

ABOUT THE AUTHOR

Pini Reznik​ is a long time developer and software
architect. His strong interest in distributed systems and
development methodologies is coupled with a keen
willingness to surf along with the fast-evolving
technologies of cloud computing.

As co-founder and CTO of Container Solutions, Pini
oversees the architecture and implementation of Cloud
Native migrations for organisations from every sector. His
work spans two decades in the configuration
management field, with current emphasis on DevOps,
automation and Cloud Native CI/CD. He enjoys solving the
challenges presented by emerging technology and,
working with partners such as Cisco, Google and others.
Pini recently became fascinated with the pattern
languages and evolutionary design that help to collect
and share knowledge in order to build complex systems
in a series of small incremental steps.

As experts in Cloud Native strategy and technology,
Container Solutions guide their clients through
migrations to the cloud. Their approach is founded upon
careful analysis of customer needs. Then, together with
your team, they design and implement custom solutions
that will last. In-depth education and training are core
components of a CS-led transformation, ensuring that
your team operates with confidence in the cloud.

Container Solutions’ diverse team is equipped with a
broad range of Cloud Native skills, with a focus on
distributed system development. Container Solutions
have global perspective, with offices throughout Europe,
in the UK, and Canada.

1 container-solutions.com

CLOUD NATIVE TRANSFORMATION
PATTERN LANGUAGE

Pini Reznik

September 15, 2018

Abstract

Cloud computing offers tremendous opportunity to develop, deploy and
update software faster than ever before. But if companies with older, pre-cloud
systems simply shift operation to the cloud they obtain only minimal benefit.
Maximizing the advantages of cloud infrastructure requires significant redesign
of both organisational systems and culture. Cloud Native architecture emerged
to support this transformation. Cloud Native itself is, however, very complex
and people find it difficult to understand and use. A Cloud Native Pattern
Language will create a set of patterns behind Cloud Native architecture and
form a clear way to describe the system. This will allow engineers, developers
and executives alike to discuss, disseminate and apply best practises in Cloud
Native. In this document we will examine some of the Cloud Native design
patterns that we’ve learned in the course of three years of guiding enterprises
onto the Cloud as well as the contexts where they perform best.

2 container-solutions.com

INTRODUCTION

Cloud Native is a methodology concerned with architecture, design, process,
infrastructure and organisational culture to help enterprises achieve optimal
performance in the cloud. Though a still-emerging and rapidly evolving design
philosophy, we now have enough examples of good design to begin defining what
Cloud Native approaches work best, and in which circumstances. These examples can
be used as the basis for creating a set of context-specific Cloud Native design patterns
that will form a clear way to describe the system.

THE CLOUD COMPUTING PROBLEM
The problem with cloud computing is that companies cannot simply ‘lift and shift’
their legacy operations onto the cloud. Migrating without altering the existing
organizational structure and development/delivery processes to suit this new
environment is an ineffective strategy. The result of doing so is, essentially, to create
an expensive new data center on the cloud while failing to access many of the
promised benefits of being there in the first place.

Cloud Native exists to help companies take advantage of everything the cloud has to
offer. It does this by acting as a model, guiding crucial decisions about technology and
culture to best harness cloud benefits. Even as Cloud Native helps solve the cloud
computing problem, though, it introduces a new one: Cloud Native itself is very
complex, due to the inherent complexity of distributed systems. Patterns addressing
this, however, help solve the problem of complexity.

3 container-solutions.com

WHAT IS CLOUD NATIVE?

Cloud Native is the name of a particular approach to designing, building and running
computer applications. The objective is usually to increase the speed of application
development and delivery, that is, getting a new idea into production within days or
even hours, instead of months.
Most enterprises migrating to Cloud Native cite velocity as their primary motive.

Ten years ago, the Financial Times of London faced a dilemma. The steep decline of
the physical newspaper business model plus the burden of legacy infrastructure were
detrimental to the company’s survival. However, no one knew exactly what the future
of print publication would look like. The FT’s board recognized that, to not merely
survive but truly prosper in the digital age, the company needed to embrace cloud
technology and that this would require a complete restructuring.

The FT solved their dilemma by being culturally flexible and open to change in order
to adapt to an increasingly online world. The company worked to simultaneously
migrate their business operations to the cloud and to create a system supporting the
rapid delivery of innovative digital publishing products. They succeeded by embracing
Cloud Native design principles: a Microservices-oriented architecture delivering
containerised applications via virtualized (cloud) infrastructure. As a result the FT are
able to rapidly and continually develop new features and bring them quickly to
market, and are now recognized as a pioneer in digital publishing.

The FT’s transformation strategy embraced the three foundations of Cloud Native
technology: microservices, containerisation, and cloud-based infrastructure.

● Microservices​ are used to build a whole application from a collection of
smaller services, each handling a different function or utility and then
harnessed together. This modularity makes the application faster and easier
to develop, test and release. “Decomposing” an application into a modular set
of services also makes it simpler to understand.

● Containerisation​ encapsulates an entire application into a single package,
including its operating system and all dependencies (like the different libraries
and configuration files needed to run it). A containerised application is entirely
self-contained, secure, and transportable, moving easily from developer’s
desktop to test environment and on into production.

4 container-solutions.com

● Cloud services​, or Infrastructure-as-a-Service, take the components
traditionally present in on-premises data centers, such as servers, data
storage and networking hardware, and instead provide them via the internet.

So how do you know Cloud Native when you see it? The core of Cloud Native is how we
create and deliver software, not where. So when you see an application built and
deployed in small, rapid iterations by a squad of independent, compact feature
development teams...And those teams are collaborating via an integrated platform
that decouples infrastructure while providing automated monitoring and
testing...That is when you know you are looking at the Cloud Native approach in
action.

