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Context: Architectural patterns are well-proven solutions to solve software systems issues related to quality attributes. They define a set of
high level structure properties, a vocabulary to describe them, and assumptions and constraints on how they should be employed to correctly
solve the common problem. The use of architectural patterns has been considered a good practice to design software architectures with
quality, improving the reuse and understanding of rationale of architectural decisions. In another perspective, big data systems have gained
attention mainly by their inherent 5Vs characteristics of velocity, veracity, volume, value, and variety, which requires the accomplishment
of several quality attributes, such as scalability, performance, security, integrity, flexibility, interoperability, and of business goals. Problem:
Despite of big data systems are increasing in importance for different domains, few studies have investigated the quality of such systems
from a perspective of software architecture. For the best of our knowledge, there are no work investigating which of the existing architectural
patterns have been used to design software architectures of big data systems with a focus on quality. Objective: In this paper, we investigate
the applicability of well-established architectural patterns by analyzing their benefits and liabilities when used to architect big data systems.
Method: We analyzed studies reporting software architectures of big data systems. Studies were identified through the conduction of a sys-
tematic mapping study that was reported in a previous work of authors. We used those studies to identify architectural patterns, requirements
of quality attributes, and problems and liabilities addressed by those solutions. Results: We identified that the common architectural patterns
used for big data systems (i.e., layers, pipe and filters, shared repository, and broker architecture) do not differ from those used in other
systems, however, they have important impacts on big data systems qualities and on their characteristics that are not reported in others
studies.

Categories and Subject Descriptors: D.2.11 [Software Architectures] Patterns; E.O [Data] General; H.4.0 [Information Systems Applica-
tions] General

General Terms: Big Data
Additional Key Words and Phrases: Software Architectures, Architectural Patterns

1. INTRODUCTION

Architectural patterns facilitate reasoning and understanding about system’s design, by providing a set of high
level structural properties, a vocabulary to describe them, and assumptions and constraints on how they should be
employed [Ingram et al. 2015]. They represent a pre-defined set of components, responsibilities and relationship
among them and can help define the basic characteristics and behavior of an application [Richards 2015} [Meunier,
et al. 1996]. They have been gained attention in systems architecture field because applications lacking a formal
and well-established architecture are generally tightly coupled, brittle, difficult to change, and without a clear vision
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or direction [Richards 2015|. These patterns indicate the first place in the software architecture design in which
quality requirements should be addressed. Such quality requirements are thus satisfied by the various structures
designed into the architecture, and the behaviors and interactions of the elements that populate those structures
[Bass et al. 2013].

In another perspective, the concept of big data has emerged and can be defined as a high volume, high velocity,
and high variety of data that demands cost-effective, innovative forms of information processing for enhanced
insight and decision making [Beyer and Laney 2012]. With the rapid increase in data generation and processing,
software and hardware resources have became overloaded and require new innovative approaches to effectively
manage and use the data |Al-Jaroodi and Mohamed 2016]. Such issues led to the establishment of the 5 V's
model (i.e., volume, velocity, variety, veracity, and value), which characterizes the main concerns when dealing
with these data complexities.

Due to the difficulty of managing large data sets, attention to software architecture is required to support big
data innovations [Sena et al. 2017]. Particularly, to assure efficient management of data generated in different
domains, big data architectures should be well structured and guarantee critical quality requirements [Begoli and
Horey 2012]. In this scenario, architectural patterns can be used to guide architects during the big data design,
but selecting an appropriate pattern is a challenge task because each one impacts on several factors in big data
systems, including their quality attributes. Understanding the way existing patterns have been used to design big
data systems would facilitate the interactions between patterns and quality attributes.

Thus, the driving motivation for this study is to understand what architecture patterns have been used in big data
systems and in which level such patterns impact the accomplishment of quality attributes in those systems. The
definition of such attributes is complex because it needs to consider the mapping of the intrinsic characteristics of
the big data context (5V’s) to attributes that can be approached and measured architecturally. Therefore, in this
study we intend to answer the following research questions: RQ1 - What architecture patterns are most commonly
used in big data systems?, and RQ2 - How the architectural patterns used those systems impact their 5 V’s
characteristics?".

