allocation rules might exist for running these jobs. Also, using Cron while using Containerization would require
a container to be running for the sole purpose of executing scheduled jobs, permanently reserving resources for
the container, or using the host’s Cron scheduler polluting the host, both less than ideal approaches.

A.4.4 Forces. The following forces, represented in Figure 8, need to be balanced while considering the adoption
of this pattern:
Overview of A Pattern Language for Engineering Software for the Cloud — Page 26

FrugalitySepara-on of
concerns

Reac-veness

Automa-on
facilitates

opposes

facilitates

Time Synchroniza-on

requires

Fig. 8: Relationship between Job Scheduler forces.

Automation: Manual intervention is error-prone, slow and costly.
Frugality: Permanent resource allocation to idle containers that are only active periodically is not resource
efficient for the infrastructure.
Reactiveness: Some short-running jobs need to execute as a reaction to an external event (typically called
triggers).
Separation of concerns: Short-running jobs are bundled with the description of the resources they require to
execute, without needing to know anything about the infrastructure where they will be executed.
Time synchronization: Maintain machine clocks synchronized across the infrastructure to ensure that jobs are
started at the correct time, despite what machine is starting the execution.
Execute one time or periodic jobs in the infrastructure.
A.4.5 Solution. Deploy a scheduler service along with the Orchestration Manager that can instruct it

to allocate one time or periodic jobs, recovering their resources to the infrastructure when they complete.

A Job Scheduler extends the Orchestration Manager pattern, responsible for executing services using
Containerization, by enabling the scheduling and execution of one time or periodic jobs in the infrastructure.
The pattern can be implemented by using a third-party Job Scheduler that already integrates with the adopted
Orchestration Manager.

The Job Scheduler service can expose a programmatic, graphical or both, configuration interface to manage
job scheduling. A job specification is composed by the instructions required to execute the job, along with its
resource requirements and schedule details.

The exact information required for executing jobs will be specific to the adopted Job Scheduler implementa-
tion, but will typically require the details of a container image to execute, along with list of environment variables
to configure it, supervision criteria and required execution resources such as the required number of CPU cores
or amount of RAM, just like any service would.

The Job Scheduler should integrate with an Orchestration Manager, which is responsible for exe-
cuting the scheduled job inside a container, honoring its requirement constraints. It does so by instructing the
Orchestration Manager to execute a container for running the Job, while also providing the requirements
for running it.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 27

Allocated resources are freed upon the job completion, becoming available for executing other jobs. The inte-
gration with the Orchestration Manager ensures that jobs are only started if their required resources are
available and restarted in case of unexpected failure, observed through the job’s exit code.

An Orchestration Manager might also provide the possibility for restricting where jobs are executed in the
infrastructure, by tagging the available servers and limiting allocation to servers who are tagged with a particular
set of labels.

To ensure consistent behavior despite in which node the scheduler is deployed, the hosts should have their
clocks synchronized using an external time server.

A.4.6 Example Resolved. Deploy the scheduler service within the infrastructure. The backup operation would
be configured in the scheduler to execute every day. The Orchestration Manager would be responsible
for ensuring that the container responsible for executing the job is placed in a server that provides the required
resources to run the job, as well as, if needed, it is co-located with the server running the database, reducing
network latency.

A retry mechanism can also be specified, ensuring that the backup job would automatically retry up to a certain
number of times in case of failure. If the failure persists, the execution of the job is aborted and the team is notified
of the issue.

To ensure that all machines share the same date and time, a time synchronization daemon should be present.

A.4.7 Resulting Context. This pattern introduces the following benefits:

Automation: Jobs are automatically spawned on the infrastructure on their scheduled times, without requiring
manual intervention.
Frugality: Resources allocation is minimized for short-running jobs, being recovered by the infrastructure once
the job finishes.
Separation of Concerns: The scheduled job does not need to know details about the infrastructure, only de-
scribe its requirements. The Orchestration Manager will assume the responsibility of placing the con-
tainer in the right host.

On the other hand, the following liabilities are introduced:

Dependency: If a job depends on another service’s status, if that service is degraded, the job may consistently
fail.
Single point of failure: When the scheduler fails, the Orchestration Manager will not be instructed about
the jobs it needs to execute.
Synchronism: Wrong clock synchronization or misconfigured timezones might result in jobs being executed
outside their expected times, which might introduce unexpected results.
Reactiveness: This solution does not address reactive job execution.

A.4.8 Related Patterns. Being an extension to Orchestration Manager, choosing a Job Scheduler
implementation typically is aligned with the Orchestration Manager choice.

Google also describes how to reliably schedule jobs using their cloud [Google 2018]. Using the Chronos Job
Scheduler on top of an Apache Mesos Orchestration Manager is explicitly described, as the authors have
also done in subsubsection A.4.9.

Microsoft describes the behavior for a scheduler pattern [Microsoft 2017b], but it only explains how to im-
plement one. This pattern follows a different approach, detailing on how to use a Job Scheduler with an
Orchestration Manager rather then implementing one from scratch.
Overview of A Pattern Language for Engineering Software for the Cloud — Page 28

Fig. 9: The Chronos configuration user interface, showing four scheduled jobs. Chronos enables job scheduling on top of Mesos using
a graphical user interface.

1 apiVersion: batch/v1beta1
2 kind: CronJob
3 metadata:
4 name: hello
5 spec:
6 schedule: "*/1 * * * *"
7 jobTemplate:
8 spec:
9 template:

10 spec:
11 containers:
12 - name: hello
13 image: busybox
14 args:
15 - /bin/sh
16 - -c
17 - date; echo Hello from Kubernetes
18 restartPolicy: OnFailure

Listing 5: Kubernetes configuration for scheduling the execution of a container every minute.

A.4.9 Known Uses. Most infrastructure management environments have a companion scheduler service, either
bundled in or as a plug-in service.

Chronos is a distributed and fault-tolerant scheduler for the Apache Mesos framework [Chronos 2017]. It exposes
an API and user interface with which jobs can be scheduled and monitored. Figure 9 shows the Chronos user

Overview of A Pattern Language for Engineering Software for the Cloud — Page 29

interface, with four jobs configured. Their state and recurrence is easily perceived in the status and state column,
respectively.

Kubernetes enables job scheduling by making available a built in scheduler service. Similar to Chronos, jobs
can be managed using the user interface or API [Kubernetes 2017]. Kubernetes API uses the YAML 4 format to
describe jobs, as demonstrated in Listing 5.

Without using a Orchestration Manager, but with a similar objective, cloud providers tend to provide
their own implementation of a scheduler, which can be used to manipulate their environment or client applications
directly [Amazon 2017b; Microsoft 2017b]. These typically enable calling the provider’s API to start some action
such as running an anonymous function or starting a virtual machine or container.

It was also observed that some companies use a scheduler to periodically evaluate the infrastructure’s load and
appropriately resize it to cope with the current incoming traffic.

A.4.10 Further Consideration. Most Job Scheduler implementation respect the syntax specified by the
POSIX utility Cron, as represented in Figure 10 [IEEE and Open 2016], for scheduling jobs. This syntax, despite
not being a standard, has since been widely adopted as the de facto syntax for describing recurrent jobs, as seen
in subsubsection A.4.9.

While scheduling is an common approach to schedule one time and recurrent jobs, there is another approach to
it. The event-driven community [Fowler 2017] defends that a reactive is the most efficient way to identify when
jobs should be spawned [Bonér et al. 2014]. With this approach, a Job Scheduler would not be needed, but
an additional component to register event subscription could be adopted, defining which jobs should be spawned
after a specific event if observed. For the specific case of time-based execution, this component could react to
the clock ticks.

4YAML is a human friendly data serialization standard for all programming languages. Learn more at http://www.yaml.org/.