DECOMPOSITION

For a long time, software systems were monoliths. A monolithic application is built as
a standalone unit, a single large codebase where everything is tightly coupled and
mutually dependent. This means any update or change affects the entire system. One
small modification on one small part of the application can require building and
deploying an entirely new version. (In the same way, scaling one specific function of a
monolithic application also means you have to scale the whole thing). The result is a
lengthy wait for developers to see the impact of even a single tiny change. Monolithic
architecture limits developer agility and impedes the frequency of new deliveries: new
releases typically happen annually, after months of preparation and testing.

Microservices solve these challenges by being as modular as possible. In the simplest
form, Microservices architecture decomposes an application into a suite of small
modular services, each fully deployable on its own and independent of other functions
within the application. These decoupled units each have a specific task, for example
payment processing or login services, which can be reconfigured or even entirely
rebuilt without affecting the rest of the structure. Teams are able to work in parallel,
which speeds development. Scalable, testable software can be delivered weekly, even
daily, rather than yearly. Enterprises gain the ability to move from idea to actual
product in front of customers in the shortest amount of time.

5 container-solutions.com

THE DIFFICULTY OF DISTRIBUTED SYSTEMS

The heart of Cloud Native architecture is redistributing the monolith into
Microservices. The benefits, however, come with a cost: complexity. Dividing
infrastructure into modular, related services makes intuitive sense. But this also
means managing many moving parts, including monitoring, storage, how different
components are behaving together; defining communications, networking security…
the complexity becomes almost exponential as the process moves forward.

Developing a Cloud Native patterns language addresses the complexity inherent to
distributed systems, and makes it easier for developers to discuss, learn and apply the
best practises for handling it.

PATTERNS IN CONTEXT

You might now expect the assertion that Cloud Native systems are intrinsically “right,”
thanks to the many benefits of the architecture. The truth is, Cloud Native isn’t an
architectural silver bullet. There is no one Cloud Native design that will work well in
every circumstance, and so design patterns must be context-specific. A design that
ignores context will almost certainly be a painful one to deliver, and difficult to live
with.

Among the contexts we should consider when making Cloud Native design choices:

● The existing skills of your teams.
● The timescale and goals of your project.
● The internal political situation (how much buy-in is there to a project).
● Budgets.
● Legacy products and tools.
● Existing infrastructure.
● Emotional or commercial tie-in to vendors or products.
● Ongoing maintenance preferences.

Appropriate pattern choices almost always depend on the context where an
organisation is at the start of a Cloud Native Migration, as well as its ultimate goals.
But how to assess these contexts?

6 container-solutions.com

7 container-solutions.com

THE MATURITY MATRIX: Context in the real world

Over the past three years, using lessons learned in guiding companies into the cloud,
we have developed the Container Solutions Cloud Native Maturity Matrix as an
assessment tool. We use it to define, analyse and describe organisational context,
both desired and goal, and constantly reassess as the migration progresses. This data
allows us to make patterns choices and monitor progress.

The Container Solutions Cloud Native Maturity Matrix

It is important to note Cloud Native contexts are not only concerned with technology
and software, but also psychological and social aspects. An organisation’s
management Process, Team structure, and internal Culture all constituent axes on the

8 container-solutions.com

Maturity Matrix are human-centered contexts that hold equal importance to
tech-centered ones like Infrastructure and Maintenance/Automation.

Container Solutions have performed a series of case studies on a variety of enterprises
like the FT who have built successful Cloud Native systems. From these case studies
we pulled real-world examples demonstrating how “the right pattern” can only be the
right pattern ​in the right context​.

For example Starling Bank, a mobile-only challenger bank founded in 2014. As a
startup, Starling had the luxury of being born Cloud Native, using containerised
Microservices architecture delivering core processes in the cloud from the company’s
very inception.

Starling are both an example of the need to consider context when making
architectural choices, and that not every enterprise needs to make identical pattern
choices to succeed in the cloud. Conway’s Law states that systems architecture tends
to resemble the organisation’s architecture. When it comes to Microservices, many
companies follow an architectural approach of assigning responsibility for specific
microservices to designated teams, in the same manner that organisational duties are
dispersed by department. Starling, however have chosen instead to assign by
function, such that every service can be developed on by multiple teams. This pattern
choice fits the organisation’s relatively small size and culture of innovation, which
allows Starling to reconfigure very quickly and responsively. (In fact, Starling typically
re-deploy their entire process multiple times each day). Larger enterprises, however,
often benefit from smaller microservices and a more Conway-like model. Starling’s
context awareness led to the optimal choice for their specific circumstances, though it
was not the most usual pattern applied.

9 container-solutions.com

COMMON CLOUD NATIVE CONTEXTS

People don’t all apply the same pattern -- they apply the pattern that is appropriate to
where they are and where they want to be. Companies coming to Cloud Native from
more traditional architectures must assess their initial context and identify their
desired outcome. In a Cloud Native patterns language, an enterprise’s leaders need to
be able to identify their organisation in a specific situation in order to apply the correct
patterns for that context. With context identified, patterns can show the forces at work
define the problem, and give a solution.

That said, we have observed that many companies looking to commence a migration
to Cloud Native share a consistent and typical setup that falls under the Waterfall
category on the Maturity Matrix.

