
	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	1	

Traces,	tracks,	trails,	and	paths:	An	Exploration	of	How	We	
Approach	Software	Design	
REBECCA	WIRFS-BROCK,	Wirfs-Brock	Associates	

Pattern	authors	intentionally	create	waypoints—points	of	interests	along	a	design	trail	they	hope	others	can	traverse.	While	designers	may	
read	others’	design	advice—be	 it	patterns	or	stack	overflow	replies,	 the	heuristics	 they’ve	personally	discovered	are	equally	 important.	
Patterns	are	just	a	small	part	of	a	much	larger	body	of	our	design	know	how.	Heuristics,	like	patterns,	can	be	expressed	at	various	levels.	
Some	are	small,	simple	acts.	Others	are	bigger	steps,	taken	at	the	beginning	of	a	design	journey.	This	essay	explores	ways	we	can	grow	as	
designers	by	becoming	more	aware	of	our	heuristics,	acknowledging	the	 inherent	uncertainty	in	the	design	process,	and	learning	better	
ways	to	articulate	and	share	our	heuristics	with	each	other.	

Categories	 and	 Subject	 Descriptors:	 •	Software	 and	 its	 engineering~Software	 design	 engineering	 		 •	Software	 and	 its	
engineering~Software	design	tradeoffs			•	Software	and	its	engineering~Design	patterns	

ACM	Reference	Format:	

Wirfs-Brock,	 R.	 Traces,	 tracks,	 trails,	 and	 paths:	 An	 Exploration	 of	 Software	 Design	 Patterns	 and	 other	 Lesser	 Known	 Heuristics	 25th	
Conference	on	Pattern	Languages	of	Programming	(PLoP),	PLoP	2018,	Oct	24-26	2018,	20	pages.	

1. INTRODUCTION	

If	I	were	to	be	brutally	honest	about	the	nature	of	software	design,	I	would	give	up	on	any	notion	of	certainty.	
The	more	I	know	about	software	and	the	world	it	is	part	of,	the	more	cautious	I	become	about	making	absolute	
statements	about	either.	Software	design	 is	 full	of	unexpected	complexities	and	continual	surprises.	 I	cannot	
predict	which	contextual	details	will	suddenly	become	important.	Small	details	can	loom	large	and	undo	even	
the	best	design	intentions.	

Because	I	acknowledge	this	uncertainty,	I	seek	out	other	designers’	stories.	I	want	to	learn	about	the	ugly,	
confusing	 aspects	 of	 design	 that	 are	 rarely	 written	 about.	 I	 want	 to	 incorporate	 others’	 insights	 into	 my	
growing	understanding	of	the	nature	of	software	design.	I	want	to	learn	what	heuristics	they	use	to	solve	their	
design	problems	and	see	where	they	clash	with	or	complement	my	own.	

We	designers	encounter	conflicting	goals,	dynamically	changing	context,	and	shifting	degrees	of	certainty	
about	 those	heuristics	we	know	and	 cherish.	Once	 in	 a	while	 this	makes	 this	makes	us	pause	 to	 reflect	 and	
readjust	 our	 thinking.	 But	 more	 often,	 we	 quickly	 take	 stock	 of	 the	 situation	 and	 move	 on,	 perhaps	 only	
tweaking	 our	 design	 a	 little,	 without	 much	 exploration	 or	 thought.	We	 don’t	 spend	much	 time	 consciously	
rethinking	and	rearranging	our	worldview.	

I’m	hoping	to	change	that	 just	a	 little	by	giving	myself	some	space	and	time	to	reflect	on	how	I	approach	
design	 and	 share	 some	ways	we	 as	 designers	might	 grow,	 alter,	 articulate,	 and	 better	 share	 our	 heuristics.	
There	is	much	to	learn	about	design	from	the	stories	we	tell	and	from	the	questions	we	ask	of	each	other.		

2. BACKGROUND		

A	software	designer’s	personal	toolkit	likely	includes	an	awareness	of	some	hardcore	technical	design	patterns	
(and	how	to	shape	and	adapt	and	refine	them).	It	also	includes	heuristics	for	how	to	approach	the	current	task	
at	hand.	Our	heuristics	have	been	imparted	to	us	through	code	and	conversations,	as	much	as	anything.	While	
we	 may	 read	 others’	 design	 advice—be	 it	 from	 patterns	 or	 stack	 overflow	 replies,	 the	 heuristics	 we’ve	
personally	discovered	on	our	own	design	journey	may	be	even	more	important.	
__
Permission	to	make	digital	or	hard	copies	of	all	or	part	of	 this	work	for	personal	or	classroom	use	 is	granted	without	 fee	provided	that	
copies	are	not	made	or	distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	and	the	full	citation	on	the	first	page.	
To	copy	otherwise,	to	republish,	to	post	on	servers	or	to	redistribute	to	lists,	requires	prior	specific	permission.	A	preliminary	version	of	
this	paper	will	be	presented	in	a	writers'	workshop	at	the	25th	Conference	on	Pattern	Languages	of	Programs	(PLoP).	PLoP'18,	October	
23-25,	Portland,	OR,	USA.	Copyright	2018	is	held	by	the	author(s).	HILLSIDE	978-1-941652-06-0	
 	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	2	

Inspired	 by	 Billy	 Vaughn	 Koen’s	 philosophy	 of	 engineering	 heuristics	 in	 Discussion	 of	 The	 Method:	
Conducting	 the	 Engineer’s	 Approach	 to	 Problem	 Solving	 [Koen],	 I	 explored	 the	 relations	 between	 software	
patterns,	patterns	collections,	and	pattern	languages	and	Vaughn	Koen’s	definition	of	heuristics	[Wirf].		Vaughn	
Koen	defines	a	heuristic	as,	“anything	that	provides	a	plausible	aid	or	direction	in	the	solution	of	a	problem	but	
is	in	the	final	analysis	unjustified,	incapable	of	justification,	and	potentially	fallible.”	Heuristics	offer	plausible	
approaches,	 not	 infallible	 ones.	 I	 assert	 that	 a	well-written	pattern	 is	 a	 particularly	nicely	packaged	 form	of	
heuristic.	 Patterns	 are	 particularly	 useful	 as	 they	 are	 drawn	 from	 direct	 experience	 and	 include	
handyinformation	for	the	discerning	designer—most	notably	the	context	where	the	pattern	is	useful	as	well	as	
tradeoffs	and	consequences	of	applying	it.			

When	we	designers	choose	an	approach	to	solve	a	current	problem,	most	of	the	time	we	are	satisficing—
finding	 a	 satisfactory	 approach,	 not	 actively	 judging	 what’s	 best	 or	 optimal.	 If	 a	 heuristic	 seems	 to	 fit	 the	
situation,	I	try	it.	Given	what	I	know,	what	I	believe	to	be	salient	at	the	moment,	what	I	intuit,	what	I	value,	and	
what	 constraints	 I	 have,	 I	 choose	what	 I	 think	 are	 reasonable	 heuristics	 (at	whatever	 granularity	 they	 are).	
There	is	no	guarantee	that	doing	so	actually	moves	me	closer	to	my	design	goal.	Consequently	I	need	to	check	
my	emerging	solution	for	flaws	or	weaknesses.	If	I	spot	any,	I	take	corrective	action.	Sometimes	I	backtrack	a	
long	way,	unwinding	what	I’ve	already	done	in	order	to	try	out	an	alternative	design	approach.	More	often	than	
not,	I	only	slightly	backtrack,	having	already	committed	myself	to	a	path	that	I	want	to	follow.	In	that	case	I’m	
not	willing	 to	 invest	 in	 finding	a	 totally	new	approach.	And	sometimes,	even	 though	 things	don’t	seem	to	be	
working	out,	I	plow	ahead,	even	though	I	feel	uneasy,	hoping	I’ll	be	on	firmer	footing	soon.	I	never	proceed	in	a	
straight	line	from	problem	understanding	to	solution	design	in	a	series	of	even	steps.	Instead,	I	move	haltingly	
forward	to	a	more	nuanced	understanding	of	what	aspects	of	my	emerging	solution	are	important.		

Most	of	the	time,	I	work	on	autopilot.	I	make	many	decisions	and	take	many	design	actions,	using	heuristics	
at	whatever	 level	 I	 need.	These	heuristics	have	been	deeply	 embedded	 into	my	design	 gestalt.	 I	 apply	 them	
without	any	conscious	thought.	Only	when	I	bump	up	against	a	design	challenge	where	I	don’t	know	what	to	do	
next—when	 there	 is	 some	 tension	 or	 nagging	 uncertainty	 or	 unfamiliar	 territory—do	 I	 actively	 take	 a	 step	
back	from	what	I’m	doing	to	look	outside	of	myself	for	others’	wisdom.	It	is	when	I	pop	out	of	this	“unconscious	
action”	mode	to	actively	search	for	a	design	heuristic	that	I	want	to	be	able	to	quickly	assess	the	utility	of	any	I	
might	find.	

Although	 I	 like	patterns,	 the	vast	majority	of	 software	design	heuristics	have	not	been	written	 in	pattern	
form1.	I	seek	out	those	other	heuristics,	too.	I	am	on	the	lookout	for	useful	heuristics	wherever	I	am	engaged	in	
designing	or	learning	about	software	design	(for	example,	when	thinking	about	how	to	solve	a	current	problem	
that	is	unfamiliar,	when	reading	code,	reading	blogs,	when	playing	with	a	new	framework,	when	searching	for	
online	 advice	 and	 recommendations,	 when	 attending	 conference	 talks,	 talking	 with	 friends,	 going	 to	
meetups,	…).	I	keep	adding	to	my	bag	of	tricks.	I	tweak	and	refine	heuristics	through	experience.	Rearranging	
and	growing	my	heuristics	toolkit	is	ongoing	and	not	in	anyway	systematic.	

3. METAPHORS	 FOR	 UNDERSTANDING	 THE	 CERTAINTY	 AND	 UTILITY	 OF	 DIFFERENT	 SOFTWARE	
HEURISTICS	WE	MIGHT	PICK	UP	AND	USE	

Perhaps	I	could	be	a	better	software	designer	if	I	made	finer	distinctions	between	heuristics.	There	are	those	I	
know	deeply	and	have	 learned	 from	others.	There	are	 those	 I	discovered	on	my	own.	There	are	heuristics	 I	
know	intimately—however	I	came	to	know	them—that	I	have	lovingly	polished	through	experience.	And	there	
are	those	shiny	new	heuristics	I	hear	or	read	about.	

So	what	are	some	ways	to	understand	the	soundness	and	utility	of	heuristics	we	find?	Robert	Moor,	in	his	
book,	On	Trails,	suggests	that	we	untangle	the	various	meanings	and	distinctions	between	trails,	traces,	tracks,	
ways,	roads,	and	paths	in	order	to	understand	how	trails	came	to	be	and	continue	to	evolve.		
	

“The words we English speakers use to describe lines of movement—trails, traces, tracks,
ways, roads, paths—have grown entangled over the years…But to better understand how trails
function it helps to momentarily tease them apart. The connotations of trail and path, for

1 Nor do I expect them to be. Not every useful heuristic is a pattern. Some heuristics are finer-grained than software
design patterns; others are more general.

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	3	

example, differ slightly…the key difference between a trail and a path is directional: paths
extend forward, whereas trails extend backward. (The importance of this distinction becomes
paramount when you consider the prospect of lying down in the path of a charging elephant
versus lying down in its trail). Paths are perceived as being more civilized in part because of
their resemblance to other urban architectural projects: They are lines projected forward in
space by the intellect and constructed with those noble appendages, the hands. By contrast,
trails tend to form in reverse, messily, from the passage of dirty feet.”
—Robert Moor, On Trails: An Exploration

Are	published	software	design	patterns	more	like	paths	or	trails?	How	certain	and	civilized	and	planned	are	

these	patterns?	
I	 see	 a	 resemblance	 between	 paths	 and	 published	 pattern	 collections.	 Published	 patterns	 collections	 are	

neatly	laid	out,	organized,	and	explained.	They	typically	include	some	sort	of	map,	suggesting	connections	and	
arcs	of	expected	usage.	They	appear	systematically	arranged.	While	individual	patterns	may	have	mined	from	
their	 authors’	 messy	 design	 experiences,	 the	 way	 they	 are	 presented	 hides	 any	 of	 that	 uncertainty.	 Those	
authors	seem	to	know	their	stuff!	