Fig. 10: Overview of the CRON format, a commonly adopted syntax used to specify the date and time at which a job should be
executed and repeated.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 30

http://www.yaml.org/

A.5 Failure Injection

 Resilience mechanisms are triggered when software is failing. Since systems are designed to work
correctly, the status quo prevents us to from continuously verifying the correctness of those mecha-
nisms. We need additional strategies to minimize the probability of failure in production due to faulty
resilience strategies. Failure injection software can generate atypical events at both the applica-
tion and infrastructure level, exercising the available recovery mechanisms, verifying the application’s
resilience

A.5.1 Context. Software fails [Charette 2005]. This assertion is widely accepted and the motivation for writ-
ing resilient software. Application failures can originate both from malfunctioning software or due to external
conditions, which might be impossible to predict, such as network failures or defective hardware.

When running software at scale, issues are statistically guaranteed to happen [Pinheiro et al. 2007]. As such,
it is imperative that cloud software is designed with resilience in mind, meaning that the application should have
a set of strategies to recover from problematic situations at both the application and infrastructure layers. Still,
resilience strategies are themselves software, hence, prone to failure, limiting the confidence on their efficiency.

A.5.2 Example. Consider a online web application powered by a database. Such database is essential for the
system to work. As such, the database is replicated in hot-standby mode, meaning that the second instance has
a complete copy of the first, being used for failover. Furthermore, the database is frequently backed up to an
off-site using AWS S3 and Azure disk snapshots.

Consider now that the second database has an issue and needs to be manually resynchronized. While doing so,
by mistake, an operator manually deletes part of the production database, leaving both inconsistent and loosing
production data. When trying to recover the database from the off-site backups, the operator identifies that the
backups are not available and identifies that the backup procedure has not been running as expected. No recent
backup is available and the operator will not be able to recover the database to a recent state, resulting in the
actual loss of production data.

The example above is actually a simplified version of an event from early 2017, when a GitLab engineer
accidentally deleted part of their production database, only to understand that the existing recovery mechanisms
where not properly configured, leaving the system down for over 18 hours and resulting in the actual loss of
production data, namely in the changes to projects, comments, user accounts, issues and snippets, that took
place between 17:20 and 00:00 UTC on January 31 [Gitlab 2017].

A.5.3 Problem. Resilience mechanisms are triggered when software is failing. Since systems are designed to
work correctly, the status quo prevents us to from continuously verifying the correctness of those mechanisms.
We need additional strategies to minimize the probability of failure in production due to faulty resilience strategies.

It has been previously asserted that software fails. That was the main motivation behind the let it crash
philosophy in the Erlang language and other actor models, where instead of defensively addressing all possible
errors, the program was allowed to crash and restarted in an attempt to recover normal execution [Cunningham
2014]. The Reactive Manifesto also addresses this type of recovery, with resilience through recovery as being one
of the four characteristics of reactive systems [Bonér et al. 2014].

By relying on software as a recovery mechanism for other software, it is possible that the recovery mechanisms
might fail as well. For that matter, just like any other application, the recovery mechanisms themselves must be
validated and frequently tested to ensure their correct behavior.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 31

While designing resilience processes for cloud software, these processes themselves should be monitored, ensuring
that the system is able to properly recover from from failure.

Verifying resilience presents the same problem as verifying software: it is not possible to guarantee that the
system is completely resilient, only that it endures the identified test scenarios. Furthermore, testing software for
bugs is easier than testing resilience, as resilience might be influenced by the underlying infrastructure that hosts
the application, which might not be under them team’s control. As such, resilience testing is not an one time
activity, but instead needs to be continuously improved during the lifetime of the application.

At its core, verifying resilience requires the implemented processes to be stressed, putting the application through
unexpected scenarios and verifying how well it behaves. This might be problematic by itself if at some point the
application is unable to recover without manual intervention, rendering it in a degraded state.

This problem becomes further complex as it is insufficient to verify resilience in a staging environment, given
that resilience is highly influenced by a multitude variables in the infrastructure, such as number of resources
allocated, for how long they have been allocated or how much load they are handling. While it is possible to
create a similar staging environment, even the specific hardware allocated to production might present a different
behavior from the staging environment. As such, the only way to increase trust over the resilience of a production
environment is to actually test that environment.

A.5.4 Forces. The following forces, represented in Figure 11, need to be balanced while considering the
adoption of this pattern:

Preemptive failure detection: Identify failures in the application before they accidentally impact the application
or are exploited by third parties.
Failure generation: Known failures are less likely to cause impact in the system than artificially generated ones.
Resilience: Failure injection might degrade the status of the system.

A.5.5 Solution. Generate atypical events at both the application and infrastructure level, exercising the avail-
able recovery mechanisms to verify the application’s resilience

To ensure that the system will recover when a problem arises, its resilience strategies must be frequently
exercised, even in production, ensuring that the system does in fact recover to the expected status when a failure
happens.

An external piece of software can frequently generate unexpected events at both the application and infrastruc-
ture level and monitor how the system behaves, verifying it if it recovers as expected. These events can range
from shutting down a container instance to a full virtual machine server. In both scenarios, the resilience strategies
should be able to recover the application to the expected status, restarting the container in the first scenario or
the machine and it’s hosted services in the second.

The adopted strategy used for Failure Injection should be aware of the application and infrastructure’s
APIs and randomly inject invalid payloads or shutdown system components.

While implementing this pattern, one must consider:

Completeness: failures can be injected at both the infrastructure and application level. Only by testing both
can we maximize the level of confidence in the system’s resiliency.

Failure genera+on ResiliencePreemp+ve failure
detec+on

motivatesfacilitates

Fig. 11: Relationships between Failure Injection force.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 32

Frequency: We need to decide how often we will exercise the resilience mechanisms, balancing how much
resources we are willing to allocate, which directly impacts execution cost, with the level of trust we want to
continuously have over the system.
Traceability: We need to understand the impact of injecting failures in the system, by aggregating information
from the failure injection system with the infrastructure and application logs, facilitating the evaluation of the
impact of a failure injection on the system.
Programatic failure injection: We want to enable the developer to programatically describe his failures or failure
generation logic, so that the failure injection can be automated and executed automatically, reducing the need
for manual intervention while running failure injection tests.
There’s a several attack vectors and liabilities introduced while testing resilience. The following scenarios should

be considered:
Application misuse: Generate random inputs to the application’s interfaces, including its APIs.
Unexpected load: Suddenly increase the system’s load, by generating an abnormally high amount of traffic.
Network degradation: Degrade or disable the network to a server, either by disabling the server’s network card
or use an application that consumes its bandwidth.
Resource depletion: Deplete available disk, RAM or CPU from a server, by starting an application in the server
that consumes such resources.
Unexpected component shutdown: Shutting down random servers or other system components, up to disabling
entire availability regions.
While exercising the recovery mechanisms with Failure Injection, the system is expected to be impacted,

which should be carefully monitored by observing:
Latency: Some tests will degrade or shutdown resources. While doing so, application latency should be moni-
tored. An ideal resilience mechanism will recover from the injected time without increasing latency above the
expected limit. Data from the External Monitoring pattern can be leveraged to observe the application’s
latency from the user’s perspective.
Recovery time: The application should recover within an expected duration. Infrastructural and application
logs can be used to verify if a recovery is taking more time than expected, which will introduce the need to
improve the resilience mechanisms.
Data: A resilient application should be able to recover from a failure without losing or corrupting data.
Security: During the recovery of the application, the system should remain secure, ensuring that no temporary
attack vector is introduced.
Supervision and monitoring patterns such as External Monitoring are companions to Failure Injec-

tion. It is expected that some of the generated events will degrade the system, but its resilience should enable
automatic recovery, preventing any impact on the application. If such doesn’t happen, monitoring patterns should
identify the degraded system state, providing the required information for the development team to recover the
system and afterwards implement the required steps to improve its resilience.

It is arguable if Failure Injection should be applied to production environments given the risk to degrade
them. To prevent impacting production systems, Failure Injection should first be thoroughly tested in a
development or staging environment, being introduced into production when the level of confidence around the
application’s resilience if definitive. Furthermore, its execution in production environment should be constrained
to work hours, under close supervision of the team.