To solve these research questions, in this work, we studied architectural patterns used to support the design of
these architectures. Moreover, the impact (positive or negative) of those patterns on quality attributes of big data
systems was investigated. We identified those patterns through the conduction of a systematic mapping study
reported in a preliminary work [Sena et al. 2017].

The remainder of this paper is organized as follows. In Section 2| background about architectural patterns, big
data concepts, and big data architectural requirements are described. Section 3| presents the methodology for
conducting this study. Section 4] analyses each architectural pattern considering big data requirements. Section
discusses related to the applicability of the selected patterns for the big data context. Finally, our conclusions and
perspectives for future work are presented in Section [6]

2. BACKGROUND

In this section are presented important concepts considered in this work. Firstly, we presented the definition
of architectural patterns and their relationship with quality attributes. After, an overview of Big Data domain is
detailed highlighting its most important characteristics. Finally, architectural requirements of Big Data systems are
described.

2.1 Architectural Patterns

In its most establish definition, “A pattern describes a problem which occurs over and over again in the environment,
and then describes the core of the solution of that problem so that it can be applied a million times over” [Alexander
1977|. Architectural patterns constitute a mechanism for capturing domain experience and knowledge to allow it to
be reapplied when a new architectural problem is encountered [Pressman and Bruce R. Maxim 2014]. According
to [Bass et al. 2013], an architectural pattern establishes a relationship between:
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A context. A recurring, common situation in the world that gives rise to a problem.

A problem. The problem, appropriately generalized, that arises in the given context. The pattern description
outlines the problem and its variants, and describes any complementary or opposing forces. The description of
the problem often includes quality attributes that must be met.

A solution. A successful architectural resolution to the problem, appropriately abstracted. The solution describes
the architectural structures that solve the problem, the responsibilities of and static relationship among elements,
besides the run-time behavior of and interaction between elements. Such solution includes (i) a set of element
types; (ii) a set of interaction mechanisms or connectors; (iii) a topological layout of the components; and (iv) a
set of semantic constraints covering topology, element behavior, and interaction mechanisms.

One of the most important aspects of the architectural patterns is to make clear what quality attributes are
provided by the static and run-time configurations of elements, since software architectures are mostly driven
or shaped by quality attributes requirements, which determine and constrain the most important architectural
decisions [Clements and Bass 2010|. These patterns represent the first place in the software creation process
in which quality requirements should be addressed. Such quality requirements are thus satisfied by the various
structures designed into the architecture, and the behaviors and interactions of the elements that populate those
structures [Bass et al. 2013].

2.2 Big Data

Big Data is defined as a set of techniques and technologies that require new forms of integration to uncover largely
hidden values from large datasets that are diverse, complex, and of a massive scale [Hashem et al. 2015]. Early
definitions focused on its characterizing based on the three V's model [Laney 2001], which concerns to the volume,
velocity and variety of data. However, a more commonly accepted characterization now relies upon the following
5V’s [Beyer and Laney 2012|: volume, velocity, variety, veracity and value. In this sense, different V’s have been
proposed such as volatility, and validity [Uddin et al. 2014], but they have not yet been consolidated in the literature.
Following, we present a brief description of the intrinsic characteristics of this 5V’s.

Volume: big data first and foremost has to be “big” in size, which is measured as volume [Jain 2016|. This
characteristic refers to the huge amount of data generated every second, which makes datasets too large to store
and analyze using traditional database technology. Such characteristic requires distributed and parallel processing
that most of regular systems were not designed for [Chen et al. 2015];

Velocity: data velocity measures the speed of data creation, streaming, and aggregation [Kaisler et al. 2013]. It
is addressed in two different perspectives in the big data context: (i) the rapidly increasing speed at which new
data is being created by technological advances, and (ii) the corresponding need for that data to be digested and
analyzed in near real-time;

Variety: it is a measure of the richness of data representation, i.e., text, images, video, and audio. Such
characteristics brings a challenge related to the effectiveness of using use large volumes of data, because first the
data must be processed in order to handle incompatible data formats, non-aligned data structures, and inconsistent
data semantics [Kaisler et al. 2013];

Veracity: this characteristic refers to the trustworthiness of the data. It must be handled due to the many forms
of data, which turns quality and accuracy less controllable. It brings some challenges in data validation, modeling
and governance, due to the need to keep its reliability [Chen et al. 2015];

Value: data value measures the usefulness of data in support the decision making by the domain stakeholders
[Kaisler et al. 2013|. By investing in an infrastructure to collect and interpret data on a system-wide scale, it is
important to make sure that the insights that are generated were based on accurate data and lead to improvements
in the domain decisions [Jain 2016|. Although value is added as the fifth V, value is defined as the desired outcome
of big data processing, and not a defining characteristic of big data itself [Uddin et al. 2014; L heureux et al. 2017].
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For this reason, due to the well-established definition, value is considered only as a concern to big data and then
characterizes the 5V’s.