Recently	 I’ve	 learned	 that	 some	 pattern	 authors	 were	 not	 so	 certain	 as	 their	 writing	 suggests.	 Ralph	
Johnson,	 in	his	 Sugarloaf	PLoP	2014	keynote	 (https://www.youtube.com/watch?v=ALxQdnOdYXQ)	 said	 that	
when	 they	 wrote	 Design	 Patterns,	 he	 and	 his	 co-authors	 found	 the	 creational,	 behavioral,	 and	 structural	
categories	 for	 their	 pattern	 collection	 rather	 dubious.	 They	went	 ahead	with	 them	 anyways,	 for	 lack	 of	 any	
better	organizing	scheme.	In	his	keynote	Johnson	proposed	a	better	way	to	categorize	the	GoF	patterns	(core,	
creational,	and	peripheral),	stating	that	some	patterns	were	definitely	less	useful,	or	peripheral	than	others		

Likewise,	 Eric	 Evans	 in	 several	 talks	 [Evan12,	 Evan15]	 suggests	 that	 the	most	 important	 patterns	 in	 his	
collection	were	the	Strategic	Patterns.	 If	you	 look	at	how	the	patterns	 in	his	book	are	 laid	out	(see	Figure	1)	
there	are	really	two	groupings	or	patterns	collections—those	concerned	with	design	details	for	object	designs	
(e.g.	Tactical	Design	Patterns)	and	 those	 for	organizing	and	understanding	 the	domains	 in	complex	software	
systems	 (Strategic	 Design	 Patterns).	 	 Evans	 believes	 that	 while	 the	 Tactical	 Patterns	 are	 useful	 for	 object-
oriented	programming,	they	aren’t	nearly	as	important	as	the	Strategic	Patterns.	He	regrets	that	the	Strategic	
Patterns	were	in	the	latter	part	of	his	lengthy	book,	as	some	readers	never	get	that	far.	He	also	points	out	that	a	
missing	 pattern,	 Domain	 Events,	which	was	 only	 hinted	 at	 in	 his	 book,	 has	 become	 increasingly	 important,	
especially	 with	 the	 increased	 use	 of	 CQRS	 [Daha]	 and	 Event-Sourced	 architectures	 to	 implement	 Domain	
Driven	Design	models.	

	

	
Figure	1.	The	Domain-Driven	Design	Patterns	are	really	two	collections	in	one	book:	Strategic	and	Tactical	Design	Patterns	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	4	

In	hindsight,	 the	presentation	of	 these	pattern	collections	seems	more	 tentatively	 than	carefully	planned.	
Had	the	authors	taken	time	to	study	how	others	actually	used	their	patterns,	would	they	have	designed	better	
pathways?	Or	is	this	something	they	can	see	only	when	looking	back	on	their	work?	

Perhaps	they	were	really	blazing	trails	instead	of	constructing	pathways.	2	
We	can	also	draw	useful	analogies	between	patterns	collections	and	trails.	Trails	aren’t	planned	and	built;	

they	 emerge	over	 time.	What	 exactly	 is	 it	 that	makes	 a	 trail	 a	 trail?	Richard	 Irving	Dodge,	 in	his	1876	book	
Plains	of	the	Great	West,	drawing	from	his	experience	as	a	tracker,	defined	a	trail	as	a	string	of	“sign”	that	can	
be	reliably	 followed	 [Moor].	 “Sign”	refers	 to	 the	various	marks	 left	behind	by	an	animal	 in	 its	passing—scat,	
broken	branches,	spoor,	etc.	A	track	is	evidence;	a	mark	or	a	series	of	marks	or	“sign”	that	something	that	has	
passed	through.	A	track	only	becomes	a	trail	when	a	series	of	“sign”	can	be	followed.	Sign,	according	to	Moor,	
can	be	physical,	chemical,	electronic,	or	theoretical.	An	animal	might	leave	“sign”	but	unless	it	can	be	tracked	
reliably,	a	series	of	“sign”	doesn’t	automatically	make	it	a	trail.	

Trails	are	trails	because	they	can	be	trailed.	Moor	claims	that,	“something	miraculous	happens	when	a	trail	
is	trailed.	The	inert	line	is	transformed	into	a	legible	sign	system,	which	allows	animals	to	lead	one	another,	as	
if	telepathically,	across	long	distances.”	

When	patterns	 authors	write	 about	what	 they’ve	 found	 to	be	used	 in	practice,	 the	patterns	 they	present	
have	 the	potential	 to	be	 trails	 that	others	eagerly	 follow.	But	 this	potential	only	exists	 if	 the	authors	explain	
how	to	move	from	one	“sign”/	pattern	/	heuristic	to	the	next.	I’ve	seen	scant	evidence	of	this.	Patterns	maps	in	
books	typically	don’t	describe	movement	through	the	patterns.	Instead,	like	hand-sketched	maps,	they	suggest	
only	 vague	 connections.	 Individual	 patterns	 seem	 more	 like	 clumps	 of	 potentially	 interesting	 waypoints	
(patterns),	 loosely	 linked	or	 roughly	categorized	at	best.	Most	authors	 stop	short	of	 laying	out	waypoints	or	
“sign”	in	any	specific	order	to	follow.	

On	the	other	hand,	pattern	languages,	unlike	pattern	collections,	attempt	to	define	one	or	more	sequences	
of	use.	Once	you	add	potential	sequences,	voila!	pattern	languages	seem	much	more	like	trails.	

	I	 know	 of	 few	 examples	 of	 published	 software	 design	 pattern	 languages.	 Object-oriented	 Reengineering	
Patterns3	 by	 Serge	 Demeyer,	 Stéphane	 Ducasse,	 and	 Oscar	 Nierstrasz	 [Dem]	 is	 a	 notable	 one.	 Each	 chapter	
starts	with	a	pattern	map	illustrating	potential	sequences	through	the	patterns	in	the	chapter	based	on	actions	
(see	Figure	2	for	the	pattern	map	for	Chapter	4).	These	maps	illustrate	small	trails	with	branches,	 loops,	and	
options.	 For	 example,	 to	 gain	 an	 initial	 understanding	 of	 a	 design,	 you	 can	 start	with	 either	 a	 top	 down	 or	
bottom	up	approach	and	proceed	until	you	have	enough	understanding	to	move	on	to	your	next	re-engineering	
task.	

	
	

Figure	2.	Each	chapter	in	Object-Oriented	Reengineering	Patterns	is	a	small	language	

2 This suggests that trailblazing, innovative pattern authors may not be the best ones to organize them for consumption
by others.
3 Unintentionally, the biggest misstep these authors made was titling their book, Object-Oriented Reengineering
Patterns. Only the last two chapters mention anything about object technology. And these tactical object-oriented
implementation patterns weren’t the heart of the book. Perhaps if retitled Software Reengineering Patterns (and new
additional chapters described several functional programming language implementation patterns) it could be rescued
from obscurity and be viewed as still useful and relevant.

Chapter 4: Initial
Understanding Patterns

Identify
problems

Understand?

Top Down

Pattern 4.1:
Analyze the
Persistent Data

Pattern 4.2
Speculate about Design

Bottom up

Pattern 4:3
Study the
Exceptional Entities

Recover
design

Recover
database

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	5	

Unlike	 physical	 trails,	 where	we	 are	 guided	 to	move	 in	 a	 singular	 direction,	 software	 pattern	 languages	
seem	more	loopy	and	fragmented.	But	unlike	a	physical	trail	where	we	are	constrained	by	the	physical	terrain,	
software	designers	can	skip	over	any	pattern	they	don’t	find	useful	or	go	“off	trail”	at	any	point	to	pick	up	and	
apply	a	useful	design	heuristic,	wherever	 it	 is	 found.	 It’s	hard	 to	skip	over	a	part	of	a	physical	 trail.	 It’s	only	
possible	 when	 there’s	 a	 switchback	 that	 you	 can	 cut	 through	 or	 a	 branch.	 But	 it	 is	 usually	 those	 optional	
stretches	 away	 from	 the	main	 trail	 and	 then	back	 again	 that	 lead	 to	 something	 really	 interesting	 (you	don’t	
want	to	miss	that	waterfall	simply	because	it	is	an	extra	¼	mile	out	of	the	way).	

We	software	designers	often	invent	(design?	hack	out?)	our	own	tracks.	If	we	don’t	know	what	to	do	next,	
we	become	way	finders,	experimenting	and	looking	around	for	actions	that	will	propel	us	forward.	To	me	that	
doesn’t	 feel	 like	 bushwhacking;	 it	 just	 seems	 expedient.	 Software	 designers	 aren’t	 constrained	 to	 follow	 a	
patterns	trail	exactly	as	any	pattern	language	author	suggests	anymore	than	fluent	speakers	are	constrained	to	
express	their	thoughts	using	only	the	formal	grammar	defined	for	their	language.	

So	 this	 is	 where	 the	 pattern	 languages	 as	 trails	 metaphor	 breaks	 down	 badly.	 Software	 design	 doesn’t	
simply	proceed	from	one	known	waypoint	to	the	next.	It’s	often	more	complicated.	But	sometimes	it	is	much	
simpler.	 We	 aren’t	 always	 way	 finders	 or	 followers.	 Sometimes	 we	 are	 certain	 what	 to	 do	 next	 without	
consciously	following	any	trail	or	path	or	track	at	all	other	than	the	one	we	are	currently	on.	In	that	case,	the	
terrain	of	our	software	and	 its	design	 is	 so	 familiar	 to	us	 that	we	become	efficient	at	 just	moving	 through	 it	
without	much	thought.	We’re	not	searching	for	heuristics	so	much	as	taking	the	next	(to	us,	anyway)	obvious	
step.	

4. THE	ROLES	OF	THE	TRAILBLAZERS,	TRAVELLERS,	AND	STEWARDS	

“The soul of a trail—its trail-ness—is not bound up in dirt and rocks; it is immaterial,
evanescent, as fluid as air. The essence lies in its function: how it continuously evolves to
serve the needs of its users.”—Robert Moor

Trails	 emerge;	 living	 useful	 trails	 evolve.	 Wild,	 ancient	 trails	 started	 as	 traces—marks,	 objects,	 or	 other	
indication	 of	 the	 existence	 or	 passing	 of	 someone	 or	 something.	 Because	 others	 followed,	 some	 traces	 over	
time	become	tracks—rough	ways	typically	beaten	into	existence	through	repeated	use	rather	than	consciously	
constructed.	 Tracks	 became	 trails	 only	when	 they	 become	 followable.	 And	 then,	with	 enough	 following	 and	
time	 and	 adaptation	 a	 trail	 becomes	 “alive”	 with	 an	 evolving	 purpose—it	 changes	 and	 is	 adapted	 by	 its	
travellers.	But	this	progression	isn’t	 inevitable.	Traces	peter	out.	Tracks	fade	from	disuse.	Trails	become	lost,	
abandoned,	or	fall	into	disrepair.	Still,	each	at	one	point	in	time	had	utility	and	served	a	purpose.	