While it is arguable if Failure Injection should be executed against production systems, exercising its
recovery mechanisms is the only way to ensure that they are working properly.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 33

A.5.6 Example Resolved. Adopt a Failure Injection tool and configure it to generate failures against the
application’s database and its infrastructure, insuring that the system is able to recover automatically.

By periodically exercising the database reliability, the team would have been able to identify earlier that the
backup process was not working, just as well as it would be able to understand that the hot-standby replication
was not optimally configured, improving it to be sure that the secondary server would be able to sustain the
expected level of service required by the application.

A.5.7 Resulting Context. This pattern introduces the following benefits:

Automated Failure detection: The adopted tool will generate and inject random events in the system, testing
it thoroughly and continuously, identifying issues faster than any manual testing could.
Awareness: Using the External Monitoring pattern, the team can be notified of a degradation whenever
a Failure Injection impacts the system.
Preemptive failure detection: By stressing the application with unexpected events, the team is able to preemp-
tively identify failures that could happen in the wild otherwise.

On the other hand, the following limitations will be introduced:

Availability: While testing reliability, it might be the case that an issue is identified and the system’s perfor-
mance degraded. The team should be immediately alerted and take the required actions to recover the system’s
stability, as well as implementing the required automations to recover from the newly identified scenario.
Resource usage: Exercising resilience will only be possible when resilience mechanisms are available. Often
resilience requires redundancy to be implemented, which will always increase the resources required to operate
the application.
Unintended consequences: While the system might be able to recover, it might do so while introducing unac-
ceptable consequences. For example, a critical system might lose data during a recovery process.

A.5.8 Related Patterns. When implementing this pattern, Self Healing should have been implemented,
enabling both the application and infrastructure to recover automatically. Failure Injection can also leverage
Log Aggregation for capturing its action.

The description of the responsibilities for a Failure Injection tool has been described the Software Failure
Injection Pattern System [Leme et al. 2001].

A.5.9 Known Uses. Netflix was one of the main motivators behind Failure Injection with the implementa-
tion of their open source tool ChaosMonkey. ChaosMonkey interacts with an AWS account and randomly shutting
down infrastructure components. At Netflix, ChaosMonkey is executed against the production environment during
business hours, randomly terminating virtual machines. Their rationale is that exposing engineers to failures mo-
tivates them to make their services more resilient [Netflix 2017]. ChaosMonkey is one of the many tools available
in the Simian Army, a set of open source tools developed by Netflix to help engineers improve their software’s
reliability[Netflix 2011].

Motivated by the impact from the floods of Hurricane Sandy in 2012 in New Jersey, Project Storm is Facebook’s
approach to resilience testing. At its infancy, it was composed by a set of small drills lead by a reliability team
that were designed to replicate the consequences of catastrophic natural events, just like Hurricane Sandy was,
by degrading or disconnecting small parts of their infrastructure. By 2014, the team behind Project Storm upped
their game, starting to disable entire data centers. The initial drills enabled the team to identify several unexpected
points of failures [Hof 2016].

Failure injection is motivated by the Principles of Chaos Engineering. Quoting, ”Chaos Engineering is
the discipline of experimenting on a distributed system in order to build confidence in the system’s capability to
withstand turbulent conditions in production” [Chaos Community 2017]. In practice, it consists on experimenting
Overview of A Pattern Language for Engineering Software for the Cloud — Page 34

with the moving parts of the application, looking for actions that might result in a system failure, such as crashing
servers of malfunctioning hard drives.

A.5.10 Further Considerations. Chaos engineering practices are implemented against systems expected to be
reliable, validating their reliability. It should be expected that failures are found and the system should recover
without manual intervention. Still, for teams starting to implement Failure Injection, its execution should be
carefully monitored, as some failures might result in non considered scenarios, leaving the system in an unrecov-
erable state and requiring manual intervention.

According to the Chaos Community, Chaos Engineer is based on the following principles [Chaos Community
2017].:

Build a Hypothesis around Steady State Behavior: Focus on the measurable output of a system, rather than
internal attributes of the system. Measurements of that output over a short period of time constitute a proxy
for the system’s steady state. The overall system’s throughput, error rates, latency percentiles, etcċould all
be metrics of interest representing steady state behavior. By focusing on systemic behavior patterns during
experiments, Chaos verifies that the system does work, rather than trying to validate how it works.
Vary Real-world Events: Chaos variables reflect real-world events. Prioritize events either by potential impact
or estimated frequency. Consider events that correspond to hardware failures like servers dying, software failures
like malformed responses, and non-failure events like a spike in traffic or a scaling event. Any event capable of
disrupting steady state is a potential variable in a Chaos experiment.
Run Experiments in Production: Systems behave differently depending on environment and traffic patterns.
Since the behavior of utilization can change at any time, sampling real traffic is the only way to reliably
capture the request path. To guarantee both authenticity of the way in which the system is exercised and
relevance to the current deployed system, Chaos strongly prefers to experiment directly on production traffic.
Automate Experiments to Run Continuously: Running experiments manually is labor-intensive and ultimately
unsustainable. Automate experiments and run them continuously. Chaos Engineering builds automation into
the system to drive both orchestration and analysis.
Minimize Blast Radius: Experimenting in production has the potential to cause unnecessary customer pain.
While there must be an allowance for some short-term negative impact, it is the responsibility and obligation
of the Chaos Engineer to ensure the fallout from experiments are minimized and contained.

A.6 Preemptive Logging

 The information required to debug issues in software is often lost during their first occurrence due to
insufficient log verbosity. By adjusting logging verbosity preemptively in services and servers within
acceptable resource limits (CPU, storage, others), the team maximizes the probability of capturing
relevant information for addressing future issues right from their first occurrence.

A.6.1 Context. It’s often difficult to guarantee that software will behave as expected, but it can be designed
for the worst. In those situations, information is key to debug applications, which makes having execution logs
available after those unexpected scenarios the most relevant piece of information to understand what, how and
why the software has failed.

Most third-party applications have adjustable verbosity logging capabilities, but first-party applications some-
times neglect that need, causing the developers to lack the required information to mitigate unexpected failures.
Given that service cooperation is key in cloud software, and considering the uncertainty of the events that lead to

Overview of A Pattern Language for Engineering Software for the Cloud — Page 35

unexpected errors, all services should equally generate logs that are the sole resource from developers to understand
and mitigate the issue.

A.6.2 Example. Consider a database service in a microservice architecture. The service is responsible for
persisting information important for other services in the infrastructure. At a given point in time, the database
crashes. Automated operations practices should ensure that the service is automatically recovered, but, after a
while, it crashes again. This behavior is recurrent and without explanation from the development team. The team
is expected to identify and fix the issue, but is not being able to reproduce it outside the production environment.
Without the proper information about the production system, the team is rendered incapable to properly addressing
the issue.

A.6.3 Problem. The information required to debug issues in software is often lost during their first occurrence
due to insufficient log verbosity.

Development teams tend to be conservative on their software instrumentation, undervaluing the importance of
capturing runtime information. When software fails, it is common that the only debugging approach is to further
instrumenting the software and await for the issue to repeat itself. This approach decreases the level of confidence
on the software quality, as well as requires the team to knowingly leave a bug in their software given the lack of
information to fix it.

A.6.4 Forces. The following forces, represented in Figure 12, need to be balanced while considering the
adoption of this pattern:

Traceability: Development teams need as much data as possible to be available in order to identify the condi-
tions that may have triggered issues in a service.
Execution Resources: Increasing the logging level increases the amount of resources required to execute the
service, such as CPU and memory.
Retention Policy: Verbose logging can become expensive to collect and persist for large periods of time.