2.3 Big Data Architectural Requirements

It is crucial to design and to develop well-designed software systems capable of effectively and efficiently satisfying
the various requirements, related to the need of data analysis, processing, and storage [Al-Jaroodi and Mohamed
2016]. Following, we present a brief description of each architectural requirement identified.

e Scalability: Big data systems must be scalable, that is, must be able to increase and support different amounts
of data, processing them uniformly, allocating resources without impacting costs or efficiency. To meet this
requirement, it is required to distribute data sets and their processing across multiple computing and storage
nodes;

¢ High Performance Computing: Big data systems must be able to process large streams of data in a short
period of time, thus returning the results to users as efficiently as possible. In addition, the system should support
computation intensive analytics, i.e,. support diverse workloads, mixing request that require rapid responses
with long-running requests that perform complex analytics on significant portions of the data collection [Gorton
and Klein 2015];

e Modularity: Big data systems must offer distributed services, divided into modules, which can be used to
access, process, visualize, and share data, and models from various domains, providing flexibility to change
machine tasks;

e Consistency: Big data systems must support data consistency, heterogeneity, and exploitation. Different data
formats must be also managed to represent useful information for the system [Cecchinel et al. 2014]. Besides
that, systems must be flexible to accommodate this multiple data exchange formats and must achieve the best
accuracy as possible to perform these operations;

e Security: Big data systems must ensure security in the data and its manipulation in the architecture, supporting
integrity of information, exchanging data, multilevel policy-driven, access control, and prevent unauthorized
access [Demchenko et al. 2017];

o Real-time operation: Big data systems must be able to manage the continuous flow of data and its processing
in real time, facilitating decision making;

¢ Interoperability: Big data systems must be transparently intercommunicated to allow exchanging information
between machines and processes, interfaces, and people [Santos et al. 2017];

¢ Availability: Big data systems must ensure high data availability, through data replication horizontal scaling,
i.e., spread a data set over clusters of computers and storage nodes, avoiding bottlenecks [Gorton et al. 2015].
For this, system should allow replication and it should handle failures.

3. METHODS

To identify the patterns that have been commonly used in big data software architectures, we performed a
systematic mapping study (SMS), detailed in [Sena et al. 2017]. In short, SMS can provide a detailed overview of
a research area by categorizing and investigating studies related to the topics of interest [Petersen et al. 2015]. For
conducting our SMS, we followed the guidelines recommended by [Kitchenham and Charters 2007 and [Petersen
et al. 2015]. We defined the search string Big Data AND (Software Architecture OR Reference Architecture OR
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Reference Model) that was executed in the following data libraries: ACM Digital Libran|’} El Compendexf} IEEE
Digital Libranyf®] ISI Web of Science’, Science Direc{’] Scopusf} and Springer LinK’|

As results, 39 studies were considered for data extraction [Sena et al. 2017]. From those studies, 11 reported
the use of architectural patterns for big data systems. We only considered information that was explicit in the text
or in the architecture about the patterns. We avoided to imply any information that was not detailed by the authors
of the studies, because it could cause a threat to validity.

In table [l, we present the 11 studies, the patterns identified in each one, and their references. We extracted infor-
mation from those studies to identify how the reported architectural patterns affect or benefit the accomplishment
of requirements of quality attributes in Big Data systems, as presented in next section.