Like	 trails,	 through	many	 uses	 the	 rough	 edges	 of	 our	 software	 patterns	 get	 smoothed	 off.	 If	 they	 seem	
polished	enough,	and	we	have	enough	of	them	that	are	related	to	each	other,	we	who	feel	compelled	to	write	
them	 down	 create	 patterns	 collections…hoping	 others	 find	 them	 useful.	 But	 unlike	 physical	 trails,	 which	
change	with	use	and	with	the	weather	and	the	season,	our	software	patterns,	collections,	and	languages	aren’t	
so	easily	changed.	Our	software	design	patterns	are	representations—like	maps	of	a	trail;	they	aren’t	the	trail	
itself.	Consequently,	there	isn’t	a	direct	feedback	loop	between	between	recorded	patterns	and	how	their	users	
have	changed	them.	If	we	were	careful	enough	when	we	wrote	down	our	patterns	we	also	included	the	context	
where	 we	 found	 them	 to	 be	 useful.	 But	 the	 context	 of	 those	 who	 want	 to	 follow	 our	 trails,	 is	 constantly	
changing	with	 the	 type	of	 software	being	designed,	 the	 constraints	of	 the	 larger	 ecosystem	 it	 is	part	of,	 and	
with	the	skills	and	tools	at	hand.	Therein	lies	a	big	problem	for	sustaining	the	liveliness	of	software	patterns.	If	
we	want	written	descriptions	to	continue	to	guide	others,	to	evolve	and	be	ever	useful,	we	need	to	find	ways	
for	users	of	them	to	refresh	them.		And	that	starts	by	creating	vital	feedback	loops	between	software	pattern	
users	and	their	various	trail	keepers	or	stewards.		
	

“We tend to glorify trailblazers…but followers play an equally important role in creating a
trail. They shave off unnecessary bends and brush away obstructions; improving the trail with
each trip.”—Robert Moor

	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	6	

We	in	the	software	patterns	community	seem	to	glorify	trailblazing4	patterns	authors	(or	if	not	steeped	in	a	
pattern	 culture,	 ignore	 them…but	 that’s	 not	 a	 place	 I	want	 to	 go	 to	with	 this	 essay).5	We’re	hung	up	on	 the	
notion	that	the	initial	authors	of	software	patterns,	e.g.	the	trailblazers	who	blazed	more	visible	trail	markers	
and	shored	up	parts	of	 the	 trail,	making	 it	 easier	 for	others	 to	 follow,	are	 the	best	 curators	of	 their	ongoing	
evolution.	Often	they	are	not.	Patterns	get	modified	and	refined	during	their	application.	It’s	the	pattern	users	
and	community	of	software	designers	that	embrace	those	heuristics	and	push	them	to	their	limit	who	discover	
more	useful	devices,	nuances,	modern	techniques,	and	variations.	Unless	 there	 is	a	strong	caring	community	
around	 the	 original	 pattern	 authors,	 these	 insights	 won’t	 get	 shared	with	 those	 who	 care	 about	 sustaining	
those	patterns.	Even	with	feedback,	renewed	versions	of	“classic”	patterns	don’t	happen	automatically.	It	takes	
sustained	energy	and	attention	to	detail	and	the	changing	software	design	scene	to	keep	patterns	relevant.	

Eric	Evans	speaks	of	the	revitalization	of	the	DDD	community	which	happened	when	several	DDD	leaders	
introduced	 and	 explained	 the	 relationships	between	domains,	 bounded	 contexts,	 and	 the	 implementation	of	
domain	models	using	CQRS	and	Event-Sourced	architectures	[Dahan,	Young,	MiTu].	

I	spot	some	hesitancy	for	some	to	update	“official”	trails	mapped	out	by	the	original	patterns	authors;	not	
wanting	to	step	on	the	toes	of	those	original	trailblazers.	But	those	of	us	who	want	to	preserve	trails	can	and	
should	become	stewards6—volunteering	to	mend	and	repair	and	refine	those	trails	we	cherish.	What	we	trail	
followers	need	 to	 recognize	 is	 that	not	 all	 trailblazers	 are	alike.	While	 certain	 trailblazers	may	not	welcome	
updates,	 others	 may	 gladly	 seek	 company,	 advice,	 and	 stewardship	 help.	 And	 some	 trailblazers	 may	 have	
moved	on,	having	passed	through	their	territory	and	on	to	newer	ventures.	Trail	followers	have	just	as	much	
collective	ownership	of	the	trails	they	use	to	as	those	who	initially	marked	them.	

5. FIELDNOTES	ON	AN	EXPERIMENT	COLLECTING	HEURISTICS	

Motivated	to	share	what	I’ve	learned	about	heuristics	and	to	stimulate	others	to	share	and	refine	their	own	and	
other	 well-known	 heuristics	 that	 might	 need	 refreshing/revisiting,	 I	 presented	 a	 keynote,	 Cultivating	 Your	
Design	Heuristics	at	 the	Explore	DDD	(Domain	Driven	Design)	2017	Conference.	 I	hoped	to	 inspire	others	to	
take	on	a	more	active	role	as	Domain	Driven-Design	heuristics	stewards.	The	last	sentences	of	my	talk	abstract	
had	 this	 challenge:	 “To	 grow	as	 designers,	we	need	 to	 do	more	 than	 simply	design	 and	 implement	working	
software.	We	need	to	examine	and	reflect	on	our	work,	put	our	own	spin	on	the	advice	of	experts,	and	continue	
to	learn	better	ways	of	designing.”	

The	day	after	my	talk,	I	got	a	Twitter	direct	message	from	Mathias	Verraes,	one	of	the	thought	leaders	in	the	
Domain	Driven	Design	Community.	My	talk	had	inspired	him	to	get	serious	about	capturing,	and	recording	and	
organizing	his	own	heuristics.	So	we	met	for	a	couple	of	hours	at	the	conference	and	decided	to	capture	some	
heuristics.	

I	was	eager	to	have	a	conversation	with	Mathias	and	share	 ideas.	Mostly	I	wanted	to	practice	hunting	for	
heuristics	 through	 conversation,	 as	well	 as	 gain	 insights	 into	Mathias’	 personal	 design	heuristics	 for	 events.	
Mathias	 is	 expert	 in	 event-sourced	 architectures,	 an	 alternative	 to	 the	 “traditional”	 domain-layering	
architectures	 (which	 includes	 patterns	 for	 storing	 and	 retrieving	 and	 updating	 Aggregate	 Roots	 into	
repositories),	which	Eric	Evans	had	written	about	in	his	book	(see	Figure	3).		

4 A trailblazer formally identifies a trail by creating marks or “blazes” that others can follow. Most likely, a trail
existed before it was “blazed.” But the trailblazer, who made the marks, is credited with creating it. Patterns authors
claim to not have created their patterns so much as discovered them in existence and documented them. Indeed, this,
too, is a form of trailblazing.	Pattern authors are marking what they see, making it easier for others to follow. I think
pattern authors also do a great service in pointing out the features of the terrain, e.g. the design context and forces, as
other, inexperienced designers may not consciously think of them otherwise.
5 One conclusion you might draw from Moor’s line of reasoning is that if you write a patterns book (or build a trail)
and no one follows it, well, it isn’t worth much. Trails only become trails through repeated use.
6 See https://www.deschuteslandtrust.org/get-involved/volunteer/preserve-trail-stewards for an example call to
stewardship

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	7	

	
Figure	3.	DRAFT-	A	“canonical”	representation	of	the	architecture	where	business	domain	objects	or	aggregates	are	maintained	in	a	

database	which	is	accessed	through	a	repository	which	hides	the	data	store	details	from	the	business	layer	logic.	

In	a	nutshell,	instead	of	storing	and	updating	Aggregate	Roots	(e.g.	complex	business	domain	objects)	into	
databases,	 with	 event-sourced	 architectures,	 immutable	 events	 are	 stored	 with	 just	 enough	 information	 so	
they	can	be	“replayed”	to	reconstitute	the	current	state	of	any	Aggregate	Root.	In	essence,	an	event	is	a	record	
of	what	the	software	has	determined	to	have	happened.	Whenever	work	is	accomplished	in	the	system,	one	or	
more	“business	level	events”	are	recorded	that	represent	the	facts	known	at	the	time.	Events	are	generated	by	
a	 software	 process	 as	 a	 byproduct	 of	 determining	 what	 just	 “happened”	 and	 interpreted	 by	 interested	
downstream	 processes,	 which	 can	 in	 turn,	 as	 a	 result	 of	 processing	 or	 interpreting	 the	 events	 they	 are	
interested	in	receiving,	can	generate	even	more	events.	Each	event	is	preserved	in	an	event	store,	along	with	
relevant	 information	 about	 the	 event.	 Figure	 4	 shows	 a	 canonical	 CQRS	 (Command-Query-Response-
Segregation)	 architecture,	 one	 approach	 to	 implement	 event-sourced	 architectures.	 It	 should	 be	 noted	 that	
although	the	figure	only	shows	one	event	store	and	one	read	model,	there	can	be	multiple	event	stores	(each	
representing	 some	 cumulative	 state	 of	 the	 system)	 and	 different	 projections	 or	 read	 models	 designed	 for	
specific	queries	about	those	events.		

	

	
Figure	4.		DRAFT	A	CQRS	Architecture	Showing	Event	Stores	

I	didn’t	know	Mathias’	thinking	on	designing	event-sourced	architectures.	So	I	first	wanted	to	first	ask	him	to	
explain	some	fundamentals	before	sharing	his	heuristics	for	what	should	be	published	in	an	event.	Throughout	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	8	

our	conversation	Mathias	used	as	a	working	example	the	designs	for	car	rental,	 finance,	and	student	grading	
for	courses	and	modules	given	by	instructors	(all	examples	drawn	from	real	systems	he	had	designed).	

Mathias	quickly	rattled	off	two	heuristics,	along	with	examples:	
	
Heuristic:	A	Bounded	Context7	should	keep	its	internal	details	private.	
	
Heuristic:	Events	are	records	of	things	that	have	happened,	not	things	that	will	happen	in	the	future		
	

For	example,	an	event	should	be	named	“a	reservation	for	a	car	rental	has	been	made”	instead	of	“rent	a	car”	if	
the	customer	has	just	gone	online	and	asked	to	rent	a	car.	People	often	confuse	what	has	just	happened	with	
real	world	events	that	are	in	the	future.	When	you	reserve	a	car	you	aren’t	actually	renting	it	(not	yet).	You’ve	
just	reserved	it	for	a	future	date.	

I	asked	Mathias	what	he	meant	by	keeping	internal	details	private.	
Mathias	then	shared	this	example:	If	you	are	keeping	monetary	units	in	say	10	digits	internally	in	a	service,	

you	would	only	pass	out	an	amount	in	2	digits	precision	because	that’s	all	other	consumers	of	the	event	outside	
of	the	Bounded	Context	would	need.	Perhaps	there	was	another	heuristic	exposed	by	this	example:	

	
Heuristic:	Don’t	design	message	or	event	contents	for	specific	subscribers	to	that	event.	

	
I	wanted	to	understand	the	implications	of	this	heuristic.	So	I	asked,	“So	does	that	mean	that	you	have	to	know	
what	processes	will	consume	any	event	in	order	to	design	an	event	record?”	The	discussion	then	got	a	bit	more	
nuanced.	Mathias	 said	 that	you	have	 to	understand	how	events	 flow	around	 the	system/business.	Whatever	
you	do,	you	publish	business	events,	not	 technical	events	 that	are	consumed	by	other	processes	outside	of	a	
particular	 Bounded	 Contexts.	 So	 yes,	 you	 really	 need	 to	 know	 how	 business	 events	 might	 be	 used	 to	
accomplish	 downstream	 business	 processes	 in	 other	 Bounded	 Contexts.	 Events	 along	 with	 their	 relevant	
information,	 once	 published	 are	 simply	 streamed	out	 and	 stored	 over	 time	 to	 be	 picked	up	 (or	 not)	 by	 any	
process	 that	 registers	 interest	 in	 that	 event.	 So	 of	 course	 the	 consumer	 of	 an	 event	 needs	 to	 know	 how	 to	
unpack/interpret	the	information	payload	of	that	event.	