 Often, they have:

- Traditional Waterfall process with deliveries every few months
- Monolithic applications
- Pre Cloud Native languages (typically Java/C#, but go as old as Cobol)
- Strong, inflexible management hierarchy.
- Little or no automation of infrastructure and development processes

In Waterfall organisations, a complete shift in context is necessary for successful Cloud
Native transformation. Monoliths must be broken up into microservices, and
automated deployment, testing and maintenance must be put into place. ​Most
importantly, the organisation must shift its internal culture and hierarchical
mindset to become flexible, responsive and above all experimental.​ A Waterfall
enterprise needs to transform from a culture of stating the top-down “right” answer,
to an open approach of exploring and testing many possible answers.

Another common context we find is an organisation that has progressed to an agile
approach. As described by the Agile category on the Maturity Matrix, this organisation
will have:

- Cross functional teams
- Scrum process
- Microservices architecture (few monoliths in this column)
- some Continuous Integration
- some automation of infrastructure

10 container-solutions.com

In Agile organisations, the most natural way forward in a CN migration is to make the
transformation tasks part of the teams’ technical backlog. However, this approach
typically leads to poor results due to the fact that most common implementation of
Scrum processes are very much focused on speed of feature delivery. The
Scrum-oriented organisation tries to deliver functionality as fast as possible using
already known techniques. Few such projects will allow for significant research
dedicated to defining architecture and technical vision, or evaluate a variety of tools
and technologies to find the best and most appropriate.

This approach can be compared to an athlete running a sprint and only focusing on a
single point: the finish. This can work well for projects with low uncertainty staffed by
teams with solid skill sets and experience that fit the needs of the task. Since CN is still
new, though, many teams will not have that experience; going Cloud Native requires
playing around with the new set of technologies and organisational practices until
some facility is learned. In ​this​ race, the athlete needs to be looking up, down and to
all sides, not just straight ahead.

Design thinking is the next-step process approach along the Maturity Matrix, and it
might be a better fit, at least at the beginning of the CN initiative. Once the teams are
confident with the new CN practices, they can switch back to Scrum if that helps to
optimise the delivery process.

CONCLUSION TO INTRODUCTION
Identifying these common contexts helps us use Cloud Native design patterns
effectively when solving the problems companies face when migrating to the cloud.

As we have seen, due to the complexity of distributed systems, full scale Cloud Native
is difficult to implement. When coupled with the technical and cultural contexts most
enterprises bring to the journey, the path ahead can seem formidable. Even with the
help of an experienced Cloud Native consultant as guide.

A means for smoothing that path is to develop a Cloud Native patterns language. A
lingua franca allowing us to identify, teach, and implement context-specific best
practices in this complex and evolving technology.

11 container-solutions.com

PATTERNS

The pattern language presented in this paper will eventually cover all the aspects
listed in the Maturity Matrix and will go deeper into each subject. ​The current list of
patterns primarily focuses on the higher level patterns required in the beginning
of a Cloud Native transformation​. Eventually, these will be expanded with more
granular patterns. At this time the list includes:

● Business Case
● Executive commitment
● Core team
● Vision First
● Microservices Architecture
● Automated infrastructure
● Dynamic scheduling

Specific technical patterns are more common to find and will be published in future
papers.

Patterns marked in bold in this table are defined in fullest detail.
The rest will be expanded as full patterns in the future.

12 container-solutions.com

PATTERN LANGUAGE

Business Case
When an organisation’s leadership does not fully comprehend the advantages that
result from a Cloud Native migration, providing a strong Business Case will allow
them to understand and support the project without hesitation.

A company is experiencing pressure from external advisors or internal tech teams to
move to Cloud Native. The executive team is contemplating making the move to CN,
but this is the first such transformation the company has undertaken and there is only
partial understanding of the complexity of a CN migration and the benefits that will
come from it.

In this context:
The benefits of the transformation are not clear to the executive team, so they
may not support the initiative or even give it serious consideration.

- The traditional model is for organisations to be massively risk averse, to
minimise uncertainty at all costs.

- Change-averse culture avoids new technologies or experimental approaches.
Cloud Native architectures are conceptually different from traditional
approaches, merging careful up-front planning with flexible and mutable,
experimentation-based implementation.

- Tech teams are eager to get started with the transformation, even before
business case is established

Therefore:
Create a formal business case to help educate the organisation’s executive team,
taking into account the benefits to be gained from Cloud Native.

13 container-solutions.com

The business case needs to include key CN advantages, including acceleration of
business velocity, scalability, potential cost savings, and enhanced recruitment and
retention of tech staff.

Consequently:
The business case for a CN transformation is clear and company’s decision
makers have a clear understanding of the advantages CN confers and are ready to
move forward.
They are prepared to allocate the necessary budget and resources that such a large
project will require.

Executive Commitment
To ensure allocation of sufficient resources and reasonable delivery timeframes, large
scale projects such as CN transformation require strong Executive Commitment.

You are working in an enterprise that is using Waterfall or Agile software development
practices and there is a clear decision to adopt CN, with a ​Business Case​ supporting
the transformation.

In this context:
Cloud Native transformation requires significant changes in all areas presented
on the Maturity Matrix: infrastructure, development and organisation. These
changes place large demands from the organisation in terms of budget and time
allocation.

- Clients continue demanding fast delivery of new functionality leaving no slack
for structural changes

- Executive performance is measured by P&L (profit and loss statement), that
can reduce incentives to invest in long term structural improvement such as
CN transformation

14 container-solutions.com

- Executives as well as the technical teams may not have the complete technical
and organisational knowledge necessary for understanding the full scope of
the CN transformation.

- Successful adoption of CN may significantly speed up the velocity of the
feature development and increase the team satisfaction

Therefore:
Define Cloud Native transformation as a high priority strategic initiative with an
explicit support from the executive management​.
Such commitment from the management needs to include preparation of a
Transformation Strategy​ (see related pattern) and the allocation of adequate
resources and budget.
Public announcement of the CN transformation as a strategic initiative creates
company-wide alignment and awareness, while also setting the expectation of
collaboration from all departments within the organisation.