Table I. Final list of primary studies

ID Title and Reference Architectural Patterns

St A big data analytics architecture for Industry 4.0 [Santos et al. 2017] Layered

S2 | A proposal for a reference architecture for long-term archiving, preservation, Layered
and retrieval of big data [Viana and Sato 2015]

S3 | A reference architecture for big data solutions introducing a model to perform Pipe and Filters, Layered
predictive analytics using big data technology |Geerdink 2015]

S4 | Areference architecture for big data systems in the national security domain | Pipe and Filters, Shared-repository, Layered
|Klein et al. 2016

S5 | Areference architecture for supporting secure big data analytics over Cloud- Broker, Layered
Enabled relational databases |Cuzzocrea 2016)

S6 | An architecture to support the collection of big data in the Internet of Things Broker
|Cecchinel et al. 2014]

S7 | Big data analytics architecture for Agro Advisory systems [Shah et al. 2016] Pipe and Filters, Layered

S8 Building a big data platform for Smart Cities: Experience and lessons from Broker, Shared-repository, Layered
Santander [Cheng et al. 2015]

S9 Expanding global big data solutions with innovative analytics [Dayal et al Layered
2014]

S$10 | Managing cloud-based big data platforms: A reference architecture and cost Layered
perspective [Heilig and Vol3 2017]

S11 | Reference architecture and classification of technologies, products and ser- Pipe and Filters, Layered
vices for big data systems |[Paakonen and Pakkala 2015]

Lhttp://portal.acm.org
2http://www.engineeringvillage.com
3http://ieeexplore.icee.org
4http://www.isiknowledge.com
Shttp://www.sciencedirect.com
Shttp://www.scopus.com
7http:/link.springer.com
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4. ANALYSIS OF APPLYING ARCHITECTURAL PATTERNS FOR BIG DATA SYSTEMS

Based on the analyzed studies, presented in Table I, we identified that the common architectural patterns used for
Big Data systems are layers, pipe and filters, shared repository, and broker architecture. In this section we analyze
each of those patterns to verify their applicability in the big data context based on how they benefit and affect
quality attributes. Architectural patterns are presented following the structure proposed by [Bass et al. 2013].

4.1 Layered Pattern

Context: Big data systems require the division of responsibility among their components. Such division must be
established at both the module level (i.e., data storage, data visualization, data integration) and at the abstraction
level (i.e., communication, security, management). Besides that, these systems must orchestrate the flow of data
to execute business processes, and hence to ensure that the system’s objectives are fulfilled and that data is not
lost.

Problem: Big data architectures must allow the division of responsibilities, by grouping them based on goals and
functionalities. Such architectures must provide means to process data at real time, because sometimes specific
work flows depend on the results of the previous one. Moreover, the communication protocols must guarantee
high performance and data scalability, avoiding bottlenecks.

Solution: The layered pattern provides a horizontal division of software responsibilities by grouping a set of
functionalities in encapsulated and independent layers. The specific partitioning criteria can be defined along
various dimensions, such as abstraction, granularity, hardware distance, and rate of change. Layers of an
architecture generally communicate with adjacent layers through implemented interfaces. Therefore, one layer is
able to make requests to the next layer, and wait for the response while responding to requests from the previous
layer. Such interfaces must be scalable and implement communication protocols to ensure efficiency [Hanmer|
2012].

Example: Several big data architectures have been proposed based on this solution. [Santos et al. 2017
proposed a big data architecture for Industry 4.0, as presented in Figure [1l Such architecture divides the
functionalities in layers according to the different steps of data analytics (e.g., storage, publisher, sources, and
applications). Moreover, [Santos et al. 2017] proposed a common layer in big data architectures, focusing in
security, management and monitoring, which includes components that provide base functionalities needed in the
other layers, ensuring the proper operation of the whole infrastructure. Some components needed are destined to
monitoring, bottlenecks detection, performance improvement by adjusting parameters of the adapted technologies,
authentication, data protection, among others. In a different abstraction perspective, [Geerdink 2015] proposed a
three layered architecture that separates the concerns in technology, application, and business, as depicted in
Figure[2 In both layers, arrows represent data flow and can be implemented through interfaces and APls.

Trade-offs: The waiting time and the execution of communication protocols may delay processing and cause
the response to not be as fast as expected. Besides that, these communication protocols impact scalability, since
the high volume of data must be processed at the same time and can cause a bottleneck between the layers.
Finally, because data have to go through different layers, the processing performance is directly impacted.

Regarding big data requirements, this pattern supports the modularity by providing a division of concerns in the
application. The independence of each layer enables the implementation of different protocols for keeping the data
safe to be sent only when necessary, allowing a positive impact on the security requirement of Big data.