Execu&on Resources Reten&on PolicyVerbosity

Allocated Resource
Valida&onPrivacy

hinders

hinders

hindershinders

Traceability

facilitates facilitates

Fig. 12: Relationship between Preemptive Logging forces.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 36

Verbosity: Increasing the log verbosity provides additional information for posterior debug, but it also requires
additional storage space and human effort to process.
Allocated Resource Validation: Resources might be over or under-allocated to a service, result in a poor usage
of the available infrastructure resources.
Privacy: Due to legislation, it might not be possible to persist some type of data.

A.6.5 Solution. Adjust logging verbosity in services and servers within acceptable resource limits (CPU, stor-
age, others), maximizing the probability of capturing relevant information for addressing future issues right from
their first occurrence.

Logging is often undervalued by less experienced developers, who are tempted to reduce log verbosity in produc-
tion to keep the system leaner. By doing so, they unintentionally miss the opportunity of capturing information
that would allow them to debug unexpected runtime problems. This may prevent the development team from
effectively tackle such problems, unless they begin monitoring the service and server, hoping to observe the issue
happening again and capture enough information to identify the reasons behind it.

Preemptive Logging insures that runtime information from both services and servers is captured, being an
asset for debugging runtime issues.

To implement it, development teams should start by discussing and identifying all the information that can
possible be extracted from the service and respective server. From there, the team should discard the items that
will never be useful, setting the optimal log verbosity level for them.

While deciding on what data to keep, resource usage should be discussed, has the more information is persisted,
the greater the resource impact in the system. A retention policy should also be set, as the information becomes
less relevant with time.

A scenario where all system events can be captured is ideal, as these can be reproduced in a test environment
to further debug issues. Also, once a bug is fixed, they can be replayed in the production environment some types
of failures, e.g. one where a specific service is dropping the events sent to it.

Recent privacy trends such as the European GDPR regulation might prevent some event data to be physically
persisted.

A.6.6 Example Resolved. The team responsible for the database service would discuss what metrics would
be relevant to understand how the service is behaving. As an example, they could capture: number of incoming
connections, number of incoming queries, query response times, programming exceptions and the incoming queries
themselves. Server metrics would also be captured, namely disk IO, RAM, CPU or network usage.

If the service revealed an issue, they would access the generated log files and use them to understand what
triggered it. They could start by understanding if the allocated resources where enough to accommodate the
service. If that hypothesis is excluded, they could then dig into the service’s own logs in order to understand when
and why the service started to misbehave.

A retention policy can automatically archive or delete older log entries. When adjusting this policy the team
should allow enough time to ensure the logs are available during the time period when they might be used,
preventing them to get discarded too soon.

A.6.7 Resulting Context. By adopting Preemptive Logging, development teams will gain:

Reproducibility: Service operations can be captured, facilitating the team to understand how it has behaved.
The whole input stream can be captured and replicated in a controlled environment to understand how and
why it reacted in a certain way to a given set of inputs.
Allocated Resource Validation: Capturing logs from hardware usage from a server will enable the team to
better understand how the service consumes resources and optimize resource allocation.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 37

Security and Auditing: The development team will be able to trace security problems and threads.
While configuring the service’s logging levels, the following should be taken into consideration:
Resources: Should be increased to cope with both the higher CPU and disk space demand of increasing the
log verbosity.
Retention Policy: An increased retention policy will keep the logs available for a long time period, but such
will increase the required disk space required to persist the logs.
Verbosity: Again, the verbosity level should be adjusted to a value that balances a relevant output, with the
amount of disk space it will consume.
Security: An attack on this component would expose information from all others.
A.6.8 Related Patterns. The team job’s is simplified if it is able query log entries from multiple sources,

understand what events where happening in each service. Log Aggregation provides this functionality, by
moving the logs from their origin to a centralized repository, where they are aggregated and indexed, facilitating
their usage. Collaborative Monitoring and Logging describes the importance of logging and its relevance
while deployment software on the cloud [Arcitura Education Inc 2017]. Fernandez described how logs can be
leveraged to audit security in the Audit Log pattern [Fernandez 2013].

A.6.9 Known Uses. Amazon Web Services’ CloudTrail enables the capturing of all API interactions in an AWS
account, providing complete traceability of all changes through it [Amazon 2017a]. Azure provides a similar service
[Azure 2017]. Spinellis identified log verbosity as a parameter to manually tweak in production when looking for
problems [Fu et al. 2014]. Fu elaborated on that problematic in his survey [Fu et al. 2014], theorizing automated
log verbosity adjustment in production as a relevant research topic.

A.7 Log Aggregation

 Services orchestrated at scale produce disperse logs, resulting in a troublesome process to acquire and
correlate those who come from multiple sources. This pattern suggests the Aggregation and indexing
all service and server logs in a central repository, providing the team with a centralized system to
query and visualize execution logs.

A.7.1 Context. At the scale at which cloud Computing is applied, and given the scalability of operations
introduced by DevOps, a development team can easily be managing hundreds of services orchestrated on top
of thousands servers. Both the hardware and their hosted services are continuously operating and producing
relevant information, commonly via log files. Those files must be accessed often and it is not functional to keep
them dispersed in the infrastructure, forcing developers to individual access each machine and file to gather the
information they require.

A.7.2 Example. Consider the example from section A.9.2, where each service is running on its own dedicated
server. The three services are producing log files, along with the operative system from their host. Imagine now
that there was an issue with the AC service or server, rendering the service unresponsive. The developers need to
remotely login to the server to access the required log file and debug the issue. Along this process, they understand
that the issue was due to a communication error with the messaging service. They now need to access the machine
hosting the messaging service in order to debug its log entries. This process must be repeated for each service and
server involved in the issue, going back and forth until the problem is identified. This approach makes it difficult
to correlate log entries from different sources and demands that the developer individually access each one of the
machines.
Overview of A Pattern Language for Engineering Software for the Cloud — Page 38

A.7.3 Problem. Services orchestrated at scale produce disperse logs, resulting in a troublesome process to
acquire and correlate those who come from multiple sources.

Teams deploying software at scale can easily see their infrastructure grow to tens of servers hosting hundreds
of service instances. As suggested by preemptive logging, these services should be verbose at producing logs.
At this scale, it is troublesome for developers to leverage this logs, given their sparsity across the infrastructure.
The basic solution of individually accessing each server and service log file quickly becomes unmanageable.

A.7.4 Forces. The following forces, represented in Figure 13, need to be balanced while considering the
adoption of this pattern:

Fragmentation: Scattered log files across servers incur in extra effort for the developers to debug the application.
Network Propagation: Transferring log data from its source to a central aggregation point requires additional
bandwidth and might incur in additional data transfer costs.
Ordering: Propagation of logs through the Internet and unaligned clocks might result in out of order log
entries.
Querying: Querying in a log stream is essential to quickly identify relevant information from large collections
of logs.
Security: Sending logs across the network should use a secure channel, insuring that sensitive information is
never stolen. Also, the log storage should guarantee that they are not writable, preventing attackers or other
software from changing them.

A.7.5 Solution. Aggregate and index all service and server logs in a central repository, providing the team
with a centralized system to query and visualize execution logs.

Having logs available only at their source makes their usage troublesome, requiring the user to login into the
system and either download them or use the set of tools remotely available to query them. At scale, when tracing
how services cooperate with each other, this means that the user would have to replicate this process across all
intervening servers and services.

Fragmenta)on Network
Propaga)on

Ordering

hinders

increases

Security

Querying
hinders

hinders

hinders

Fig. 13: Relationship between Log Aggregation forces.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 39

Log aggregation solves this problem by providing a centralized system for aggregating and visualizing all
logs in an infrastructure. This solution is applied as: (1) a log aggregation service is deployed in the infrastructure,
enabling the querying and visualization of information from the logs and (2) each service daemon deployed along
with it must forward its logs to the log aggregation service.

The centralized log service can persist the log entries in a database, exposing a query interface for them. This
allows developers to mix and match events, better understanding what has happened in their infrastructure as a
whole, or in a specific machine or server. Figure 14 represents the involved components in this process as a class
diagram.