Consequently:
The company is aligned around common goals and everyone understand
priorities for the transformation.

- All departments are working in collaboration to create a single strategy and
unified vision, while avoiding independent silos that lead to inconsistent, or
even conflicting, implementation.

Related Patterns:
Business Case, Ongoing Education, Vision First, Core Team, Transformation Strategy,
Transformation Champion

Examples:

1. Bottom up transformation from from multiple sources in the organisation:
Multiple teams starting to use public clouds, containers or schedulers
independently and without any coordination with other departments within
the organization. Typically by just using a personal or middle manager’s credit
card. This leads to variety of incompatible implementations that require very
significant refactoring in order to work together which will typically fail to
materialise, as some of systems will be already in production. Because, under
pressure to deliver features, teams will have no time for refactoring or
standardisation. This in turn will lead to a forest of smaller unrelated and

15 container-solutions.com

disorganized solutions, resulting in the waste of time and resources due to the
inability to utilise economy of scale of large organisations.

In such situations, Executive Commitment is essential to provide an
overarching vision and strategic goal for the teams to bring all independent
solutions to a consistent and reusable state, while allocating necessary
resources to achieve this.

2. I​ntroduction of CN by ops department:
Operations department decides to introduce a dynamic scheduler such as
Kubernetes and provides it to the development department. However, the
needs of the development department have not been fully taken into account
and so the implementation is heavily focused on the operational side. This
typically creates significant overhead for developers and rarely has a good
onboarding strategy. This leads to underutilisation of the platform by the
developers and to shadow IT (alternative implementations of the platform) in
its place.

Making CN transformation a strategic initiative may help to tear down the
walls between the departments and create a consistent platform that is both
easy to use and easy to maintain while serving the needs of both sides.

3. Introduction of CN by dev department:
Similar to the previous example but coming from the development
department. This leads to the creation of a platform without strong
operational configuration. It is typically difficult to refactor the platform later
on which creates significant overhead for support and stability.

Making CN transformation a strategic initiative may help to tear down the
walls between the departments and create a consistent platform that is both
easy to use and easy to maintain while serving the needs of both sides.

4. Demand for full transformation without sufficient resources and/or with
unrealistic deadlines:
Company may be genuinely committed to the CN transformation, but the
management team fails to fully appreciate the scope of transformation. The
initiative is assigned as a small technical project that can be done by one or
two engineers in the spare time then they are not busy with other tasks. Not
enough budget is allocated for education, external help or appropriate
tooling. This leads to the introduction of incomplete systems that is of use to
few people in the organisation.

16 container-solutions.com

In such cases, executive commitment is required for the full scope, including
executive education, technical experiments and other actions to make sure
the the management team fully understands the job at hand and provides
adequate support for a realistic execution plan.

Transformation Strategy
Once Executive Commitment is achieved, the management team can create a high
level transformation plan and start delegating responsibilities to the teams. As the
transformation moves ahead, the management team can monitor progress based on
the objectives that have been defined.

Teams need to be independent enough to be able to interpret the objectives and
translate them to actions within their own specific contexts.

Transformation Champion
A person or small group of people leading and evangelising the transformation. The
transformation champion person or team needs to understand both the subject and
company objectives, be well connected within the organization, and highly motivated
to promote the transformation.

17 container-solutions.com

Vision First
Defining a guiding vision as very first step helps set the right path through an
uncertain environment.

The company needs to define a clear and achievable vision, which will later be
translated into specific executable steps.

In this context:
The combination of limited experience and lack of extra time and flexibility for
research leads to pursuing CN implementation using “well known ways”.

- Without a overall consistent vision, different teams will make independent
and, frequently, conflicting architectural decisions

- In many companies, Enterprise Architects are responsible for creating a
detailed architecture. Many Enterprise Architects lack sufficient theoretical or
practical experience in the Cloud Native approach.

- Agile methodologies, widely adopted in the contemporary business world,
create pressure to produce results early and onboard teams to new systems
very quickly.

Therefore:
You should define and visualize the architecture of the whole system upfront.
It can either be requested from external sources or uncovered by series of small
research and prototyping projects. It’s important to keep the vision high level to allow
freedom of choice during implementation, yet also detailed enough to provide clear
guidance (which will help avoid common pitfalls).

Consequently:
All teams have a clear guiding principle for the implementation phase.
The teams can start producing the lower level architecture, and translate it to the
backlogs of tasks. Therefore, ​Executive Commitment​ paired with leadership by the
Transformation Champion​ are essential to have in place for successful vision creation.

Related Patterns:
Executive Commitment, Core Team, Transformation Champion

18 container-solutions.com

Core Team
A dedicated team of engineers and architects constantly diving deeper into
technical challenges will reduce the risk of the transformation gaining experience
that will help onboard the remaining teams more quickly and effectively.

With ​Vision First​ in place, the company is now allocating resources to the CN
transformation and choosing the best teams for leading the initial stages.

In this context:
Existing teams working on building new features and ongoing improvements
while still responsible for their original duties will have conflicting priorities. This
can lead to insufficient resource allocation to the CN transformation project.

- Teams working both on both urgent and important tasks will tend to prioritise
urgent tasks first, leading to deprioritization of important tasks such as CN
transformation.

- CN technologies are new and complex. They require intense time investment
for learning and experimentation.