Distilling	what	he	said,	I	offered	this	heuristic:	
	
Heuristic:	 When	 designing	 an	 event-sourced	 architecture	 understand	 how	 events	 flow	 around	 the	
system/business.	

	
Our	conversation	continued.	

I	asked,	“Who	should	have	the	burden	of	decoding	or	translating	the	event	payload	into	the	form	needed?”	
Mathias	 answered,	 “the	 consumer,	 of	 course.	 But	 the	 generator	 of	 the	 event	 cannot	 ignore	 the	 needs	 of	

potential	consumers.	So	there	might	be	an	agreed	upon	standard	convention	for	money	for	example	is	2	digits	
precision.”	

This	led	us	to	conclude	we’d	uncovered	yet	another	design	heuristic:		
	
Heuristic:	Design	agreed	upon	standard	formats	for	information	in	business	events	based	on	expected	
usage.	

	
And	just	to	poke	at	an	edge	case	that	came	to	mind	as	we	were	talking,	I	asked,	“Well,	what	happens	if	a	new	
process	 needs	 that	 extra	 precision?”	 Mathias	 was	 quick	 to	 reply,	 “Well,	 maybe	 it	 needs	 to	 be	 within	 the	
Bounded	Context	of	that	process	that	knows	of	that	10	digits	precision.”	

7 In Domain-Driven Design a Bounded Context is a unit of encapsulation where the interpretation and meaning of a
group of domain concepts are congruent. Other, related, but not identical terms for this are sub-domains, subsystem,
or component. Different Bounded Contexts can have same-named domain concepts but have completely different
information and domain models associated with them. Consequently, in such designs, there are heuristics for
identifying Bounded Contexts and determining the relationships between them.

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	9	

I	 pushed	 back,	 “But	 what	 if	 it	 doesn’t	 logically	 belong	 in	 the	 same	 Bounded	 Context?”	 Which	 led	 us	 to	
conclude	 that	perhaps	 there	was	a	competing	heuristic	 that	needed	 to	be	considered	along	with	 the	 “Design	
agreed	upon	standard	formats”	heuristic:	

	
Heuristic:	When	designing	a	payload	for	an	event	don’t	lose	information/precision.		

	
That	led	Mathias	to	restate	that	while	information	within	a	Bounded	Context	might	contain	extra	precision	or	
information;	information	that	gets	passed	“outside”	a	Bounded	Context	via	a	Business	Event	shouldn’t	contain	
“private	details.”	Our	 conversation	 continued	 for	 over	 two	hours.	 I	 have	more	pages	of	 heuristics	notes	 and	
examples	that	I	will	only	briefly	summarize.	

Me:	How	much	information	should	be	passed	along	in	an	event	record?	
Mathias:	Just	the	key	information	about	that	event	so	you	can	“replay”	the	stream	of	events	and	recreate	the	

same	results.		
For	example,	if	it	is	a	“payment	received	event”,	you	don’t	want	to	pass	along	all	the	information	about	the	

invoice	that	was	paid.		
This	led	us	to	some	deep	discussion	about	events	and	time	and	that	time	is	really	important	to	understand	

(and	that	events	can	be	generated	by	noticing	the	passage	of	time,	too).	
More	heuristics	tumbled	out:	
		

Heuristic:	If	a	different	actor	performs	an	action	it	is	a	different	event.	
	
For	example,	 it	 is	one	 thing	 for	a	 customer	 to	 report	an	accident	with	 the	vehicle	or	 to	 return	a	 car,	 and	

another	thing	for	an	employee	to	report	an	accident	or	even	the	car	itself	if	it	has	telemetry	to	do	so.	These	are	
all	different	kinds	of	events.	

We	discussed	more	heuristics	about	events:		
	

Heuristic:	 If	 there	 are	 different	 behaviors	 downstream,	 then	 multiple,	 different	 events	 might	 be	
generated	from	the	same	process.	

	
And	 this	 is	when	Mathias	 started	 to	 draw	 a	 representation	 of	 his	 architecture	 for	 event	 streaming	 and	 the	
events	that	happen	over	time.	He	stated	that	since	all	events	are	available	to	a	process,	it	can	find	out	the	“set”	
of	events	it	is	interested	in	to	drive	behavior.	

	
Heuristic:	Look	for	a	pattern	of	events	to	drive	system	behaviors.	

	
For	 example,	 you	 might	 want	 to	 design	 your	 system	 to	 not	 send	 an	 overdue	 notice	 if	 you’ve	 recently	

received	payments,	however	recent	 is	defined	by	 the	business.	To	do	 that,	 the	overdue	notice	process	might	
query	 the	 event	 store	 for	 payments	 to	 find	 previous	 events	 (and	 check	 their	 timestamps)	 before	 sending	
overdue	notices.		

We	also	talked	about	the	situation	where	a	customer	changes	addresses	too	frequently	(say	3x	in	a	single	
week).	 Perhaps	 this	 detection	 of	 events	might	 cause	 a	 fraud	detection	process	 to	 be	 initiated.	And	 even	 the	
same	 stream	 of	 events	 coming	 in	 at	 a	 different	 timescale	 might	 represent	 an	 opportunity	 initiate	 different	
behaviors/processes.	
	

Heuristic:	Consider	 the	 timescale	when	 looking	 for	patterns	of	events.	The	same	set	of	events	over	a	
different	time	period	might	be	of	interest	to	a	different	business	process.	

	
We	 reluctantly	 concluded	our	 conversation	when	we	were	 invited	 to	 join	 the	 conference’s	 closing	 circle.	

Mathias	had	written	on	both	sides	of	a	big	sheet	of	paper,	sketching	ideas	as	he	went.	I	asked	if	he	wanted	to	
keep	 the	 paper.	 He	 said	 no,	 he	 knew	 this	 by	 heart	 as	 he	 covers	 what	 we	 had	 talked	 about	 in	 a	 three-day	
workshop	he	gives.	I	now	wish	that	I	had	taken	a	photo	of	his	scribbling	to	jog	my	own	memory.	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	10	

5.1 Reflections	on	the	distillation	process	
This	was	my	very	first	attempt	at	actively	distilling	someone	else’s	design	heuristics.	I	didn’t	want	to	bog	down	
our	 conversation	 by	 taking	 copious	 notes	 or	 interrupting	 the	 conversation	 to	 stop	 and	 record	 any	 specific	
heuristic	 or	 tweak	 the	 wording	 of	 what	 Mathias	 said	 or	 wrote.	 So	 I	 waited	 to	 write	 up	 notes	 about	 our	
conversation	 from	 memory	 that	 evening8.	 My	 goal	 wasn’t	 to	 come	 up	 with	 a	 completely	 polished	 pile	 of	
publishable	heuristics,	just	a	few	to	get	started.	

I	learned	these	things	from	this	experiment:	
• Listen.	I	need	to	restrain	from	sharing	my	own	heuristics	and	design	thoughts	in	order	to	let	Mathias’	

heuristics	come	out.	My	primary	goal	was	to	pick	out	and	follow	his	trail	of	heuristics,	not	mingle	them	
with	my	own.	I’m	not	used	to	doing	this,	so	I	didn’t	always	silence	my	internal	thoughts	enough	so	I	
could	listen	more	intently.	This	will	take	practice.	

• Let	the	conversation	wander.	 It’s	OK	to	 let	 the	conversation	wander	to	where	the	person	you	want	to	
glean	knowledge	from	takes	it.	But	don’t	let	it	wander	too	far	away	from	the	topic.	It	is	good	to	have	a	
design	topic	around	which	to	focus.	Our	focus	was	the	design	of	event	records.	It	wandered	a	bit	to	an	
equally	 interesting	 topics,	 event	 patterns	 and	 time,	 but	 since	 that	 wasn’t	 our	 original	 focus,	
unfortunately,	 I	didn’t	capture	 those	heuristics	so	clearly.	The	goal	 is	 to	 tease	out	 traces,	 tracks,	and	
trails	of	interesting	ideas	that	you	want	to	pursue	further.	

• Prepare	 beforehand.	 If	 you	 aren’t	 familiar	 with	 the	 jargon	 around	 the	 particular	 topic,	 prepare	
beforehand.	I	already	knew	the	“classic”	DDD	patterns	and	a	bit	about	event-sourced	architectures.	So	
I	didn’t	stumble	over	Bounded	Contexts,	Event	Records,	or	Aggregates.	Someone	unfamiliar	with	those	
patterns	would’ve	had	more	difficulty	following	what	was	said.	Trail	markers	make	sense	only	if	you	
know	what	you	are	looking	for.	

• Ask	questions.	Sometimes	I	felt	like	a	two	year	old	constantly	asking,	why,	why,	why…but	I	found	that	
uncovering	edge	cases	helped	clarify	ideas,	tease	out	nuances,	and	uncover	the	scope	(and	certainty)	
around	a	particular	heuristic.	We	even	uncovered	competing	heuristics	that	way.	

• Ask	for	realistic	examples.	Design	heuristics	grounded	in	realistic	situations	are	on	more	solid	ground.	
Use	 realistic	 examples	 instead	 of	made	 up	 ones	 (we	 don’t	 need	 to	 create	 yet	 another	 design	 for	 an	
ATM9).		

• Ask	what	would	happen	if?	 I	did	this	to	gain	a	better	understanding	what	would	happen	if	the	design	
context	 changes	 slightly.	 Nuances	 are	what	makes	 the	 process	 of	 design	 so	 interesting	 and	 pattern	
writing	so	hard.	

• Go	with	the	flow.	There	is	no	need	to	stop	to	record	every	heuristic	in	real	time.	Writing	up	field	notes	
shortly	 after	our	 conversation	allowed	me	 to	be	 in	 the	moment	during	our	 conversation	and	 to	 ask	
more	probing	questions	than	if	I	had	been	pausing	to	take	notes.	Perhaps	I	would’ve	gotten	more	out	
our	conversation	if	I	had	made	an	audio	recording	of	it.	But	I	am	not	certain	about	that.	The	“crutch”	of	
having	 a	 record	might’ve	 lulled	me	 into	not	 being	 so	 active	 at	 remembering	 and	 recounting.	 Sure,	 I	
missed	 some	 of	 Mathias’	 heuristics	 on	 modeling	 time.	 In	 hindsight,	 I	 think	 at	 that	 point	 of	 our	
conversation	 I	was	 listening	 less	 intently	 because	 I	 thought	 I	 knew	 a	 lot	 about	 time.	 But	 also	 I	was	
getting	tired.	Active	listening	is	mentally	taxing.	

• Photograph	scribbles	and	drawings	to	jog	your	memory.	It’s	easy	to	do	if	the	person	you	are	conversing	
with	is	drawing	while	they	talk.	Mathias	drew,	but	he	crumpled	up	the	paper	after	our	conversation.	So	
I	 lost	a	valuable	memento	that	would	have	helped	me	remember	his	heuristics	about	time	and	what	
constitutes	 an	 event.	 I’ll	 need	 significant	 practice	 if	 I	want	 to	 distill	 heuristics	while	 simultaneously	
making	sketch	notes.	Oh	well.	I	know	I	need	at	least	one	more	conversation	with	Mathias.	

5.2 Certainty	about	the	heuristics	we	distill	
Mathias	 shared	 several	 heuristics	 in	 a	 fairly	 short	 time.	 I’m	 pretty	 confidant	 that	 the	 heuristics	 Mathias	
explained	 were	 grounded	 in	 his	 direct	 experience	 design	 and	 building	 several	 event-sourced	 architectures	
using	Domain	Driven	Design	concepts	and	patterns.	And	what	we	discussed	was	just	a	taste	of	what	he	knows.	I	

8 I was inspired to do so by advice in Writing Ethnographic Fieldnotes [Emer]
9 ATM – Automated Teller Machine. We presented a canonical design for this in our first book on object-oriented
design.