A secure channel should be used when sending logs from their origin to this centralized database. Also it should
allow entries from being written, but prevent them from being changed, ensuring that logs are immutable.

A.7.6 Example Resolved. Each service and server would send their logs to a centralized log repository service.
This service would need to be instantiated in the infrastructure or adopted as an external service. Within it, the
developer would have a global view of all logs from all services in the infrastructure. It would be possible to query
those logs, filtering them specifically for any specific service at any given time.

A.7.7 Resulting Context. This pattern introduces the following benefits:
Fragmentation: Developers can use a aggregation service to aggregate all the information they need from any
service or server in the infrastructure.
Querying: Once aggregated in a single location, data can be indexed, allowing developers to query the logs,
finding the information they need for their specific task faster.
Security: Communicating logs using a secure channel is essential for keeping sensitive data private. Also, the
chosen log storage should also be secured to prevent data leakage.
While deciding the technologies to implement this pattern, the following should be taken into consideration:
Network Propagation: In order to propagate logs to the aggregating server, additional bandwidth will be
consumed.
Ordering: Ordering will rely on the time stamp generated at the server. There might be some errors in cases
where the server’s clock isn’t synchronized.
Single point of failure: Without a redundant deployment, a failure in log aggregation system would revert this
system’s benefits.
A.7.8 Related Patterns. Repository describes a generic approach to a data repository [Hieatt and Mee].

Fernandez describes the application of log aggregation in the security context to trace user actions [Fernandez-
Buglioni 2013].

Messaging System can be used as a communication channel to propagate logs to the log the aggregation
service. This pattern is further useful if Preemptive Logging is applied in each service in the infrastructure.

Log Aggregation can be used as a source of information for React, feeding it with the events used to
trigger reactive actions.

A.7.9 Known Uses. Elastic, through their Elastic Stack, leverage Logstash as a tool for acquiring and propa-
gating logs from applications. Logs are propagated to a remote Elasticsearch, an highly indexable JSON document
storage. Information can then be queried and visualized using Kibana, a dash-boarding tool for captured data
[Elastic 2017].

Loggly5 is a subscription based log aggregation cloud service. It provides clients for acquiring logs from multiple
platforms and services, making them available in a single time-based searchable history.

5Details at https://www.loggly.com/.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 40

https://www.loggly.com/

Fig. 14: Class diagram showing the entities involved in the log generation, persistence and querying process. Applications and Servers
generate log files which are composed by multiple log entries. Each log entry as relevant information of the team to use in the future.
Logs are persisted in a remote log repository. This repository aggregates all sources of information, allowing the log viewer to query
a single location.

Roderick et all have described how their logging service acquired over 50 TB per year, making this data available
for over 1000 users daily [Roderick et al. 2013].

A.8 External Monitoring

 Monitoring an application from inside the infrastructure that hosts it will result in an incomplete
and biased version of the reality, for example, given the inability to observe issues such as lack
of Internet connectivity or abnormal latency to the application. External Monitoring suggest
testing the application’s public interfaces from an external source, providing an unbiased awareness
of the application’s status.

A.8.1 Context. While part of the development process is responsible to ensure resilience, just like it is im-
possible to ensure complete reliability using software testing [Malaiya et al. 2002], it is not possible to ensure
that a system is 100% resilient. Accepting that it will eventually fail is important to accept the need to increase
awareness about the system’s status at all times. This is the motivation behind the adoption of monitoring systems.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 41

Frequently, monitoring systems live within the application’s own infrastructure, which might bias the awareness
about the actual state of the application, given all the external variables introduced by using the Internet as a
distribution channel.

A.8.2 Example. Consider an authentication service, part of a larger application. Provided with a valid login,
it should output an authentication token for interacting with the other services in the application. Consider the
scenario where when used from within the infrastructure, the authentication service works as expected, but, when
accessed from a remote application, the authentication service is inaccessible. Such discrepancy might have been
caused by a misconfigured firewall.

This scenario demonstrates that a service can have different status when observed from within the application’s
infrastructure and a remote site.

A.8.3 Problem. Monitoring an application from inside the infrastructure that hosts it will result in an incom-
plete and biased version of the reality, for example, given the inability to observe issues such as lack of Internet
connectivity or abnormal latency to the application.

Software failures can be catastrophic to business owners. Application downtime consequences can range from
client complaints to loss of confidence in the application and, ultimately, user abandonment or contractual breach.
Given the ever growing offer of online services, a failing application can easily be replaced by a competitor.

In case of failure, the development team should quickly be aware of the application’s status, facilitating a quick
reaction.

This awareness must not depend on the application or its infrastructure, as that would bias the observation. In
the context of cloud computing, simply monitoring the application alongside its execution is not only biased, but
prevents the detection of several unpredictable Internet-related issues, such as misconfigured or failing routers,
CDN, DNS or firewalls, which would directly impact the client’s access to the application.

In the example from subsubsection A.8.2, a misconfigured firewall is inadvertently blocking traffic from a valid
source, leaving the service inaccessible from the outside. This issue would not be identified by monitoring the
application from within the infrastructure, as the firewall would not be used between two internal services.

Recency

Security

Resource Usage
increases

Confidence

Geographic
Distribu9on

Coverage

Programma9c
configura9on

hinders

increases

increases

facilitates

increases

Fig. 15: External Monitor forces relationships.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 42

A.8.4 Forces. The following forces, represented in Figure 15, need to be balanced while considering the
adoption of this pattern:

Confidence: Maintain awareness of the system’s state without relying on its internal information or be biased
by internal monitoring.
Recency: Be notified as soon as a possible complication is identified in the application.
Coverage: Confidence level is increased with the increase of test coverage.
Resource usage: Minimize the impact from monitoring on the application’s resource requirements, which will
directly impact either performance or cost.
Security: Minimize the attack vectors for the application. Exposing sensitive application details to additional
external tools will create a new attack vectors.
Geographic description: Running tests from different globe locations increases the level of confidence that the
system is working worldwide.

A.8.5 Solution. Test the application’s public interfaces from an external source, providing an confidence over
the application’s status.

Resilience is an essential requirement of any cloud software. Still, just like with software testing, it is impossible
to guarantee that a system is fully resilient and that it will not fail. Besides improving the system’s resilience, the
development team should also invest in their awareness of the system’s status in production, reducing the time
required to detect a failure.

External Monitoring consists on the frequent execution of tests against the public interfaces of a live
production system, evaluating if they are responding as expected. Tests are configured and executed from in a
service running in a separate network environment from the application itself and run without any knowledge of
the application’s state (as a black-box test), providing an accurate observation of the system’s status as seen from
across the Internet.

Test coverage can range from a basic status check to see if the service is up to having a batch of tests covering
all the application’s public interfaces and their different uses. Such level of coverage could be seen as black-box
integration tests executed against a live environment. It is up to the team to balance the level of coverage with
the intended level con confidence in the system’s status.

The team can either develop their own External Monitoring tool or adopt one of the many third party
tools available. Developing a tool for external monitoring would require a considerable investment in development
and operations. On the other hand, adopting a third party tool introduces a financial cost for using the service,
as well as it widens the attack surface to the application, as sensible information such as user credentials need to
be shared with the system. An hybrid approach could consider adopting an open-source tool for doing external
monitoring, which will prevent sharing sensitive credentials with a third party while still requiring little investment
in developing the software.

Some tests might require sensitive data to execute, such as user credentials. In case of an attack to the
monitoring platform, this might hinder security, leaving those credentials exposed. Frequently rotating these
credentials can help mitigate this issue.