Considering weaknesses, three of the most important big data requirements are minimized by this pattern
(i.e., real-time operation, scalability, and performance). Big data requires the processing of data at run-time,
because an specific layer depends on the result of the previous one. Hence, the wait time and the execution of
communication protocols may delay processing and cause the response to not be as fast as expected. These
communication protocols impact scalability, since the high volume of data must be processed at the same time

Investigating the Applicability of Architectural Patterns in Big Data Systems — Page 6



Fig. 1. A big data architecture for Industry 4.0. Extracted from Santos et al. (2017)
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and can cause a bottleneck between the layers. Finally, because data have to go through different layers, the
processing performance is directly impacted.

4.2 Shared-repository Pattern

Context: Big data is related to massive volumes of data that must be handled, managed and processed for being
used in different industrial systems. These systems must manage a huge amount of data types, which must be
shared for providing information for different people and domains.

Problem: In this perspective, preparing big data hosting repository often involves more effort and challenges
when such data must be shared among different partners and domains. Shared repositories also increase a
control issue related to how and when data will be available in order to be read or written in the shared memory.

Solution: The shared repository pattern consists of using a data repository as communication among different
software components crossing domain boundaries. Information produced by a component is stored in the shared
repository and other components will retrieve it if they request such data. The repository manages the common
data handling application’s operation and their permissions to access and modify the repository. Thus, this pattern
reduces the communication flows by allowing only requested data, which entails a gain in performance in big data
systems. Reuse of data clearly benefits the third party, who gets an information from a common shared repository.
The access to the repository enables to check the system evolution and coherence at run time and the evolution
and replacement of data is relatively easy. This pattern must be scalable to meet the clients requirements, and it
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Fig. 2. A reference architecture for big data solutions. Extracted from Geerdink (2015)
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must ensure data consistency. It must handle problems of resource contention, for example by locking accessed
data [Avgeriou and Zdun 2005].

Example: In the work presented in [Chen et al. 2015] it was proposed a big data architecture for smart
cities focusing on the city data and analytics platform, as illustrated in Figure [2] In this architecture there is a
shared repository to communicate to all the architecture components, i.e., components for big data processing,
technological modules, the broker that process data generated by several sources, and the server connected
to the domain applications. This repository is responsible for receiving requests from all these components and
maintain such data available and consistent.

Trade-offs: The main benefits of this pattern include the combination with different storage patterns for improving
the way large volumes of data are stored using cloudy and distributed systems. However, shared repository has
some drawbacks in the performance and scalability that can be seriously affected in distributed environments
by concurrent access to the data. Shared repository transmission can fail and the whole system is immediately
affected by losing the synchronization with other services as well as real-time response. In addition, changing
the structure of the shared repository has a negative impact on big data systems resulting in modifications in the
interfaces and software communication systems.

]
L]
1
1
1

4.3 Pipe and Filters Pattern

Context: One of the main goals of big data systems is to extract useful value from the massive volume of data
generated at real time. For such extraction, data must pass through several steps (e.g., data collection, data
integration, pre-processing, processing, and data visualization), which could support the overall data mining
process. These steps have to be executed in a specific order to complete the correct data processing.

Problem: In this scenario, big data architectures must support the execution of efficient data flows. The
communication between the steps must be scalable, avoiding bottlenecks that could result in failures or delays in
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Fig. 3. An architecture for city data and analytics platform. Extracted from Chen et al. (2015)
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the following steps. Data must be processed independently in each step, and thus sent to the next to maintain
real-time operation. Moreover, security protocols to keep data consistency must be a key concern.

Solution: This pattern structures the processing of a stream of data [Geerdink 2015]. Each processing step is
implemented as a filter, with information flowing between the filters through a pipe. Filters can be combined in
many ways to provide a family of solutions [Hanmer 2012]. Its importance is justified because the sequence of
data analysis is essential, e.g., it is not possible to extract value from data that have not been still pre-processed.
This pattern increases complexity and could support data transformation, implying on high dependence between
the filters [Buschmann et al. 2007].

Example: [Paakonen and Pakkala 2015] and [Klein et al. 2016] proposed architectures that use pipe and filter
pattern to guide data flow, as presented in Figure 4 and 5] respectively. In both approaches data come from an
external source or producer and is managed through several steps, such as data collection, preparation, processing,
and visualization. Finally, the results of such processing are sent to consumers and domain applications.