- Some of the CN challenges are too difficult for one person to handle
- A team responsible and trusted for delivering a new solution will have full

commitment to the solutions and later evangelise it across the organisation.
Therefore:
Create a Core Team of 5-8 engineers and architects to lead the transformation.
Team responsibilities will include ownership of the technical vision and architecture,
derisking the transformation by running a series of PoCs (Proof of Concepts), creation
of MVP (Minimum Viable Product) and later on onboarding and guiding other teams.
The team may continue improving the platform after the major parts of
transformation are done.

19 container-solutions.com

Consequently:
The Core Team rapidly iterates through the most challenging parts of the
transformation and paves the path for the rest of the teams in the company
towards successful CN adoption.
The team is building knowledge and experience in the CN area, first using them to
adjust the vision and the architecture of the applications as they go.
Later, the Core Team’s first-hand understanding helps them to onboard other teams
to the new way of working. The progress is visible and measurable.

Related Patterns:
Vision First, Gradual Onboarding, De-risking Technical Project, Reference Architecture,
Demo Apps, Cross-functional Teams, Focus on Bottlenecks , Common Services,
Libraries & Tools

Examples:
For the last 4 years, all of our CN transformation experiences included a ​Core Team​.
One organisation was HolidayCheck, an online travel site based in Switzerland.

When we came to HolidayCheck, the company had been working to introduce
microservices, containers and other CN technologies for about two years. They had
met with limited success, mainly due to lack of experience of working with these
technologies while maintaining pressure on continually delivering new functionality.

The first and most important change we suggested was to introduce a Core Team of
about 5-6 engineers and give them 3 months to experiment with the technologies and
create the vision and architecture, implement a simple version of their platform and
migrate one application to the new platform.

This change was successful. The team delivered the results almost within the
deadlines, gaining useful knowledge in the process. After about 4 months they started
onboarding other teams to the new platform. Following the successful onboarding,
the team continued for several more months to finish building the platform and
onboard remaining teams.

Once the platform was reasonably feature complete, the platform team fully
functional and all the development teams on-boarded, the Core Team was not needed
anymore: the transformation was now complete and the organisation was ready for
the future. At that point all the Core Team members returned to their original teams
and original tasks.

20 container-solutions.com

Ongoing Education
Cloud Native technologies are new and require significant learning effort. Prioritising
ongoing education by encouraging engineers to learn through hands-on
experimentation with the new technology helps them to onboard faster...and avoid
some of the common mistakes related to new tools and platforms.

Continuous Integration

All teams are working on the same code base and integrating continuously, every day
to reduce the integration burden. All the changes are thoroughly tested, fully and
automatically ,on each submission.

These small but constant iterations reduce the cost and time of integration that leads
to creating a higher quality of software and faster delivery of value to clients.

Encapsulated Applications
 ​Cloud Native systems are responsive. They can change responsively to maintain their
own stability. In a computer system that means recovering from failures like outages
or crashes. This requires applications that can be rapidly restarted in the same or new
locations, i.e. constantly deployed to a variety of platforms, quickly and in a reliable
way.

Technologies such as software containers help to achieve this responsiveness by
wrapping each application in a container that can run almost anywhere and which has
very low overhead in terms of resources and startup time.

21 container-solutions.com

Communication Through APIs
Communication between independent components is done only through standard,
stable and backwards compatible APIs.

APIs create strong boundaries between the components themselves and the teams
building them. This way different teams can move at the pace that is comfortable for
them while not slowing efforts for other teams, or creating the need for increased
coordination.

New functionality can be added to a component and exposed through a new API
without any effect to the rest of the system. Other components can then start using
this functionality whenever they need it.

Automated Infrastructure
The absolute majority of operational tasks need to be automated. Automation
reduces inter-team dependencies, which allows faster experimentation and leads
in turn to higher development velocity.

Company is moving to CN and adopting CN patterns such as ​Microservices
Architecture​, ​Continuous Delivery​ and others. Teams are independant and require fast
support services from the ​Platform Team​. Most of the operational tasks are performed
on demand by the Ops team.

In this context:

22 container-solutions.com

Manual or semi-automatic provisioning of infrastructure leads to dependencies
between the teams and to long waiting times for results, hindering
experimentation and slowing development velocity.

- Traditional operational teams don’t have sufficient levels of automation and,
due to high workload, no time to learn new technologies

- Public clouds provide full automation of infrastructure resources
- Manual requests and handover between development and operations teams is

very slow
- Number of operations engineers in manual systems must scale up

proportionally to growth in infrastructure demands
- Experimentation and research take longer and require more resources due to

involvement of an already busy operations department.

Therefore:
Dedicate at least 50% of the Ops team’s time on the automating the operational
task and eliminate all manual infrastructure provisioning and maintenance tasks.
Infrastructure automation scripts need to be treated with equal importance as the
rest of the company code base.
 Automation needs to include compute, storage, networking, and other resources,
patching and upgrading of operating systems, and deployment and maintenance of
systems running on top of the infrastructure.
Full automation will allow the provisioning of exponentially more resources per
member of operational staff.

Consequently:
Developers spend less time waiting for infrastructure resources and are able to
try out quick experiments, and to scale running systems rapidly and easily.
Ops team spending significantly lower amount of time on repetitive support tasks and
investing more time and resources in ongoing improvement of the system.

Related Patterns:
Dynamic Scheduling, Version Control, Public Cloud, Private Cloud, Infrastructure Self
Service

23 container-solutions.com

Dynamic Scheduling
Advanced technology companies deploy thousands of times a day to large
number of development, testing and production environments; Dynamic
Scheduling uses an orchestrator (Kubernetes) to organize the deployment and
live management of applications.