While implementing this pattern, one must consider:

Recency: We need to decide how often we will run the external monitoring tests, balancing how fast do we
want to know when an issue appears with the system as the load introduced by the tests will increase resource
usage.
Development effort: We need to balance the completion of test coverage with the time required developing
new tests.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 43

Security: We need to decide which, if any, credentials should be made available in the external system to test
protected interfaces, at the cost of possibly exposing sensitive data.
Accuracy: We want to prevent false positives by confirming issues redundantly, such as those who might result
from latency or network partitioning.
Geographical distribution: We might want to distribute tests globally, ensuring the the application is working
withing the specified parameters, despite where the traffic is originated. This enable verifying the correct
behavior of components such as CDNs.
Traceability: We want to understand why a test has failed, by evaluating the inputs and outputs used to
identify the failure. Log Aggregation pattern can be leveraged to combine logs from this patterns, as well
as logs from Fault Injection and the remaining components of the system, providing an unified view over
the system’s behavior.
Programmatic configuration: We want to manage monitoring tests automatically as part of the deployment
process, eliminating the need for manual configuration, hence, increasing confidence in the tests.
Third party tools for implementing the pattern often allow tests to be created from both a graphic interface,

as seen in Figure 16 and a programmatic interface. The latter enables tests to be configured as part of the
application’s deployment process.

External monitoring is not a recent subject to cloud computing. Cloud monitoring: A survey [Aceto et al.
2013] thoroughly details why cloud computing is an important aspect of cloud applications and describes over
twenty tools to implement it, ranging from commercial to open-source offers, being a good support for selecting
the tool used to implement this pattern.

A.8.6 Example Resolved. Considering the example, this pattern would be implemented by adopting an Ex-
ternal Monitoring system which would make an authentication request to the authentication system and
confirm that the answer contained a proper authentication token. This test would be configured in the monitoring
platform at the end of the deployment process, ensuring that the application is tested and working as expected
right from the moment the deployment is complete.

Tests would be executed at a configured frequency and from different geographic locations to ensure that the
application behaves correctly, despite from where a request has originated.

Possibly at a later stage, and for increasing test coverage, any other interface in the service could be tested as
well.

To prevent configuring the external platform with actual user credentials, a mock user could be set up in the live
system. This way, in the case of data leakage in the monitoring system, no significant impact would be observed
on the monitored application. It is arguable that testing against a single user account that was created with the
sole purpose of interacting with tests might bias the test results.

A.8.7 Resulting Context. By adopting External Monitoring, development teams will gain:
Confidence: Given continuous independent monitoring, there is an added confidence that the system is behaving
as expected if no alarm is raised.
Traceability: The team will be able to understand what behavior was observed as response to any failing
request using the external monitoring logs.
Programmatic configuration: The team will be able to evolve test scenarios along with their development,
using the external monitoring API to setup or update tests.
On the other hand, the following liabilities can be introduced:
Security: When the communication channel is properly secure, no data leakage can occur by executing the
tests from an external monitoring provider. The team must trust the provider though. Given an attack

Overview of A Pattern Language for Engineering Software for the Cloud — Page 44

Fig. 16: Statuscake’s HTTP(S) test creation interface, showing a basic HTTP test for Google’s homepage, which will execute every
5 minutes from a random server.

against it, sensible information might be exposed. It is the team’s responsibility to minimize or eliminate the
need for sensible information such as credentials for executing the tests.
Resource usage: If careless, the team might create a large volume of tests at a high frequency, which might
generate enough load to degrade the application. It is up to the team to properly balance the volume of tests
and their frequency.

A.8.8 Related Patterns. External monitoring providers expose APIs which can be used to programati-
cally manage the tests. A team that adopts Infrastructure as Code will be more efficient at managing their
tests.

External monitoring can be used to feed information for log aggregation, facilitating a centralized
view of the issues observed in the application from this monitoring strategy as well.

Health Endpoint Monitoring from Microsoft is similar to this pattern proposes the creation of HTTP
health checks exposed by the application, so that an external tool can verify the application status [Microsoft
2017a]. That implementation differs from External monitoring, as it requires specific endpoints to be im-
plemented and tested from the external health checking tool. Instead, External monitoring proposes that
the external tool interacts with the application as a client would, using any public interface, not limited to HTTP,
validating that it is providing the expected answers.

The Collaborative Monitoring and Logging pattern [Erl et al. 2015] describes how monitoring and
logging activities can be coordinated between a cloud consumer and provider, describing that monitoring and
auditing requirements can described by the consumer but observed by the provider. This approach is similar to

Overview of A Pattern Language for Engineering Software for the Cloud — Page 45

External Monitoring, given that the monitoring behavior is extracted from the application the consumer is
developing and executed with an external tool, managed by the cloud provider.

A.8.9 Known Uses. Multiple services are available providing the External Monitoring tool required to
implement this pattern. StatusCake, Pingdom or NewRelic [Relic 2017; Pingdom 2017; Statuscake 2017] are only
three of those applications. Pricing and features set them apart, with most being able to test at the HTTP and
TCP layers.

A.8.10 Further Considerations. Juvenal, a first century poet, in his Satires series of books wrote the famous
Latin quote “Quis custodiet ipsos custodes?”, roughly translated to who watches the watchmen? [Winstedt 1899].
This quote can still today motivate discussion around cloud monitoring. By relying on an external tool to monitor
the system, we are delegating the responsibility of capturing failures to an external system. What must be taken
into consideration is that the external system is a piece of software as well, which might also. In such scenario, a
failing system would not be detected, given that the monitoring system would also be unavailable.

A.9 Messaging System

 As service instances increase, communication between services needs to be abstracted, enabling proper
balancing between instances. This communication strategy is required to be fault-tolerant and scalable
to maintain the application’s resiliency. As a solution, a messaging system, colloquially known
as message queue, can abstract service placement and orchestrate messages with multiple routing
strategies between them.

A.9.1 Context. The adoption of microservices as an architectural style introduced the need for services to
cooperate in a decentralized and possibly unreliable environment. It is not guaranteed that every component is
online at all time, nor that each service has a stable IP address (Internet Protocol) or number of instances running.

These intricacies of cloud computing introduce several requirements, namely, services need to communicate with
each other in an ever-changing environment, the communication process must be fault-tolerant, ensuring that the
system as a whole is resilient when confronted with irregular behavior from either side of the communication, and
message passing should be asynchronous, decoupled, evolvable, using a content-agnostic communication channel.

A.9.2 Example. Consider an home automation solution that manages Air Conditioning (AC) systems. Three
services compose the solution: Sensor Reader, Data Receiver and AC Manager. Sensor Reader is deployed inside the
user’s house. It is responsible for acquiring and forwarding temperature data. Data Receiver is a Web Server that
receives temperature metrics and persists them in a database. Data Receiver is also able to provide aggregations
over the data persisted in the database. AC Manager is responsible for managing AC units by evaluating the
average temperature over the course of the past 10 minutes, configuring an AC to generate cold or warm air.
The three services must cooperate to provide a complete solution for automated AC management. The expected
interaction between them is depicted in figure 17.

A.9.3 Problem. As service instances increase, communication between services needs to be abstracted, en-
abling proper balancing between instances. This communication strategy is required to be fault-tolerant and
scalable to maintain the application’s resiliency.

Services in a cloud application need to communicate with each other to cooperate. A common communication
strategy uses a client-server approach, limiting the communication to the two intervening service instances and re-
quiring that the client knows how to connect to the server, namely its hostname and server port. Cloud application
Overview of A Pattern Language for Engineering Software for the Cloud — Page 46

Fig. 17: A microservice architecture-based system to capture and persist temperature metrics from an home environment, later used
to configure an AC system. The arrows in the sequence diagram represent the massages exchanged between the components.

are deployed into dynamic hardware, which means that internal server’s addresses are not available during devel-
opment time, rendering troublesome to use direct communication between services. Furthermore, when multiple
instances of a service exist, the traffic needs to be balanced between all instances.

Considering the above, the need for an abstraction over the communication between services is identified. Such
channel must enable passing any type of messages and correctly identify the sender and receiver of such messages.
Such communication channel must be scalable, ensuring that latency requirements are met even when handling
large volumes of messages.