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	11	

suspect	 the	 heuristics	 Mathias	 shared	 were	 on	 the	 whole	 pretty	 useful,	 even	 though	 the	 design	 of	 event-
sourced	systems	is	a	big	topic	and	we	jumped	right	into	the	middle	of	it.	

In	 hindsight,	 some	 heuristics	 seem	 self-evident	 and	 hard	 to	 apply.	 For	 example,	 “don’t	 lose	
information/precision”	seems	obvious	(if	you	lost	information,	then	you	wouldn’t	be	able	to	trigger	workflows	
in	other	components	 in	your	system	or	be	able	to	“replay”	events	to	reconstitute	the	current	state	of	system	
things).	

The	heuristics	I	like	best	are	those	where	I	can	take	some	specific	action	and	then	see	whether	it	results	in	
forward	 design	 progress.	 I	 don’t	 know	 exactly	 what	 to	 do	 with	 the	 heuristic,	 “Don’t	 lose	
information/precision,”	other	 than	to	verify	what	each	consumer	of	an	event	might	need.	Which	 leads	me	to	
appreciate	 that	 event	 records	 shouldn’t	 be	 designed	 in	 isolation	 from	 their	 potential	 consumers.	 Perhaps	 I	
should	 have	 restated	 this	 heuristic	 as,	 “Design	 event	 records	 to	 convey	 the	 precision	 needed	 by	 known	
consumers	of	the	event.”	

When	I	do	that,	I	find	that	the	heuristic,	“Don’t	design	information	contents	of	an	event	record	for	specific	
consumers,”	needs	further	scrutiny.	There’s	conflicting	advice	in	these	two	heuristics.	On	the	one	hand	I	can’t	
be	 overly	 specific	 when	 I	 design	 the	 information	 in	 an	 event	 record,	 but	 if	 a	 consumer	 needs	 specific	
information	 that	 varies	 from	 the	 typical	 consumer,	 what	 are	 my	 options?	 This	 seems	 like	 a	 meaty	 topic	
warranting	further	investigation.	We	briefly	touched	on	this	during	our	conversation,	when	Mathias	suggested,	
well,	if	the	process	needs	that	extra	precision,	maybe	it	needs	to	be	in	the	same	Bounded	Context.	But	I	pushed	
back,	 saying	 if	 it	 has	 different	 behaviors	 and	 needs	 different	 information,	 perhaps	 it	 belongs	 in	 a	 different	
Bounded	Context.10	

I	 remember	 the	heuristic	 that	 you	might	want	 to	 generate	different	 events	 for	 the	 same	process.	But	we	
didn’t	go	into	any	detailed	examples.	So	how	much	could	I	bend	that	heuristic	(is	it	cheating?)	to	make	it	fit	this	
situation?	

Other	 heuristics	 seem	 less	 important—footnotes	 really.	 “Agree	 upon	 standard	 formats	 for	 information,”	
seems	 simply	 good	design	practice,	 and	not	 particularly	 unique	 to	 event-sourced	 architecture.	 And	 isn’t	 the	
heuristic,	 “A	bounded	context	 should	keep	 its	 internal	details	private,”	 just	another	 restatement	of	 the	more	
general	 design	 practice	 of	 encapsulation?	 Or	 is	 there	 something	 more	 there	 significant	 to	 Domain-Driven	
Design’s	modeling	approach?	

Sure,	these	heuristics	were	rough	cuts.	They’ll	need	refinement	and	more	details	before	others	who	don’t	
have	 direct	 access	 to	Mathias	 can	 find	 them	 useful	 as	 a	whole.	 (And	 I	 am	 sure	we	 left	 out	 some	 important	
heuristics,	 simply	 because	 our	 conversation	 wandered).11	 Yet	 even	 if	 I	 cleaned	 up	 these	 heuristics	 and	
presented	them	in	a	more	logical	progression,	I	suspect	I	would	still	have	to	work	hard	to	apply	them	or	what	
exactly	they	meant	in	my	specific	design	context.	

Popping	up	a	 level,	 it	 is	 apparent	 that	 there	are	a	 few	 fundamental	 concepts	 that	need	 to	be	understood	
before	 you	 can	 understand	 how	 to	 design	 event	 records.	 Unless	 you	 know	what	 an	 aggregate	 is,	 heuristics	
about	what	 information	 to	 record	 from	 the	aggregate	 root	 in	 an	event	 record	won’t	make	 sense.	 	Heuristics	
specific	to	approaches	to	designing	an	aggregate	(if	there	are	any)	in	the	context	an	event-sourced	architecture	
also	need	explaining.	Which	 leads	me	 to	wonder,	what	 are	ways	 to	 effectively	model	 an	 aggregate	 in	 event-
sourced	architectures?	Do	you	make	lightweight	domain	models	or	something	else?	How	does	event-storming,	
another	 technique	 known	 within	 the	 Domain-Driven	 Design	 community	 used	 to	 capture	 flows	 of	 business	
events	fit	in	[Bran]?	

I	 know	 how	 to	 model	 aggregates	 in	 a	 layered	 architecture,	 but	 event-sourced	 architectures	 are	 new	
territory	for	me.	Are	there	heuristics	for	ensuring	the	business	event	record	contents	and	various	event	stores	
have	the	“right”	representation	of	information?	How	should	you	reference	other	aggregates	or	entities	within	
an	event	record?	(One	answer	seems	obvious—use	a	unique	identifier	for	an	aggregate…	but	are	there	specific	
heuristics	for	how	these	might	be	generated	in	an	event-sourced	architecture?	Can	I	use	my	prior	knowledge	of	
how	to	do	so	for	more	“conventional”	architectures?)	

10 Which I suspect could lead to another long conversation about Mathias’ heuristics for determining what should be
in a Bounded Context and under what situations would you refactor, split, or merge Bounded Contexts.
11 A conversation to distill heuristics is not like walking a trail. Interesting waypoints are discovered during the
conversation and sometimes conversations wander off into the weeds. What may initially appear important may or
may not be nearly so fascinating as it first seemed. Conversations, like designs, are not straightforward.

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	12	

Several	 designers	 have	 written	 about	 event-sourced	 architectures.	 Martin	 Fowler’s	 blog	 post	 on	 event	
sourcing	 laid	some	early	conceptual	groundwork	for	event	sourcing,	discussed	what	kinds	of	applications	he	
had	found	that	might	be	appropriate	to	use	event	sourcing,	and	provided	simple	code	examples.		Greg	Young’s	
book	concentrates	on	versioning	events	[Youn]	a	seemingly	minor	design	challenge	until	you	get	into	the	nitty	
gritty	details.	More	recently,	Microsoft	authors	have	written	a	high-level	description	of	event-sourcing	as	part	
of	 their	 collection	 of	 patterns	 on	 the	 Azure	 architecture	 (https://docs.microsoft.com/en-
us/azure/architecture/patterns/event-sourcing).	Microservices.io	has	a	single	web	page	on	the	event-sourcing	
pattern,	 along	 with	 pages	 for	 other	 microservice	 architecture	 patterns	
(http://microservices.io/patterns/data/event-sourcing.html).	 Chris	 Richardson,	 founder	 of	 Microservices.io,	
has	also	collected	them	into	a	book	[Rich].	

Not	 surprising,	 each	 source	 on	 event-sourcing	 heuristics	 takes	 a	 different	 approach	 to	 discussing	 it.	
Whether	a	small	aspect	of	 it	 looms	large	or	not,	depends	how	much	time	they	have	spent	and	where	they’ve	
encountered	design	problems	worth	remarking	on.	

I	like	the	approach	taken	at	Microservices.io	where	patterns	are	presented	in	some	detail	and	readers	can	
ask	questions	and	add	comments.	Chris	Richardson	is	active	steward	of	these	patterns	as	well	as	a	trail	guide—
clarifying	points	of	confusion,	directing	people	to	other	sources	to	explore,	and	trying	to	get	at	the	real	problem	
that	underlies	the	question	that	are	asked.	Some	questions	led	to	quite	interesting	threaded	discussions.	

Reading	these	threads	felt	like	being	part	of	a	community	of	fellow	pattern	travellers	on	a	journey	toward	
deeper	understanding.	 I	wanted	to	hear	 that	answer	 from	other	designers	who	were	more	experienced	with	
event-sourcing	implementations.		I	liked	hearing	other	designers’	voices.	I	found	myself	learning	as	much	from	
others’	 points	 of	 confusion	 as	 I	 did	 from	 their	 experiences.	 With	 design,	 the	 devil	 is	 always	 in	 the	 details.	
Conflicting/competing	 design	 forces	 that	 you	 need	 to	 address	 force	 you	 to	 make	 some	 difficult	 design	
decisions.	

However,	one	question	(a	question	I	also	wanted	the	answer	to)	remained	unanswered:	
“…I'm	 trying	 to	 figure	 out	 how	 I	would	 apply	 this	 pattern	 to	 a	 large	 CRUD	 screen	where	 the	 commands	

mainly	consist	of	Save,	Update,	and	Add	for	objects	with	several	fields.	Thanks!”	
Probably,	 the	 answer	 to	 this	 is	 that	 this	 it	 isn’t	 an	 appropriate	 situation	 for	 using	 an	 event-sourced	

architecture.	 If	you	are	doing	CRUD	operations	to	a	database	and	that	database	is	used	by	other	applications	
outside	of	your	control	or	sphere	of	knowledge,	you	aren’t	likely	to	have	a	good	understanding	of	how	that	data	
is	used.	So	turning	an	existing,	working	design	on	its	head	to	generate	events	with	rich	information	about	the	
domain	doesn’t	make	sense	without	first	understanding	how	those	other	applications	use	and	manipulate	that	
information.	This	may	or	may	not	be	easy	to	sort	out	without	doing	some	serious	investigation.	On	the	other	
hand	if	your	design	is	simple,	efficient	and	works,	why	change	it	to	an	event-sourced	one?	There	has	to	be	good	
reasons	to	make	that	significant	redesign	investment.		

I’m	being	transparent	about	my	lack	of	knowledge	to	make	a	point:	to	keep	learning,	you	have	to	search	for	
design	heuristics	that	are	outside	your	comfort	zone.	We	become	wayfinders	when	we’re	in	unfamiliar	design	
territory.	 This	 learning	 can	 be	 a	 difficult	 and	 frustrating	 slog	 when	 heuristics	 are	 scattered,	 inconsistent,	
overlapping,	 or	 out-of-date.	 It	 takes	 effort	 to	 sort	 out	 the	 good	 bits	 from	 the	 noise,	 to	 find	 and	 follow	 any	
potential	tracks.	Especially	frustrating	is	when	no	one	else	has	asked	the	questions	you	need	answered.		When	I	
am	not	on	any	trail	that	others	have	walked.	I	feel	a	bit	isolated.	And	yet,	I’m	not	lost.	I’m	simply	on	some	track.	
My	track.	And	there’s	no	one	ahead	of	me	that	I	can	see.	Yet,	I	know	where	I’ve	been	and	I	can	always	fall	back	
to	draw	upon	my	more	general	design	heuristics.	

More	useful	information	is	likely	available,	waiting	for	me	to	bump	into	it,	if	only	I	knew	where	to	look.	And	
if	I	can’t	find	it,	well,	I	can	always	experiment.	