Market demands that the company deliver value to clients in a very short period of
time, such as hours or even minutes, therefore the company is moving to
Microservices Architecture​ and using ​Continuous Delivery​.
There are dozens of independent microservices and the development teams wants to
deploy each one of them multiple times a day.

In this context:
Deployment of applications to static servers using manual or semi-automatic
procedures cannot support the growing demands of the development teams to
deploy each component separately on multiple environments once, or even more
times, a day.

- Software systems become more distributed overall and are required to run on
many platforms.

- Dynamic scheduling tools are becoming mature and available for general use
- Small parts of applications can fail at random times

Therefore:
All application scheduling needs to be done using dynamic schedulers in a fully
automatic way.
Cross-functional teams need to understand how to use such tools effectively and they
need to become part of the standard development process.

24 container-solutions.com

Dynamic scheduling also handles stability: restarting failing applications and
autoscaling.

Consequently:
Developers build distributed systems and define how components will run and
communicate with each other once they are deployed.
Applications can scale up and down, and non-functional parts can be restarted and
healed automatically.

Related Patterns:
Continuous Integration, Continuous Delivery, Microservices Architecture,
Cross-functional teams, Distributed Systems, Fast Experimentation Cycle,
Encapsulated Applications

Microservices Architecture
To reduce the costs of coordination between teams delivering large monolithic
applications, build the software as a series of microservices that are built, deployed
and operated independently.

A company has decided to move to Cloud Native and is looking at the ways to increase
the velocity of feature development and to optimise their utilization of cloud
resources. The size of the development/engineering staff can range from a few tens,
for a small to medium business, up to a few thousand for a large enterprise.

25 container-solutions.com

In this context:
Delivery of large monolithic applications developed by large teams require long
and complex coordination and extensive testing, leading to longer TTM (Time to
Market). Hardware utilisation by such applications is inefficient, which leads to
waste of resources.

- People tend to delay painful moments; since integration and delivery are
typically painful, their frequency tends to decrease as system longevity
increases.

- Larger monolithic systems are increasingly more difficult to understand as
they grow in size and complexity

- Monoliths are easier to work with than modular applications so long as they
are small enough to be understood by each developer.

- Conway’s law: architecture tends to resemble the organisational structure.

Therefore:
Split applications into smaller microservices that can be built, tested, deployed
and run independently from other components.

- Independent components allow different teams to make progress at their own
pace faster-moving teams are not held back by slower ones and to use the
most appropriate tools for each situation.

- Independence and freedom of choice are achieved in a tradeoff with reduced
standardisation and certain types of reusability.

Consequently:
New systems are created from a large number of small components with a
complex web of connections.

- Small and independent teams work on separate modules and deliver them
with only limited coordination across the teams.

Related Patterns:
Cross-functional teams, CI, CD, Common Services, Libraries & Tools, Communication
Through API, Dynamic Scheduling,

26 container-solutions.com

Avoid Reinventing the Wheel
Off-the-shelf tools frequently lack one or more specific functionalities needed by the
project at hand. At this point many development teams will consider building their
own tool to create the perfect solution for their specific needs.

In almost all cases the better way is to stick with the existing tools to avoid costly
creation and maintenance of a custom tool.

Common Services, Libraries & Tools
The ​Platform Team​ will only be responsible for a small set of core tools. Each team can
introduce a new tool at their own risk and experimentally deploy it to the platform.
Once the team has gained the experience of working with the tool and is confident the
the tool is indeed needed, it can submit a request to the platform team to provide
permanent support for it. After a handover and testing time at joint responsibility, the
platform team will assume control and will be able to roll it out to the rest of the teams
in the company.

Teams Communicating Through Tribes
Cloud Native technologies are distributed by their very nature. Under Conway's law,
hierarchical organisational structure can still work for for administrative purposes, but
it is insufficient for inter-team communication working on independent components
of a distributed system.

Cross-team tribes can allow teams to efficiently exchange information on a variety of
technical and other topics without losing the benefits of hierarchy required for
compliance, resource allocation, etc.

27 container-solutions.com

Overlapping Responsibilities
It is not always clear who is responsible for each part of the system. In some cases, no
one takes the responsibility for shared parts of the systems. At other times, teams
might be arguing about who has control over different parts of the system.

Joint responsibility can create both control and collaboration across the teams.

Family is a good example for overlapping responsibilities in real life. Who is
responsible for washing the dishes or taking kids to school? Typically one member of
the family has a stronger responsibility for each task, but still, everyone needs to do
their chores.

It’s typically unhealthy when there is a very strong and inflexible separation of duties
in a family. Like families, teams benefit when responsibilities are shared.

Cross-functional Teams
Teams working on Cloud Native applications (DevOps teams) need to be able to build,
deploy and maintain distributed systems. Such teams need to be able to create
microservices applications, package then in an encapsulated way (containers) and
deploy them through CI/CD pipelines to dynamically scheduled clusters (Kubernetes).

Any platform used by such team needs to be fully automated and should not require
any manual intervention at any stage (aside from unexpected problems and rare
specialized maintenance tasks).

28 container-solutions.com

Platform Team

The Platform Team -- typically, the Site Reliability Engineering, or SRE, team -- is
responsible for building and maintaining the platform that is used by the
Cross-functional Teams​. All common platform functionality needs to be
programmable and accessible by the Cross-functional Teams.

Periodic Check-up
Typically, the organisation undertaking a Cloud Native migration defines the goal in
the beginning of the transformation process and then moves fully into execution
without occasionally stopping to assess progress. In many cases they fail to adjust
course wherever the initial direction turns out to be incorrect.

Periodic check-ups can help to review the validity of the goals and explicitly change
direction or confirm the current direction.