A.9.4 Forces. The following forces, represented in Figure 2, need to be balanced while considering the adoption
of this pattern:

This pattern is influenced by the following forces:
Decoupling: A sender doesn’t need to know the network address of a receiving service to communicate with
it.
Scalability: The communication channel needs to be itself scalable.
Resilience: Communication should be resilient, despite failures in the communication channel.
Persistency: Messages between services should be persisted until there is a confirmation that they have been
processed.
Structure Agnostic: The communication channel should be agnostic to the messages it orchestrates.
Dynamic and Flexible: The topology of the system will evolve with time, with new services joining existing
ones, and others leaving in real time.
Payload security: The communication channel should support encrypted messages.
Channel security: The communication channel should itself encrypted.
Latency: Introducing an indirection in communication increases the latency required for passing a message
between two services.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 47

Scalability Resilience

Persistency

DecouplingStructure Agnos6c Dynamic and Flexible

Payload Security

Channel Security Latency

facilitates

enables

facilitates

facilitates

hinders

hinders

hinders

improves

Fig. 18: Relationship between the Messaging System forces.

A.9.5 Solution. Use a messaging system, colloquially known as message queue, to abstract service place-
ment and orchestrate messages with the optimal routing strategy between them.

A messaging system is responsible for routing messages between services which can be both producers and
consumers of messages. Messages can vary in size and contents, given that the channel is agnostic of their internal
structure, as long as they respect the adopted protocol.

messaging system works by creating one or more queues that work as a first in, first out (FIFO) data
structure. Some implementations provide the possibility of prioritizing messages in the queue. Quality of Service
(QoS) policies can also be applied, forcing consumers to confirm that they have successful processed the message
before it gets discarded from the queue. QoS ensures that a failing service won’t remove a message from the
queue without it actually being processed. If a service fails to acknowledge that the message has been processed
in an acceptable time period, the message becomes available for another consumer to process.

Most implementations support multiple message delivery strategies. RabbitMQ, which is one of the most
adopted implementation, supports simple queues, exchanges with multiples queues, routing, topic-based con-
sumption and RPC [Pivotal 2007].

When implementing Remote Procedure Call (RPC), services can issue requests to the message queue and block
waiting for an answer. A consumer would pick up the request, process it, and send it back to the queue, destined
to the request sender. That first server would then receive his request and resume his computation.

Moving the responsibility of handling all communications to the Message Queue service makes it a single point of
failure. For this reason, messaging services are typically deployed with redundancy, ensuring that communications
between services will continue to work if some instances fail.

The concept of message passing systems has been available for several years, as middlewares that provide
highly-observable communication strategies, namely one-to-many communication, providing dynamic connections
among services. Initial reference to messaging applications as a mean of communication between servers was first
introduced on the 2001 patent Message Queue Server System [Yarbrough and Hook 2002]. More recently, several
standards have been introduced, namely the Advanced Message Queuing Protocol (AMQP) and the Message
Queue Telemetry Transport (MQTT) [Magnoni 2015].
Overview of A Pattern Language for Engineering Software for the Cloud — Page 48

Most implementations will enable the communication channel to use an encryption algorithm to protect the
communication channel. Being agnostic to the message’s contents, the payload itself can also be encrypted when
needed, preventing data leaks even if the messaging system is compromised.

A.9.6 Example Resolved. Considering the example described in section A.9.3, the three services can commu-
nicate using a message queue based distribution in a message system, as shown in figure 19. Message queues can
be identified by a name and require consumers to subscribe the queues from which they want to receive messages.

Initially, the Data Receiver service would subscribe to queues metrics and requests. AC Manager would subscribe
to a queue named after it, manager.

Inside the house Sensor Reader would capture temperature metrics and send them to the message queue
using the metrics queue. Asynchronously, Data Receiver would consume these messages and persist them in the
database.

Periodically, AC Manager would require the last 10 minutes of temperature metrics to the message queue in
the requests queue. Data Receiver would consume that message, gather that information from the database and
sent back to the message queue using the manager queue. Finally, AC Manager would consume those messages
and configure the AC system with the appropriate behavior.

A.9.7 Resulting Context. In the context of engineering software for the cloud, message queues can abstract
where services are located, eliminating the need for discovery mechanisms between them. Each service can com-
municate directly with one or more queues, requiring only the address of the Message Queue service.

Using message queues also facilitates service scaling. Services receiving traffic from outside channels should be
scaled in order to handle the traffic. These would then inject messages in queues which are being consumed by
other services. In such architecture, the size of the queue can be used to understand if and how a service should
be scaled, aiming at always keeping the message queue as small as possible.

Fig. 19: Communication between the three described services, routed via a messaging system. No two services communicate directly.
Arrows represent the messages exchanged in the systems.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 49

This pattern can positively improve a cloud application as follows:
Decoupling: services allow a faster integration of new services in the ecosystem.
Scalability: is achieved by creating an infrastructure of Message Queue services, proportional to the number
of services using it.
Resilience: is improved as messages can be kept in the queue until a consumer service is available to process
them. The message queue software might also be deployed in an infrastructure and keep the messages persisted
in disk to improve its own resilience.
Availability: for messages is ensured, with the message queue being able to persist the messages as long as
needed until these are consumed.
Security: is improved by obscurity, as the services receiving messages do not need to be reachable from the
message sending services. Also, the communication channel use encryption to enforce a secure communication
of all messages sent through it.
On the other hand, the following pitfalls are observable:
Complexity: , by increasing the level of indirection, understanding how messages are being passed between
service might become incredibly complex and hard to debug. For this reason, Facebook’s Flux architecture
which is partially event driven, explicitly disallows sending nested events.
Latency: is increased, since an additional hop is required to get a message from its producer to the consumer.
Modern message queues, when co-located with both services and given the appropriate network conditions,
can still ensure latency under 50 milliseconds.
Single point of failure: Without a redundant deployment, a failure in the messaging system will halt all inter-
action between the services.
A.9.8 Related Patterns. Message Queues are a more elaborate approach to Hohpe’s Message Buses, which

provided a basic communication channel between applications. In his book Enterprise Integration Patterns, addi-
tional communication patterns that most message queue implementations have adopted are described, such as
Publish-Subscribe Channel or Guaranteed Delivery [Hohpe and Woolf 2003].

Another version of the Publisher-Subscriber pattern was also documented by [Bushmann et al. 1996].
This pattern introduces an approach to allow services to communicate without knowing their peers location.

This might not be acceptable at all times, mostly due to latency constraints. For those cases, Local Reverse
Proxy [Boldt Sousa et al. 2015] can be applied.

A similar strategy described by the IO Gatekeeper and related patterns in the telecommunication domain
for managing the interaction between humans and systems [Hanmer 1998].

Local Reverse Proxy can also be used to discover where the message queue is available in the infrastruc-
ture.

Messaging systems can be used to implement Log Aggregation, by having services communicating their
logs as messages, which are then aggregated by the log centralization service.

A.9.9 Known Uses. Messaging System has a wide range of adoptions. At CERN, it was used to make
information available for multiple monitoring tools in multiple projects, namely in the LHC [Casey et al. 2011]. A
similar environment to the one presented in section A.9.6 is described by Grgićm, along with details on how to
instantiate it [Špeh and Heđ 2016].

In another example, [Herrmann et al. 2016] demonstrates how message queues can be adopted to acquire
real-time data from trains and be used with Reactive Blocks6 to facilitate collaboration in development and
maintenance of software systems.

6Project details available at www.bitreactive.com.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 50

www.bitreactive.com

A.10 Local Reverse Proxy

 Services might lack the network information required to communicate with other dynamically-
allocated services. Communication can be achieved by abstract service network details by defining a
service port for each service. Use a reverse proxy to expose that port in all servers, forwarding traffic
to where the services are deployed.