Trade-offs: This is one of the closest related pattern to the big data context, because it was proposed to
solve data processing issues. However, only such data flow is not sufficient to ensure that there will be quality in
performance. Pipe and filters implementation usually achieve scalability and performance but several big data
specificities impact its execution and may minimize its benefits.

Firstly, high volume of data is generated at real-time and should be consumed by the filters and processed
effectively. However, some of the pipe steps require that the entire dataset be loaded before processing and
since there is no alternative way, processing queues are generated, thus impacting scalability, response time, and
directly performance [Buschmann et al. 2007;(Hanmer 2012].

The veracity of the data can also take risks in this pattern. There are no intermediary sources of input and output
between the filters, that is, the data is the input of the first, and the extracted value of the data is the output of the
last one. This increase the complexity (i.e., volume, variety) of the data causing some failures in the middle of the
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Fig. 4. Pipe and filter pattern in a high-level design of reference architecture. Extracted from Paakonen and Pakkala (2015)
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Fig. 5. Pipe and filter pattern in a architecture for the national security domain. Extracted from Klein et al. (2016)
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execution, and such failures can be propagated resulting in changes or even data lost [Buschmann et al. 2007].
This indicates a central point of failure and at the same time a liability to safety [Geerdink 2015].

4.4 Broker Pattern

Context: Big data systems must allow transparent communication of heterogeneous, incompatible, inconsistent
and undetermined amount of data provided every second by components distributed over a network. Moreover,
those systems must integrate a vast amount of data types (e.g., text, images, video, audio) to provide consolidated
information to people and other systems, and to execute business processes.

Problem: In this perspective, architectures of Big data systems must be designed to address interoperability of
large-amount of distributed and heterogeneous data and processes. Additionally, those architectures must address
scalability, that is, those systems must be able to increase and support different amounts of data, processing them
uniformly, and allocating resources without impacting costs or efficiency.

Solution:

The broker architectural pattern is commonly used in distributed systems to achieve better decoupling of clients
and servers. In the context of Big Data systems, this architectural pattern is composed by the following elements:
consumers, providers, routers, and transformers. Routers act as bridges between consumers and providers.
Routers must implement interfaces to allow bidirectional and interoperable communications between consumers
and providers. Most of the times, each provider has a dedicated router implementing its interface to send data
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Fig. 6. Example of broker usage in lIoT systems. Adapted from Cecchinel et al. (2014)
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requested by the consumer. Because the heterogeneity of data types, communication protocols, programming
languages, that are involved in the operation of Big Data systems, the broker architectural pattern includes the
translator element to allow interoperability (sometimes executing transformations) between data, protocols, and
languages.

Example: A great amount of Big Data systems have used broker architectural patterns for improving interop-
erability and scalability, such as in loT systems. Figure [6|depicts an excerpt of a software architecture for allow
the collection of Big Data in loT systems, originally presented in [Cecchinel et al. 2014]. Different sensors send
measures in different formats to the broker, which transforms sensors data formats in common formats (e.g., json
objects). Further, data aggregation is made and routed to consumers. The router connected to consumers receive
normalized data from different providers routers [Cecchinel et al. 2014].

Trade-offs: Interoperability among services is managed and maintained by the broker, which also ensures the
flow of data to the correct services and tries to avoid the occurrence of bottlenecks, thus increasing the scalability
of the pattern. In addition, with the increase of technologies developed for big data, updates are always necessary.
This pattern supports portability by having low coupling services.

However, due to the use of the broker to control the entire data flow, the performance is not as high as it would
be if the consumers and providers are connected directly, even more considering the amount of data that is
managed. This pattern also implies a central point of failure, because whether complexity causes the broker to fail,
the communication between consumer and provider stops.