29 container-solutions.com

Continuous Delivery

Given a growing number of independent components all delivered very frequently,
teams must have fully automated and reliable delivery procedures.

Any delay for manual intervention or for quality issues will be compounded to
considerable maintenance overhead for the platform and development teams due to
the sheer number of moving pieces.

Continuous Delivery must be put in place before undertaking the move to
Microservices Architecture.

Gradual Onboarding

A newly deployed platform is typically not fully functional nor yet totally stable. There
is not enough automation. The development teams have not gained experienced in
using the platform.

As they supervise the simultaneous onboarding of a large number of teams, the
platform team can become overloaded with support tasks for these teams. This will
block further improvement of the platform. As a result, it will likely stagnate and fail to
reach its full potential.

30 container-solutions.com

Instead, once the basic platform is set up, the platform team should onboard only 1-3
teams to start while continually improving the platform by fixing issues that emerge
during the initial onboarding.

Continue in small team batches while continuously improving the platform.

Strangle Monoliths

When not fully transitioned to the new modular architecture, the Cloud Native
platform is not delivering its full value. The teams keep delivering slowly, held back as
significant development continues in the monolithic portion of the application.

Create a simplified procedure to take small pieces of the monolith and rewrite them as
separate modules. Reduce any new development of the monolith and allow only
minimal maintenance. Plan to rewrite small pieces of the monolith all the time until it
disappears completely.

Room for Ongoing Improvements
Each company needs to invest in future technologies and products. Without such
investment, it will be difficult to change direction, adopt new technologies and,
eventually, compete with other businesses that are capable of responding to
customer’s requests within just days or even hours.

McKinsey’s Three Horizons of Growth is a framework for encouraging innovation and
growth while ensuring current stability. The three horizons are H1: Maintain and
Defend Core Business, or what your enterprise is doing right now. About 70-80% of
organisational efforts should be directed here. H2: Nurture emerging business,
focused on the next major product and consumes about 15-25% of effort. Finally,
Innovation and next market should receive 5-15% of the overall attention for creating

31 container-solutions.com

entirely new business elements. Essentially, research and development of new ideas
that may be promising but unproven, and potentially unprofitable for a significant
period of time. This would encompass things like research projects, pilot programs or
entirely new revenue lines that require significant upfront investment.

It is important that all three horizons be in balance and receiving their proper share of
attention and effort. Many established enterprises work only on H1 and forget about
the future. Startups by definition are H2-H3.

32 container-solutions.com

SUMMARY

Enterprises that want to succeed in the digitized, Cloud-centric world will need to
transform themselves to Cloud Native entities. Cloud Native can grant companies the
ability to develop and deliver software faster, at greater scale, and at potentially
lower cost. However, Cloud Native also comes with some unfortunate side effects
most notably, the high complexity of distributed systems and the pain of cultural
change. The shortage of knowledgeable and experienced Cloud Native developers
creates additional difficulties for organisations seeking to transform themselves.

A Cloud Native Patterns Language addresses these difficulties by providing an
effective way for developers, engineers and executives alike to identify “right” design
patterns and the contexts necessary for their effective implementation. The Cloud
Migration Maturity Matrix is a tool for assessing an organisation’s unique set of
contexts for both their existing state and ultimate target objectives. Case studies from
enterprises who have succeeded in transforming themselves into Cloud Native
operations demonstrate the potent capabilities of Cloud Native patterns applied in
proper context.

33 container-solutions.com

Acknowledgements
I would like to express my very great appreciation to:

1. Hans Wegener who acted as a shepherd during the writing process and
helped me a lot with much great advice.

2. Anne Currie who helped me to clarify the ideas and make the sense out
of vague concepts.

3. Michelle Gienow who helped with writing and editing of this paper.
4. Svitlana Chunyayeva and Rokas Raudonius from

http://remembertoplay.co/​ who helped visualising the patterns.
5. All ​https://container-solutions.com/​ team who supported this project by

sharing their real life experiences and by giving excellent feedback
6. Hugo Sereno Ferreira, Kyle Brown, Richard Gabriel and Joseph Yoder for

reviewing the paper at PLoP 2018​.

34 container-solutions.com

http://remembertoplay.co/
https://container-solutions.com/

APPENDIX 1

Patterns thumbnails

ORGANIZATION PATTERNS

Pattern Name Problem Solutions

Business
Case

Company is contemplating making the move to CN,
but there is only partial understanding of the
complexity of a CN migration and the benefits that
will come from it.

Create a formal business case to help
educate the organisation’s executive
team, taking into account the benefits to
be gained from Cloud Native.

Executive
Commitment

Appropriate budget and attention are not allocated
for the transformation in time which leads to partial
transformation that is does not bring the expected
benefits.

Define CN transformation as a strategic
initiative with explicit support by
executive management.

Transformation
Strategy

Lack of coherent strategy leads to inability to
evaluate progress by the execution teams

The management team needs to create a
high level transformation plan and start
delegating responsibilities to the teams.

Transformation
champion

Transformation lacks a driving force, which leads to
slow execution and low level of alignment

Appoint a person or small group of
people to lead and evangelise the
transformation.

Core Team Transformation teams struggle to reach right level
of motivation, capabilities, alignment or
organisational support.

Create a single Core Team of 5-8
engineers and architects to lead the
transformation.

Ongoing
education

Cloud Native technologies are new and require
significant learning effort.

Ongoing Education will allow engineers
to onboard faster and avoid some of the
common costly mistakes related to new
tools and technologies.

Teams
Communicating
Through Tribes

Due to required amount of information exchange
between independent teams and the complexity of
the systems, teams find it difficult to communicate
directly and efficiently.