A.10.1 Context. Cloud applications are commonly composed by a multitude of services, which may be spread
over multiple physical servers in different networks. In order for services to cooperate they need to know how to
contact each other, which implies the need for configuration or discovery of the hostname or IP and port where the
required service can be reached. Furthermore, when a service has multiple instances, required in high availability
setups, there might be the need to evenly distribute traffic between existing instances.

A.10.2 Example. An application server receives HTTP requests and queries a database server to get the
required information to process the response. For scalability purposes, the database is distributed and the number
of instances varies according to the average system load. The application server will have to query the database
but, as it is running on an dynamically provisioned hardware, the application has no information about how the
database servers can be reached. Figure 20 represent a possible distribution of services among the existing servers
of such system.

A.10.3 Problem. Services might lack the network information required to communicate with other dynamically-
allocated services.

Fig. 20: The four members of an infrastructure, each hosting a service.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 51

Service decoupling is required as software gets deployed and scaled automatically in the cloud, enabling the
scaling of individual software components using dynamically provisioned hardware. Deploying in these conditions
leave the services unaware of where their dependencies are allocated, requiring a discovery method to enable
communication between them.

A.10.4 Forces. The following forces, represented in Figure 21, need to be balanced while considering the
adoption of this pattern:

Real-time discovery: State mus be updated when there is a change in the number of instances in a service.
Location decoupling: Services do not need to know where others are deployed to communicate with them.
Protocol Agnostic: Work at the network level, supporting any protocol adopted by the services.

A.10.5 Solution. Abstract service network details by defining a service port for each service. Use a reverse
proxy to expose that port in all servers, forwarding traffic to where the services are deployed.

For each service, a service port is set, which is a port that will always be available in all servers, exposed by a
reverse proxy tar will forward traffic to one of the available services. Network proxies work at the network level,
which makes them protocol agnostic, forwarding TPC, UDP, HTTP or any other traffic type.

The reverse proxies need to be updated every time there is a change in the services in the infrastructure. There
are multiple strategies for doing so. One is to have a service registry where each service announces itself, along
with a dedicated software that periodically reads this information and updates the proxies. Another alternative is
to query this information from an orchestration manager.

When multiple instances of a service are available, it is up to the local proxy to decide how to distribute these
requests, acting as a load balancer. The balancing algorithm might be configurable, for example, distributing the
requests using a round-robin technique or in a smarter way, according to the target’s resource availability.

Whenever a service goes down, the local proxy will forward the request to another instance of the same service
or refuse the connection if no instance is available. In the later scenario, the source service needs to use a retry
mechanism to keep trying the service until it becomes available.

Real-&me discoveryLoca&on decoupling

Protocol Agnos&c

hinders

Fig. 21: Relationship between local reverse proxy forces.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 52

A.10.6 Example Resolved. This technique requires an external orchestration mechanism to keep meta-information
on the services running in the infrastructure, regarding hosts and ports. Each host machine has a local proxy that
periodically queries the orchestration manager and forwards a known local port to the host(s) and port of where
a service available in the infrastructure. The applications expect a specific port to be available locally that will
abstract the exact port and host where the service is actually running. Consider the example previously described:
a web application is deployed with two HTTP Servers receiving external requests, which must communicate with
one of the two other Database Servers to create a reply. For the HTTP servers to communicate with the database,
instead of establishing a direct connection, they connect to the local known port, leaving for the proxy to forward
the request to an available Database server. Scalability is achieved by varying the number of Database or HTTP
Servers independently, relying on the Local Proxies on the HTTP side to properly identify available Database
Servers and distribute load between them. This example is represented in Figure 22.

A.10.7 Resulting Context. This pattern introduces the following benefits:

Real-time discovery: Changes to the infrastructure are immediately identified by the orchestration manager,
which will reconfigure the local proxies.
Location decoupling: Service development can ignore the actual physical location of other services it is inte-
grating with, relying on the local reverse proxy to forward traffic to where the service is executing.
Protocol agnostic: Proxies work at the transport OSI layer or lower, hence, are protocol agnostic.

The pattern also introduces the following liabilities:

Monitoring: A mapping between a service and its running instances must be maintained at all time so that
the reverse proxies are properly configured and only redirect traffic to active services.

A.10.8 Related Patterns. This pattern may be applied when containerization is being used to isolate
applications, facilitating communication between containers hosted in different servers, without requiring applica-
tions to individually integrate with discovery mechanisms. Information about service ports in each container can
be injected using environment variables.

This pattern depends on an external mechanism that keeps track of each service in the infrastructure. An
orchestration manager holds this information and could be queried for it.

A.10.9 Known Uses. A basic approach is presented by Wilder, keeping an Nginx reverse proxy updated ac-
cording to meta-information extracted from running docker containers in the local machine [Wilder 2015].

Fig. 22: Local Proxy configuration example.

Overview of A Pattern Language for Engineering Software for the Cloud — Page 53

The reverse proxy Vulcanproxy [Community 2015b], together with the distributed key-value storage Etcd [Com-
munity 2015a] provides a reverse proxy service agnostic to the software using it. By depending on Etcd, it is not
an optimal solution as it requires services to register themselves with Etcd.

A better solution is based on Apache Mesos [Foundation 2015] which allow jobs to be spawned across multiple
nodes, managing their allocation and Marathon, an infrastructure-wide init and control system for Mesos [Meso-
sphere 2015a]. Using meta-information available with Marathon, a script can periodically update a local proxy
server on each machine in the infrastructure, forwarding a TCP or UDP port, named the service port, to the actual
address where the application is running, despite it being local or in a remote machine [Wuggazer 2015]. There
are many implementations available to work with Marathon, including Bambo, an HAProxy auto-discovery and
configuration tool for Marathon [Qubit 2015]. There is also a script that can configure a local HA proxy, made
available by Marathon’s team [Mesosphere 2015b].

pending PLoP 18 details

Overview of A Pattern Language for Engineering Software for the Cloud — Page 54

	Introduction
	A Pattern Language for Engineering Software for the Cloud
	Mining the Patterns
	How To Read These Patterns
	Pattern Language Overview
	Automated Infrastructure Management
	Orchestration and Supervision
	Monitoring
	Discovery and Communication

	Adopting the Pattern Language
	Summary and Future Work
	Acknowledgements
	Pattern Language for Engineering Software for the Cloud
	Containerization
	Context
	Example
	Problem
	Forces
	Solution
	Example Resolved
	Resulting Context
	Related Patterns
	Known Uses
	Discussion

	Orchestration Manager
	Context
	Example
	Problem
	Forces
	Solution
	Example Resolved
	Resulting Context
	Related Patterns
	Known Uses

	Automated Recovery
	Context
	Example
	Problem
	Forces
	Solution
	Example Resolved
	Resulting Context
	Related Patterns
	Known Uses

	Job Scheduler
	Context
	Example
	Problem
	Forces
	Solution
	Example Resolved
	Resulting Context
	Related Patterns
	Known Uses
	Further Consideration

	Failure Injection
	Context
	Example
	Problem
	Forces
	Solution
	Example Resolved
	Resulting Context
	Related Patterns
	Known Uses
	Further Considerations

	Preemptive Logging
	Context
	Example
	Problem
	Forces
	Solution
	Example Resolved
	Resulting Context
	Related Patterns
	Known Uses

	Log Aggregation
	Context
	Example
	Problem
	Forces
	Solution
	Example Resolved
	Resulting Context
	Related Patterns
	Known Uses

	External Monitoring
	Context
	Example
	Problem
	Forces
	Solution
	Example Resolved
	Resulting Context
	Related Patterns
	Known Uses
	Further Considerations

	Messaging System
	Context
	Example
	Problem
	Forces
	Solution
	Example Resolved
	Resulting Context
	Related Patterns
	Known Uses

	Local Reverse Proxy
	Context
	Example
	Problem
	Forces
	Solution
	Example Resolved
	Resulting Context
	Related Patterns
	Known Uses