And	yet,	how	certain	can	I	be	about	whatever	advice	I	find?	I	tend	to	trust	patterns	authors	who	put	in	the	
time	and	effort	to	polish	and	publish	their	work,	who’ve	spent	time	marking	their	trails,	checking	that	others	
can	follow	and	that	their	heuristics	make	sense	to	other	designers.	I	place	high	value	the	advice	of	those	who’ve	
built	interesting	systems	and	can	tell	stories	about	what	they	learned	including	design	missteps	they	made	and	
how	they	eventually	made	forward	progress.	But	I	don’t	necessarily	throw	away	what	I	have	found	useful	just	
because	 someone	 is	 enthusiastic	 about	 a	 new	 software	 design	 approach	 and	 a	 new-to-me	 set	 of	 heuristics.	
They	may	be	experts	at	some	software	design	approaches	that	takes	years,	if	not	a	lifetime,	to	master.	At	best,	I	
might	only	be	able	to	clumsily	apply	their	heuristics	after	some	concerted	practice.	Or,	quite	simply,	they	may	
be	trailblazers	to	places	where	I	don’t	want	to	go.	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	13	

6. TECHNIQUES	FOR	ACTIVELY	CULTIVATING	DESIGN	HEURISTICS	

We	 each	 have	 our	 own	 set	 of	 heuristics	 we’ve	 acquired	 through	 reading,	 practice,	 and	 experience.	 Our	
heuristics,	like	living	trails,	continue	to	evolve	and	get	honed	through	experience.	Some	of	our	heuristics	prove	
durable	 and	 are	 still	 useful,	 even	 in	 new	 design	 contexts.	 For	 me,	 using	 the	 lens	 of	 role	 stereotypes	 [RDD	
reference]	 to	 understand	 system	 behaviors	 is	 useful,	 even	 though	 I	 know	 there	 are	 newer,	 stereotypes	 for	
functional	designs	and	Internet	applications.	Characterizing	roles	and	interaction	patterns	is	a	useful	heuristic	
to	understand	the	designs	of	systems	I	see.		I	never	thought	the	original	stereotypes	I	conceived	to	help	me	and	
others	understand	object-oriented	designs	were	universal	(and	all	the	stereotypes	there	were).	I	welcome	new	
ways	of	characterizing	design	behaviors.	

Some	 heuristics	 we	 discard	 because	 our	 design	 constraints	 radically	 change.	 I	 no	 longer	 worry	 about	
managing	 memory	 footprint	 and	 have	 put	 aside	 those	 heuristics	 that	 were	 useful	 back	 when	 I	 designed	
systems	 that	 required	 memory	 overlays—for	 me	 that	 trail	 has	 been	 long	 abandoned.	 Other	 heuristics	 get	
pushed	to	 the	back	of	our	minds	when	we	 find	new	or	 trendier	heuristics	we	 like	better.	When	I	discovered	
object-oriented	techniques,	I	put	aside	other	approaches	to	structuring	systems	because	I	found	objects	to	be	
so	useful.	Long	ago	I	took	a	decision	to	head	down	that	trail	and	have	continued	on	that	journey.	

To	keep	learning,	we	need	to	integrate	new	heuristics	with	those	we	already	know.12	Recently	I	have	been	
exploring	functional	programming	languages	and	designs	that	employ	them,	simply	because	I	want	to	compare	
heuristics	for	designing	these	systems	with	older,	more	familiar-to-me	ones.	I	don’t	want	to	get	stuck	in	a	rut.	
Although	I	may	not	become	an	expert,	I’ll	be	a	better	designer	with	a	richer	set	of	tools.	

6.1 Recording	“Sign”	with	Question-Heuristic-Example	Cards	
I	 have	 also	 experimented	with	ways	 to	 articulate	new-to-me	heuristics	 in	 order	 to	 see	how	 they	 fit	 into	my	
heuristic	gestalt.	I’ve	been	playing	around	with	using	index	cards	as	a	means	to	capture	the	gist	of	a	heuristic.13	
This	simple	technique	structures	a	heuristic	in	three	parts:	a	question,	the	answer	(which	can	be	then	polished	
into	a	formulation	of	the	heuristic),	and	an	example	or	two	to	help	me	remember.	I	call	them	QHE		or	“Q-Hee”	
cards,	for	the	lack	of	a	better	name	(see	Figure	5).	
	

	
Figure	5.	Following	this	heuristic,	3	different	events	would	be	generated	because	there	are	3	different	actors.	

An	advantage	of	QHE	cards	is	that	they	are	easy	to	write.	

12 Billy Vaughn Koen cautions us to not judge earlier designs (or designers) too harshly against today’s design
standards. Collectively, our state-of-the-art (or SOTA) keeps progressing. And as active, engaged designers, so do we.
13 This use of index cards to capture design heuristics is inspired by CRC (Class-Responsibility-Collaborators) design
cards invented by Ward Cunningham and Kent Beck [BC]

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	14	

But	just	like	CRC	cards,	they	can	be	too	terse.	
Without	actively	 integrating	 the	heuristic	 captured	on	QHE	card	 into	my	design	heuristic	gestalt,	 I	 find	 it	

quickly	loses	meaning.	Once	I	convert	these	to	a	richer	form	(either	by	writing	further	about	the	heuristic	or	
sketching	out	a	more	detailed	design	example	or	writing	some	code),	 I	can	then	recall	more	subtleties	about	
that	heuristic.	

	
6.2 Distilling	what	you	hear	
One	way	 I	can	more	actively	 learn	 is	 to	view	technical	presentations	as	opportunities	distill	what	 I	hear	and	
integrate	those	heuristics	with	my	own.	I	discovered	that	if	I	take	a	picture	of	some	interesting	speaker	and/or	
a	slide	they	were	presenting	it	served	to	jog	my	memory.	Looking	at	the	picture	helps	me	remember	what	they	
said	so	I	can	write	up	field	notes,	if	I	choose,	long	after	the	presentation.	

Here	are	two	photos	I	took	at	the	DDD	Europe	2018	conference.	
The	 first	 is	of	Eric	Evans	 telling	us	 the	 story	of	how	he	goes	about	exploring	a	design	concept	and	all	 its	

limitations	and	design	surprises.	 I	 found	each	 line	on	the	slide	to	be	a	personal	heuristic	Eric	uses	to	do	this	
(the	rest	of	his	talk	was	filled	with	examples	exploring	the	quirks	and	complexities	of	date	and	time).	

	

	
Figure	6.	Photo	from	Eric	Evans’	keynote	at	Domain	Driven	Design	Europe	2018	introducing	how	he	understands	a	domain	

The	 next	 photo	 is	 from	a	 talk	 by	Michiel	Overeem	on	 versioning	 event	 stores,	 a	 fundamental	 element	 of	
event-sourced	architectures	(see	Figure	7).	This	slide	summarizes	the	various	approaches	Michiel	found	when	
he	surveyed	other	designers.	Event	stores	are	supposed	to	be	immutable.	You	use	them	to	play	back	events	and	
recreate	 system	 state.	 Conceptually	 they	 are	 write	 once	 stores.	 But	 if	 your	 event	 schema	 changes,	 various	
components	need	to	then	be	able	to	 interpret	these	new	event	structures.	So	how	do	you	make	that	work	 in	
practice?	You	select	a	versioning	approach	(as	summarized	by	the	slide	below),	depending	on	the	size	of	your	
event	 store,	 the	 ability	 to	 process	 extra	 information	 on	 event	 or	 to	 transform	 on	 the	 fly	 to	 a	 new	 format,	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	15	

whether	it	conceivable	to	update	a	record	in	place,	or	 if	 it	 is	cleaner	to	make	a	copy	and	then	transform	to	a	
new	format.	

While	 Michiel	 eventually	 put	 his	 slides	 online	 (https://speakerdeck.com/overeemm/dddeurope-2018-
event-sourcing-after-launch),	 this	 photo	was	 enough	 to	 jog	my	memory	 and	make	 the	 connections	 between	
heuristics	 for	 updating	 event	 stores	 and	 heuristics	 I’d	written	 in	 pattern	 form	 for	 updating	Adaptive	Object	
Model	(AOM)	systems	[WYW,	HLNSWY].	Although	Event-sourced	and	Adaptive	Object-Model	systems	are	quite	
different	architecture	styles,	they	have	similar	challenges	with	updating	their	models’	schemas.		

	
Figure	7.		Photo	of	summary	slide	from	Michiel	Overeem’s	presentation	on	Event	Sourcing	After	Launch	

6.3 Sharing	Heuristics	to	Start	Conversations	
Since	my	initial	conversation	with	Mathias,	we’ve	both	become	energized	to	do	more	heuristics	hunting.	This	
led	 to	 a	 one-day	 Heuristics	 Distillation	workshop	 I	 held	with	 some	 designers	 at	 DDD	 Europe	 2018.	 At	 that	
workshop	I	shared	my	heuristics	journey	and	then	participants	shared	a	few	of	their	cherished	heuristics.	Since	
then,	I’ve	given	other	presentations	about	design	heuristics	and	have	been	encouraging	others	to	articulate	and	
share	 their	 heuristics.	 Consequently,	 Victor	 Bonacci	 held	 a	workshop	 at	 Agile	 2018	 on	 Coaching	Heuristics:	
What’s	in	Your	Toolkit?	14			

The	format	of	Victor’s	workshop	was	quite	effective.	First	he	explained	what	heuristics	were,	then	showed	a	
slide	listing	the	54	coaching	heuristics	he	had	collected	over	the	years	organized	by	category.	Victor	has	also	
created	a	card	deck	 for	his	heuristics.	He	 finds	 the	deck	a	useful	way	 to	 jog	his	memory	as	well	as	means	of	
sharing	just	the	gist	of	their	idea	with	others	(see	Figure	8).15	

14 Coaching heuristics aren’t software heuristics, but in Vaughn Koen’s definition of design heuristics, they do fit:
Any thing we do in an attempt to make forward progress towards a goal.
15 He doesn’t sell these cards, but gives them out as gifts. On the face of each card is an illustration or phrase and on
the backside the name/source of the heuristic.

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	16	

Teaching	 each	 heuristic	 in	 this	 long,	 long	 list	 would	 have	 overwhelmed	 us.	 Instead,	 Victor	 quickly	
introduced	 two	or	 three	heuristics	 in	a	particular	 category	and	 then	gave	us	a	 situation	 to	briefly	discuss	 in	
small	groups.	We	also	had	a	deck	of	Victor’s	coaching	heuristics	to	refer	to	 if	we	wanted.	We	discussed	what	
heuristics	(our	own	or	others	we	had	heard	about)	that	we	might	try	to	improve	the	situation.	After	each	round	
of	discussion,	a	few	shared	what	they	had	talked	about	with	the	larger	group.	We	repeated	this	cycle	three	or	
four	 times,	 learning	 a	 few	 more	 of	 Victor’s	 heuristics,	 but	 also,	 more	 important	 it	 seems,	 sharing	 our	
experiences	 and	 our	 own	 heuristics.	 Although	 the	 format	 of	 this	 workshop	 was	 similar	 to	 that	 of	 patterns	
mining	workshops	[AKSHSI],	it	wasn’t	focused	on	capturing	these	heuristics	so	much	as	it	was	getting	people	to	
share	their	experiences	with	others.	

	

	
Figure	8.	Coaching	Heuristics	Cards	created	by	Victor	Bonacci.	Each	card	carries	the	gist	of	the	heuristic,	either	as	a	

drawing	or	phrase	on	the	front	side,	and	the	name	and	source	on	the	back.	

6.4 Holding	an	Imaginary	Debate	
One	 way	 to	 appreciate	 another’s	 designer’s	 approach	 is	 to	 walk	 a	 mile	 in	 their	 shoes.	 Barring	 that	 rare	
opportunity,	an	intriguing	alternative	is	to	take	some	design	advice	you	find	and	imagine	having	a	thoughtful	
debate	with	that	designer.16	Counter	their	advice	with	an	opposing	set	of	arguments.	Then,	distill	the	essence	of	
the	 heuristics	 you	 find	 in	 both	 your	 arguments	 and	 reflect	 on	 the	 relationships	 between	 the	 heuristics	
embedded	in	each	point	of	view.	