Cross team tribes for variety of technical
and other topics can allow teas to
exchange information quickly and
efficiently without losing the benefits of
hierarchy required for compliance,
resource allocation, etc.

Overlapping
Responsibilities

Lack of clear responsibility leads to no attention to
some parts of the system or to arguing about

Some parts of the system need to be
under joint responsibility of multiple

35 container-solutions.com

control over other parts of the system. teams

ORGANIZATION PATTERNS Continued

Pattern Name Problem Solutions

Cross-functional
Teams

Development teams are incapable of getting full
benefits from Cloud Native systems due to lack of
capabilities in some areas required to build such
systems.

Create teams cross-functional teams
with full Cloud Native capabilities

Platform Team There is no consistent, fully automated and well
supported platform that leads to constant
instabilities and long waiting times for provisioning
resources or making changes to the platform.

Create a platform team to build maintain
a fully automated platform

Periodic Check-up Cloud Native transformation goals and strategy and
goals are defined in the beginning of the journey,
but the teams are diverging which leads to
inconsistent results.

Periodic check-ups can help to review
the validity of the goals and explicitly
change or re-confirm the current
direction.

Gradual
Onboarding

Due to initial instabilities of the platform and lack of
knowledge and experience in the cross-functional
teams,
Platform support team can be easily overwhelmed
by amount of support issues coming from number
of teams onboarded too early and leading to
stagnation in further improvement of the platform.

Once the basic platform is setup,
onboard only 1-3 teams and continue
improving the platform by fixing the
issues discovered during the first
onboarding.
Continue onboarding in small batches
while further improving the platform.

Room for Ongoing
Improvements

Introduction of new technologies or new practices
is difficult due to lack of time or adequate research
capabilities.

Each company needs to invest into
future technologies or products

De-risking
technical project

Cloud Native transformation includes many risks
related to new technologies and practices applied
in variety of different situations.
Risks are hidden and only discovered later on in the
course of the transformation

Identify the riskiest and potentially most
difficult issues visible in the beginning of
the journey and run series of
experiments to understand each
challenge better.

36 container-solutions.com

DEVELOPMENT PATTERNS

Pattern Name Problem Solutions

Vision First Without a clear technical and organisational
vision, teams are going in different directions
leading to chaos.

Create a technical and organisational
vision that is high level enough to allow
teams freedom but also specific enough
to give clear execution guidance.
Make the vision available and clear to
ALL

Continuous
Integration

Manual build or test of software create
significant delays in the delivery. Such delays
may block the ability to deliver the changes
continuously.

All teams working on the same code base
and integrating continuously, every day
to reduce the integration burden.

Encapsulated
Applications

Development and deployment of application
components to wide variety of target platforms
is difficult due to variations in the environment.

All application components are
packaged together with all needed
dependencies and can be deployed
anywhere.

Communication
Through APIs

Communication through internal programming
language function calls creates strong coupling
of components and forces the teams to change
and deliver them together which complicates
and prolongs the delivery

Communication between independent
components should be done only
through standard, stable and backwards
compatible APIs.

Microservices
Architecture

Requirement to coordinate all development
and operations teams before each release
increases complexity cost and time of each
release.

Split applications into smaller modules
that can be built, tested, deployed and
run independently from other
components.

Avoid Reinventing the
Wheel

Engineers tend to rebuild functionality
available at the market. This is due to lack of
awareness or the tuough the “they can do it
better”.

Avoid rebuilding existing functionality,
unless it is in the area of core business of
the company.

Common Services,
Libraries & Tools

Introduction of wide variety of new technology
choices (tools, languages, processes, etc) for
solving similar problems leads to duplication of
work, which overloads the platform and
cross-functional teams

Use only a small set of core tools.
Introduction of new tools needs to go
through predefined incubation process.

Continuous Delivery Any delay for manual intervention or for quality
issues will be compounded to significant
maintenance overhead for the platform and

Deliver each application component
independently and fully automatically,
every day, or even more frequently.

37 container-solutions.com

development teams due to the number of
moving pieces.

DEVELOPMENT PATTERNS Continued

Pattern Name Problem Solutions

Strangle Monoliths The teams keep delivering slowly as significant
development continues in the monolithic part
of the application.
Developers lose the motivation if they continue
working on the old systems for too long.

Create a simplified procedures to take
small pieces of the monolith and rewrite
them as separate modules. Block any
new development of the monolith and
only allow minimal maintenance.

Reference
Architecture

Every time starting a new component or a new
application, development team is creating a
new version of architecture which leads to
inconsistency, difficulties in onboarding and
higher maintenance load.

Create one or more, well documented,
reference architectures to simplify and
speedup creation of new projects

Demo Apps Without simple code examples, developers are
solving similar problem over and over again
which leads to longer development process and
many code variations.

Create simple Demo Application.
Developers can copy-paste the code
from the applications to reduce
development time and increase
consistency in code.

Automated Testing Without fast and trusted test coverage, teams
cannot deliver fast enough.

Create consistent and reliable test
coverage using test pyramide principles.

INFRASTRUCTURE PATTERNS

Pattern Name Problem Solutions

Automated
Infrastructure

Manual or semi-automatic provisioning of
infrastructure creates delays for the
development teams and block their progress.

Fully automate the infrastructure,
including provisioning of compute,
storage, networking, and other
resources, patching and upgrading of
operating system and deployment and
maintenance of systems running on top
of the infrastructure.

Dynamic Scheduling Development teams cannot deploy application
components at required frequency when the
infrastructure is static and scheduling is

All application scheduling needs to be
done using dynamic schedulers in a fully
automatic way.

38 container-solutions.com

inflexible.

39 container-solutions.com