T

L

5. DISCUSSIONS

Big data systems must be designed considering their 5V’s intrinsic characteristics of volume, velocity, variety,
veracity,and value [Beyer and Laney 2012]. From a perspective of software architecture is important to define
requirements of quality attributes that must be overcome by those systems. In Table [[l, we relate important
requirements of quality attributes with the 5V’s characteristics of those systems. Requirements were identified and
reported in our previous work|Sena et al. 2017|. Scalability, performance and real-time operation are related to the
velocity at which data is generated. The system needs to be scalable to handle this velocity, as well as processing
this data in real time to avoid bottlenecks and not impact performance. In terms of characteristic of volume, the
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related attributes are scalability, performance, and modularity. Big Data systems need to adapt to the high and low
volumes of data that are generated at run-time. In addition, these data need to be executed with high performance,
and if possible, in different modules, to increase the modularity and division of responsibilities. Data veracity has
aspects of security and consistency. The data processed must remain consistent throughout the processing flow,
and backups must be guaranteed so that data can be recovered if the system fails. In addition, communication
between the modules must be secure to avoid data losses and data alteration during this process. The variety of
data is addressed by interoperability requirements, which must ensure that data provided by different systems and
different formats are processed for value acquisition. Finally, availability is related to value acquisition for ensuring
that the generated knowledge and data is available to stakeholders and to execute desired business processes.

In Table[ll, we summarize the results, mapping the big data characteristics into quality attributes and therefore,
indicating which architectural patterns meet specifically the big data requirements.

Table Il. Quality Requirements x Architectural Patterns

Characteristics of Quality Layered Shared Pipe and Broker
Big Data Systems Attributes Repository Filters
,Volume, Velocity Scalability — — — +
Volume, Velocity Performance — - - -
Volume Modularity + - +
Veracity Consistency + -
Veracity Security + + — —
Velocity Real-time - - -
Variety, Value Interoperability +
Value Availability -

As expected, none of the patters solve directly all big data requirements, mostly because each of them was
proposed to contribute for an specific problem. According to the SMS in our previous work[Sena et al. 2017],
performance, scalability, and availability are one the most critical requirements for big data systems. Performance
and real-time operation are not supported by any of the patterns detailed in this work. This is due to we did not find
evidence in studies presented in Table [|about how software architectures proposed for big data systems address
performance, availability, and real-time requirements. In this perspective, it is of utmost importance to investigate
which architectural solutions can be integrated with patterns discussed in this work to successfully address those
requirements. The broker pattern supports scalability, but fails to meet others. In the same perspective, modularity,
security, interoperability, consistency, and availability are addressed individually by different patters, but at aiming
to achiee them, different quality requirements are affected.

The main disadvantage related to patterns offering partial solutions, is that architects must prioritize some
requirements more than others (e.g., scalability, performance, security), causing adverse effects between the 5V’s
characteristics of big data system. Therefore, it is identified that the union of more than one of the patterns could
add the benefits of each and then support the design of big data software architectures with more quality. However,
such union must be investigated carefully, in order to address the new requirements and guarantee that the crucial
requirements are still considered. Moreover, the implementation of each pattern could be adapted in order to
support different characteristics. For instance, the communication between filters in the pipe and filters pattern
could be implemented to support real-time operation.

It is important to highlight that the information from each architectural pattern presented in this study was based
on the data extracted from the SMS. Thus, some important characteristics from patterns that were not clear in the
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studies from the SMS may not have been extracted, for instance, we found shared repository explicitly twice, but
every big data system is almost by definition a shared repository.

6. CONCLUSIONS

The big data context is promising due to the fact that data complexity is increasing, and therefore tends to bring
more challenges to software architectures. In this paper, we investigated the applicability of four architectural
patterns, namely, layered, pipe and filters, broker, and shared repository to the big data context. Those patterns
were identified through a SMS conducted and reported in a previous work [Sena et al. 2017]. Each of them has
aspects that can positively or negatively impact Big Data systems. As results, we identified that none of these
patterns can successfully meet the expected requirements for big data, since each pattern was conceived to
solve an specific problem. Using a specific pattern to achieve some requirements, cause trade-offs between
others desired requirements for big data systems. In this context, the integration of patterns to consolidate a
software architecture for those systems must be carefully investigated. It is required the preliminary identification of
trade-offs to define alternatives to mitigate negative impacts imposed by architectural patterns selected to conform
the software architecture of big data systems. This work can be used as a basis for such trade-off analysis.

As main contributions, we presented an analysis of well-known architectural patterns in the context of big data
systems, and related the 5V’s model with software architectures through the description of requirements of quality
attributes, and hence, the description of architectural patterns to address challenges presented in big data systems.
Moreover, this study is a first step towards the consolidation of an architectural pattern language for those systems.
As future work, we intend to address the combination of these established patterns, and if necessary, propose new
ones, aiming at supporting the design and documentation of software architectures for big data systems.
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