For	 example,	 Paul	 Graham,	 in	 Revenge	 of	 the	 Nerds	 [ref]	 writes,	 “As	 a	 rule,	 the	 more	 demanding	 the	
application,	 the	 more	 leverage	 you	 get	 from	 using	 a	 powerful	 language.	 But	 plenty	 of	 projects	 are	 not	
demanding	 at	 all.	 Most	 programming	 probably	 consists	 of	 writing	 little	 glue	 programs,	 and	 for	 little	 glue	
programs	you	can	use	any	language	that	you’re	already	familiar	with	and	that	has	good	libraries	for	whatever	
you	need	to	do.”	

One	counterargument	to	Paul’s	thesis	might	be,	“What	you	recommend	for	complex	systems	makes	sense—
use	 a	 powerful	 programming	 language.	 But	 if	 I	 am	 not	 in	 a	 time	 crunch	 and	what	 I’m	 building	 is	 simple,	 I	
shouldn’t	always	take	the	easy	path.	If	always	I	took	your	advice	for	simple	programs,	how	would	I	ever	learn	
anything	new?	If	 the	problem	is	simple,	 that	might	be	the	perfect	opportunity	for	me	to	try	out	new	ways	to	
solve	 it	 and	 learn	 something	 new	 (especially	when	 the	 consequences	 of	 failure	 isn’t	 high).	 Also,	 sometimes	
what	appears	to	be	simple	turns	out	to	be	more	complicated.	And	when	I	push	on	the	limits	of	what	tools	and	
frameworks	were	designed	to	do,	it	is	important	to	stop	and	rethink	my	current	approach	instead	of	trying	to	
hack	away	at	it	until	I	patch	together	a	solution.	Or	at	least	take	a	break	before	coming	back	to	what	I’ve	been	
struggling	with.”	

	
 	

16 I find this is easier to do if you have either a strong negative or positive reaction to some particular bit of advice.
Surprisingly, arguing for an approach that differs from your preferred design heuristic helps you appreciate that
different perspective.

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	17	

Two	heuristics	distilled	from	Paul	Graham’s	advice:	
	
Heuristic:	 “Use	 powerful	 programming	 language/toolset	 hand	 when	 you	 have	 a	 demanding	 design	
problem.”	
	
Heuristic:	 “It	 doesn’t	 matter	 what	 programming	 language	 you	 use	 if	 you	 have	 a	 simple	 program.	 Use	
programming	languages,	tools,	and	frameworks	and	libraries	you	are	familiar	with.”	

	
And	the	three	heuristics	found	in	my	counterargument:		
	
Heuristic:	“Use	simple	design	tasks	as	an	opportunity	to	learn	new	design	approaches,	tools,	programming	
languages,	and	frameworks,	especially	when	you	aren’t	in	a	time	crunch.”	
	
Heuristic:	 “When	you	 find	 yourself	 constantly	 fighting	 against	 the	 common	usage	of	 a	 framework,	 revisit	
your	current	design	approach.”	
	
Heuristic:	“Take	a	break	when	you	have	been	working	too	long	and	don't	feel	like	you	are	making	progress.”	
	
On	reflection,	Paul	Graham’s	advice	seems	geared	 towards	designers	who	 find	 they	waste	 too	much	 time	

trying	 new	 tools	 and	 techniques	 instead	 of	 implementing	 workable,	 familiar	 solutions.	 On	 the	 other	 hand,	
without	 stretching	 and	 trying	 something	 new,	 designers	 can	 get	 stuck	 in	 a	 rut.	 Both	 viewpoints	 have	 some	
validity.	There	are	always	competing	heuristics	to	choose	from.	And	depending	on	your	current	context,	past	
experiences,	and	preferences,	you	decide	between	them.	

6.5 The	work	of	reconciling	new	heuristics	with	your	SOTA	
Sometimes	it	takes	effort	to	first	understand	and	then	reconcile	newfound	heuristics	with	your	existing	ones.	
Designers	use	different	terms	to	describe	similar	(but	not	identical)	concepts.	Mapping	others’	terminology	to	
your	language	can	be	fraught	with	uncertainty.	

To	illustrate	this	difficulty,	I	took	advice	from	Daniel	Whittaker’s	blog	post	[Whit]	on	validating	commands	
in	a	CQRS	architecture	and	tried	to	align	his	heuristics	with	mine	for	validating	input	from	an	http	request.	

My	heuristics	for	validating	input	are	roughly	as	follows:	
	
Heuristic:	Perform	simple	edits	(syntactic)	in	browser	code.	
	
Heuristic:	 On	 the	 server	 side,	 don’t	 universally	 trust	 browser-validated	 edits.	 Reapply	 validation	 checks	
when	receiving	requests	from	any	untrusted	source.	
	
Heuristic:	Use	framework-specific	validation	classes	only	to	perform	simple	syntactic	checks	such	as	correct	
data	type,	range	of	values,	etc.	
	
Heuristic:	Use	domain	 layer	validation	and	constraint	enforcement	patterns	 to	validate	all	other	semantic	
constraints	and	cross-attribute	validations.	
	
Heuristic:	Value	consistency	over	cleverness	when	performing	validations.		
	
I	 also	make	 the	 further	 distinction	 between	 descriptive,	 operational	 state,	 and	 life-cycle	 state	 attributes,	

based	on	concepts	 found	 in	Streamlined	Object	Modeling	 [Nico].	Some	domain	entities	go	 through	a	one-way	
lifecycle,	 from	 initial	 to	 a	 final	 state.	 The	 current	 values	 of	 any	 of	 their	 life-cycle	 attributes	 determine	
permissible	state	transitions.	In	a	traditional	architecture,	the	current	state	of	a	domain	entity	is	retrieved	from	
a	database	via	an	appropriate	query.	 In	an	event-sourced	architecture	the	current	state	of	a	domain	entity	 is	
synthesized	by	 replaying	all	 of	 its	 events	 (if	 this	 is	 expensive	 to	do,	 the	 state	may	be	 cached).	 Some	entities	
switch	 between	 different	 states,	 which	 are	 represented	 either	 directly	 in	 a	 state	 attribute	 or	 synthesized	
through	determining	current	values	of	its	operational	attributes.	The	state	such	an	entity	is	in	determines	how	
it	behaves.		

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	18	

In	 his	 blog,	 Daniel	 uses	 different	 words	 to	 describe	 different	 kinds	 of	 data	 validations.	 He	 speaks	 of	
“superficial”	 and	 “domain”	 validations.	 Are	 these	 the	 same	 as	 my	 “simple,	 syntactic”	 and	 “semantic	
constraints”?	Daniel	characterizes	“superficial”	validations	as	those	constraints	on	input	values	that	must	hold	
true,	regardless	of	the	state	of	the	domain	and	gives	this	heuristic:	

	
Heuristic:	Perform	superficial	validations	before	issuing	a	command,	ideally	on	the	client	side	as	well	as	the	
server	side.	
	
He	also	characterizes	some	validations	as	being	“superficial	but	requiring	the	lookup	of	other	information”	

and	advises:	
	
Heuristic:	Perform	“superficial	validations	requiring	lookup”	in	the	service	before	issuing	a	command.	
	
Finally,	he	speaks	of	“domain	validations”	where	the	validity	of	a	command	is	dependent	on	the	state	of	the	

model	(or	I	might	restate,	the	current	state	of	the	domain)	and	recommends	they	be	validated	in	the	domain	
object:	

	
Heuristic:	Perform	domain	validations	in	the	domain	objects.	
	
It	seems	clear	that	I	must	do	some	mapping	of	his	concepts	to	mine	in	order	to	make	sense	of	both	sets	of	

heuristics.	Alternatively,	I	could	let	these	different	sets	of	heuristics	rattle	around	in	my	brain	without	making	
any	 attempt	 to	 integrate	 them.	 But	 that	 might	 lead	 to	 “parroting”	 the	 new	 heuristics	 without	 really	
understanding	how	and	where	to	apply	them	or	worse	yet,	ignoring.	

When	 is	 it	worth	 the	effort	 translate	heuristics	 from	one	 language	of	design	 thought	 to	another	and	 then	
reconcile	them?	I	suspect	that	this	question	isn’t	asked	often.	When	faced	with	a	new	design	challenge	and	new	
techniques,	 we	 have	 to	 absorb	 them	 the	 best	 we	 can	 or	 we	 won’t	 be	 able	 to	 jump	 into	 that	 new	 way	 of	
designing.	When	a	design	approach	is	so	radically	different	from	what	we	know,	it’s	easier	to	absorb	new	and	
different	terminology.		

It’s	when	concepts	overlap	that	it	takes	more	effort.	
There	 seems	 to	 be	 an	 overlap	 between	 what	 I	 describe	 as	 syntactic	 validations	 and	 what	 Daniel	 calls	

superficial	validations.	But	“superficial	but	requiring	lookup	of	other	information”	doesn’t	directly	map	to	any	
concept	I	know	of.	I	can	conjecture	what	it	might	entail.		“Superficial	but	requiring	lookup	of	other	information”	
could	roughly	correspond	to	my	cross-attribute	constraints	(where	the	knowledge	of	what	to	look	up	seems	to	
be	located	closer	to	domain	logic,	as	in	a	domain	service).	And	his	“domain	validations”	seem	to	overlap	with	
operational	and	life	cycle	state	attributes	as	well	as	other	cross-domain	attribute	checks	that	don’t	require	any	
“lookup”.		

This	mapping	isn’t	perfect.	But	it	will	suffice.	My	heuristics	are	at	a	slightly	different	level	than	Daniel’s.	For	
example,	I	speak	of	how	to	use	frameworks	for	simple	validations.	I	also	include	a	heuristic	for	generally	how	
to	approach	validation	design	(value	consistency	over	cleverness).	But	after	performing	this	mental	exercise,	I	
think	that	I	understand	his	heuristics	well	enough	to	integrate	them	with	my	own.	

In	retrospect,	this	wasn’t	that	hard.	
But	still,	it	took	some	effort.	

7. DEALING	WITH	UNCERTAINTY,	CONFLICTING	HEURISTICS,	AND	DETAILS	

I	suspect	we	need	 to	 let	go	of	some	design	certainty	before	we	can	 truly	 learn	 from	others.	When	we	are	so	
certain	we	run	the	danger	of	painting	ourselves	into	a	corner	when	there	are	better	paths	we	might	take	if	only	
we	hadn’t	been	so	certain	of	what	we	were	attempting.	Yet	 it’s	not	always	appropriate	 to	be	experimenting.	
Sometimes	we	are	better	off	 if	we	keep	to	a	well-trodden	design	trail.	But	first	we	need	to	know	how	to	find	
that	trail.	

Most	 of	 us,	 most	 of	 the	 time	 don’t	 start	 designing	 every	 day	 from	 scratch.	 There	 are	 usually	 many	
constraints	 already	 in	 place.	 Our	 task	 is	 mostly	 that	 of	 refining	 some	 design	 aspect	 of	 a	 pre-existing	
implementation.	In	that	case,	we	jump	in	and	get	to	work,	with	more	or	less	certainty	based	on	where	we’ve	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	19	

been,	what	we	know	about	the	existing	design,	and	what	the	task	is	ahead	of	us.	We	may	not	even	know	what	
trail	we	are	on,	just	where	we	are	at	the	moment.	

Even	so,	we	still	need	to	make	decisions.	And	those	decisions	can	have	far	reaching	impact.	And	as	we	do,	
we	should	be	aware	that	multiple	design	heuristics,	are	always	in	competition	with	each	other.	Should	we	leave	
that	working	 code	 alone	 or	 refactor	 it	 (not	 knowing	where	 it	will	 lead	 –	 but	 hopefully	 to	 a	 clearer	 design)?	
Should	we	apply	the	heuristic,	“only	refactor	when	you	are	adding	a	new	feature”	or	stop	when	we	notice	the	
code	growing	crufty	and	poke	at	its	design	(XP	called	it	a	design	spike)?	17		If	we	don’t,	we	may	be	working	at	
refining	a	shaky	design	that	eventually	drags	us	down.	This	is	how	technical	debt	grows.	

Michael	Keeling	and	 Joe	Runde	recently	 reported	on	 their	experiences	 instilling	 the	practice	of	 recording	
architecture	 decisions	 into	 their	 team	 [KR].	 Initially,	Michael	 hoped	 that	 simply	 by	 recording	 decisions,	 this	
would	lead	to	more	clarity	about	their	existing	designs	and	improve	overall	systems’	quality.	I	think	they	are	on	
to	something.	

When	designers	 record	 their	decisions,	 they	 lay	down	a	 track	 for	others	 to	 follow,	and	 to	 retrospectively	
learn	from.	Each	decision	is	“sign”	along	a	unique	design	journey.	Although	initially	it	might	be	hard	to	sort	out	
what	decisions	are	worthy	to	record	and	to	get	people	to	actually	write	them,	eventually	there	is	a	payoff.		

If	 I	 accept	 that	 software	design	 is	 always	 filled	with	 some	degree	of	uncertainty,	 any	mark	or	 track	 I	 lay	
down	to	show	where	I’ve	been	(even	better	if	I	include	what	I	was	thinking	when	I	made	a	design	choice)	helps	
me	 and	 others	 around	me	 support	 our	 design’s	 evolution.	 These	 decisions	 could	 lead	 to	 collectively	 shared	
awareness	 of	 design	 choices	 and	 become	 the	 basis	 for	 creating	 a	 well-followed	 trail	 of	 collectively	 shared	
design	heuristics.	At	the	very	least,	those	decisions	over	time	create	“sign”	that	others	can	trace	backwards	to	
better	understand	why	the	design	currently	is	the	way	it	is.	

And	 I	 suspect	 that	written	design	decisions	might	 lead	 to	more	commonly	shared	heuristics,	even	 if	 they	
aren’t	recorded.		

As	patterns	authors,	we	intentionally	create	waypoints—our	patterns	are	points	of	interests	along	a	design	
trail	we	hope	others	can	traverse.	But	we	shouldn’t	be	content	to	only	write	in	pattern	forms.	Patterns	convey	
critical	information	so	that	others	on	similar	journeys	can	learn	about	our	design	thinking.	But	I	think	we	have	
an	opportunity	to	offer	our	fellow	designers	much	more.	

What	 if	we	were	 to	 tell	more	of	our	personal	 story	as	designers	and	pattern	makers?	We	might	describe	
what	 territory	we’ve	passed	through,	what	systems	we’ve	designed	or	seen,	and	under	what	conditions	they	
were	designed.	Or,	we	might	share	how	we	discovered	our	software	patterns	and	enumerate	other	potential	
waypoints	 that	 spotted	 or	were	 aware	 of	 but	 didn’t	 include	 (and	why).	We	might	 share	where	we’d	 like	 to	
travel—other	 design	 contexts	 where	we	 are	 curious,	 or	 not—places	where	we	 are	 cautious	 or	 reluctant	 to	
recommend	 using	 our	 patterns.	 We	 could	 experiment	 with	 recording	 other	 heuristics	 that	 fill	 in	 the	 gaps,	
conflict	with,	augment,	and	mesh	with	written	our	patterns.	We	might	share	how	confidant	we	were	about	our	
patterns’	utility	or	our	perception	of	their	relative	value	and	whether	that	has	changed	over	time.	Or	we	might	
be	 so	 bold	 as	 to	 rate	 our	 pattern	 trails	 with	 recommended	 design	 experience	 required	 to	 traverse	 it	
successfully.	While	all	this	stuff	is	“outside”	our	patterns,	I	think	it	this	is	important	information	for	designers	
to	know.		

And	yet,	patterns	are	just	a	small	part	of	a	much	larger	body	of	design	know	how.	Heuristics,	like	patterns,	
can	be	expressed	at	various	levels.	Some	are	small,	simple	acts.	Others	are	bigger	steps,	taken	at	the	beginning	
of	a	design	journey.	There	are	so	many	design	heuristics.	We	pattern	authors	can’t	hope	to	mine,	organize,	or	
write	about	them	all.	Nor	should	that	be	our	goal.	

Each	designer	has	a	wealth	of	heuristics	she	has	internalized	yet	may	have	difficulty	explaining	to	others.	
But	 something	 magical	 happens	 when	 you	 formulate	 a	 heuristic	 in	 your	 own	 words	 and	 share	 it	 with	

another.	It	is	in	the	telling	to	another	that	I	first	clarify	my	thoughts.	And	when	I	am	able	to	patiently	answer	
their	questions,	I	find	I	gain	even	deeper	insight.		

If	I	take	time	to	write	down	a	heuristic,	the	act	of	creating	a	personal	memento	brings	me	even	more	clarity.	
And	when	I’ve	revised	my	writing,	shared	it	and	gotten	feedback	as	to	whether	they	understand	and	appreciate	

17 You can always find a bit of folk wisdom to support what you want to do; and another equally pithy one advising
you to do the exact opposite. For example, see Proverbs that Contradict Each Other
(https://www.psychologytoday.com/us/blog/the-human-beast/201202/proverbs-contradict-each-other). Our challenge
as designers is to sort through competing heuristics and make a coherent design.

	
	

Traces, tracks, trails, and paths: An Exploration of How We Can Approach Design					Page	-	20	

my	heuristic	 (at	 least	 a	 little)	 then	 I	 have	 something	 I	 can	 share	with	 others	 separated	 from	me	by	 time	or	
space	or	distance.	

This	progression	from	doing	to	explaining	to	recording	to	effectively	communicating	can	be	difficult.	Not	all	
heuristics	 are	 significant	 enough	 to	 warrant	 a	 lot	 of	 time	 or	 energy	 polishing	 them.	 But	 those	 that	 seem	
important	 to	 you	 are	worth	 sharing.	 And	 in	 conversation,	 you	 just	might	 find	 that	what	 you	 thought	was	 a	
simple	 and	 obvious	 seems	profound	 to	 someone	new	 to	 your	well-trodden	design	 trail.	 And	 if	 you’re	 lucky,	
they	might	even	share	an	insight	or	observation	that	adjusts	your	thinking.	As	long	as	we	keep	learning	from	
each	 other,	 design	will	 continue	 to	 be	 fun,	 and	 equally	 important,	we	 designers	will	 continue	 to	 evolve	 our	
state-of-the-art.	

8. ACKNOWLEDMENTS	

I’d	 like	 to	 thank	my	 shepherd,	 Steven	 Berzcuk,	who	 kept	 at	me	 to	 get	 to	 the	 point.	 Also,	 thanks	 to	 Richard	
Gabriel	who	advised	me	on	my	first	essay	on	heuristics	and	continues	to	critique	my	writing	while	at	the	same	
time	effectively	encouraging	me	to	write	more	about	design.	I	appreciate	your	thoughtful	observations.	Thanks	
also	 to	 Mathias	 Verraes	 for	 inviting	 me	 to	 a	 conversation	 where	 we	 had	 fun	 and	 a	 1-on-1	 opportunity	 to	
practice	sharing	heuristics.	Energized	by	that	experience	I	hope	to	continue	distilling	more	design	heuristics	to	
gain	further	insights	into	the	nature	of	design.			
	

REFERENCES	
[BC]	Beck,	K.,	Cunningham,	W.,	“A	Laboratory	for	Teaching	Object-Oriented	Thinking,”	OOPSLA	’89	Conference	Proceedings,	ACM	SIGPLAN	
notices,	vol	24,	issue	10.	
[AKSHSI]	Akado,	Y.,	Kogure,	S.,	Sasabe,	A.,	Hong,	J.,	Saruwatar,	K.,	Iba,	T.	“Five	patterns	for	designing	pattern	mining	workshops,”	EuroPLoP	
2015,	Proceedings	of	the	20th	European	Conference	on	Pattern	Languages	of	Programs.	
[Bran]	Brandolini,	A.,	Introducing	Eventstorming,	LeanPub.	
[Daha]		Dahan,	Udi.	blog	post,	“Clarified	CQRS,”	http://udidahan.com/2009/12/09/clarified-cqrs/		
[Dem]	Demeyer,	S.,	Ducasse,	S.,	Nierstrasz,	O.	Object-oriented	Reengineering	Patterns,	Morgan	Kaufman,	2003.	
[Evan]	Evans,	E.	Domain-Driven	Design:	Tackling	Complexity	in	the	Heart	of	Software,	Addison-Wesley,	2003.	
[Evan09]	Evans,	E.	presentation,	“What	I’ve	learned	about	DDD	since	the	book,”	QCon	2009.	
[Evan12]	Evans,	E.,video,	“What	I’ve	learned	about	DDD	since	the	book,”	DDD-NYC	Sig,	https://www.youtube.com/watch?v=lE6Hxz4yomA	
[Evan15]	Evans,	E.,	podcast,	“Episode	226:	Eric	Evans	on	Domain-Driven	Design	at	10	years,”	http://www.se-radio.net/2015/05/se-radio-
episode-226-eric-evans-on-domain-driven-design-at-10-years/	IEEE	Software	Engineering	Radio	
[Emer]	Emerson,	R.,	Fretz	R.,	and	Shaw,	L.	Writing	Ethnographic	Fieldnotes,	2nd	Edition,	The	University	of	Chicago	Press,	2011.	
[HLNSWY]	Hen-Tov,	A.,	Lorenz,	D.,	Nikolaev,	L.,	Schachter,	L,	Wirfs-Brock,	R.,	Yoder,	J.,	“Dynamic	Model	Evolution,”	PLoP	2010,	Proceedings	
of	the	17th	Conference	on	Pattern	Languages	of	Programs.	
[John]	Johnson,	R.,	video,	Twenty	Years	of	Design	Patterns,	SugarLoafPlop	2014,	https://www.youtube.com/watch?v=ALxQdnOdYXQ	
[Koen]	Koen,	B.V.	Discussion	of	the	method:	Conducting	the	Engineer’s	approach	to	problem	solving,	Oxford	University	Press,	2003.	
[KR]	Keeling,	M.,	Runde,	J.	“Share	the	Load:	Distribute	Design	Authority	with	Architecture	Decision	Records,”	Agile	2018	Experience	report,	
https://www.agilealliance.org/resources/experience-reports/distribute-design-authority-with-architecture-decision-records/	
[MiTu]	Millett,	S.,	Tune,	N.	Patterns,	Principles,	and	Practices	of	Domain	Driven	Design.	Wrix,	2015.	
[Moor]	Moor,	R.	On	trails:	An	Exploration,	Simon	&	Schuster	Paperbacks,	2016.		
[Nico]	Nicola,	J.,	Mayfield,	M.,	Abney,	M.	Streamlined	Object	Modeling:	Patterns,	Rules,	and	Implementation.	Prentice	Hall,	2001	
[Rich]	Richardson,	C.,	Microservices	Patterns,	Manning,	pre-release	(2018	estimated).	
[Whit]	Whitaker,	D.,	blog	post,	http://danielwhittaker.me/2016/04/20/how-to-validate-commands-in-a-cqrs-application/	
[WYW]	Weilicki,	L.,	Yoder,	J.,	Wirfs-Brock,	R.,	“Adaptive	Object-Model	Builder,”	PLoP2009,	Proceedings	of	the	16th	Conference	on	Pattern	
Languages	of	Programs.	
[Wirf]	Wirfs-Brock,	R.,	 “Are	Software	Patterns	Simply	a	Handy	Way	 to	Package	Design	Heuristics?”,	PLoP	2017,	Proceedings	of	 the	23rd	
Conference	on	Pattern	Languages	of	Programs.	
[Wirf02]	Wirfs-Brock,	R.	and	McKean	A.	Object	Design:	Roles,	Responsibilities,	and	Collaborations.	Addison-Wesley,	2002.	
[Youn]	Young,	Greg,	Versioning	in	an	Event-Sourced	System,	LeanPub,	2017.	
	

