Towards a Catalogue of Java Exception Handling Bad
Smells and Refactorings

JONATHAN ROCHA, Federal University of Rio Grande do Norte
HUGO MELO, Federal University of Rio Grande do Norte
ROBERTA COELHO, Federal University of Rio Grande do Norte
BRUNO SENA, University of Sao Paulo

Software is made by humans for human use and, for that reason, it is bound to fail. As language designers accepted failure as an
inevitable factor, mechanisms had to be created to deal with it. Java was designed with an elaborate built-in exception handling
mechanism which allowed programmers to anticipate failures and prepare the application to deal with them from a high level point of
view. However, the exception handling code designed to make a system more robust often works the other way around and become a
burden programmers have to cope with.

Some guidelines on how to better cope with the exception handling code have been proposed, papers have been written on this topic
and tools have been built, nevertheless, such pieces of information are spread and structured in different ways. This paper aims to
collect such guidelines on good and bad practices from different sources and compile it as a catalogue of bad smells and associated
refactorings as a way to help new and experienced developers improve the exception handling code of Java programs.

Additional Key Words and Phrases: Exception Handling, Java, Patterns.

1. INTRODUCTION

Exception handling mechanisms are present in a variety of contemporary programming languages with the
intention of improving robustness, nevertheless, when these mechanisms are not properly implemented they
eventually snowball to become an intricate source of bugs (Barbosa et al. 2014) (Ebert et al. 2015) (Yuan et
al. 2014) (Coelho et al. 2015)(Coelho et al. 2008), nourishing the one thing they were created to neutralize.

In order to help developers manage exception handling in a more effective way many tools and
guidelines were created, but those are spread across many sources in a scattered fashion. As identified by
Wirfs-Brock 2016, there is a need for a pattern catalogue that structures these pieces of information on
exception handling good and bad practices, especially when dealing with Java.

In this work we present a initial catalogue of exception handling bad smells and associated refactorings.
We have compiled a set of practices taken from Bloch 2017, Wirfs-Brock 2016, Adamson 2015, Gosling et al.
2000 and also from static analysis tools, also known as “linters” Robusta (Robusta 2018), SpotBugs
(SpotBugs 2018), SonarLint (SonarLint 2018) and PMD (PMD 2018). In this work we structured the good and
bad practices collected from these sources in a refactoring catalogue format. Some of the bad smells and
refactorings presented here represent known practices (e.g., avoid general handlers) others have not been
widespread yet and were found in few sources (i.e., found by a single static analysis tool).

'Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary
version of this paper was presented in a writers' workshop at the 25th Conference on Pattern Languages of Programs (PLoP). PLoP'18,
OCTOBER 24-26, Portland Oregon. Copyright 2018 is held by the author(s). HILLSIDE 978-1-941652-09-1

2. BASIC CONCEPTS

This section presents some basic concepts concerning refactoring, anti-patterns and the exception handling
mechanism embedded in the Java language.

Exception Types. In Java, exceptions are represented according to a class hierarchy, on which every
exception is an instance of the Throwable class, and can be of three kinds: the checked exceptions (extends
Exception), the runtime exceptions (extends RuntimeException) and errors (extends Error) (Coelho et al.
2015). Checked exception received their name because they must be declared on the method’s exception
interface (i.e., the list of exceptions that a method might raise during its execution) and the compiler
statically checks if appropriate handlers are provided within the system. Both runtime exceptions and errors
are also known as “unchecked exceptions”, as they do not need to be specified on the method exception
interface and do not trigger any compile time checking. By convention, instances of Error represent
unrecoverable conditions which usually result from failures detected by the Java Virtual Machine due to
resource limitations, such as OutOfMemoryError. Normally these cannot be handled inside the application.
Instances of RuntimeException are implicitly thrown by Java runtime environment when a program violates
the semantic constraints of the Java programming language (e.g., out-of-bounds array index, divide-by-zero
error, null pointer references). Some programming languages react to such errors by immediately
terminating the program, while other languages, such as C++, let the program continue its execution in
some situations such as the out-of-bounds array index. According to the Java Specification (Gosling et al.
2000) programs are not expected to handle such runtime exceptions signaled by the runtime environment.

User-defined exceptions can either be checked or unchecked, by extending either Exception or
RuntimeException. There is a long-lasting debate about the pros and cons of both approaches (Jenkov 2014)
(The Java tutorials 2017) (Phamn 2011), and even though the Java community hasn’t reached a consensus,
some guidelines are presented in several of the patterns presented later.

Exception Propagation. In Java, once an exception is thrown, the runtime environment looks for the
nearest enclosing exception handler (Java’s try-catch block), and unwinds the execution stack if necessary.
This search for the handler on the invocation stack aims at increasing software reusability, since the invoker
of an operation can handle the exception in a wider context (Miller and Tripathi 1997).

A common way of propagating exceptions in Java programs is through exception wrapping (also called
chaining): one exception is caught and wrapped in another which is then thrown instead. Exception
propagation can be easily noticed on exception stack traces messages, which are returned by the Java
Virtual Machine whenever an exceptions propagates to the topmost layer of the system and is not handled
properly. For simplicity, in this paper we will refer to “exception stack trace” as just “stack trace”.

Bad Smells. Also referred to as “Code Smell”, bad smells are code structures, styles or even bad habits that
do not necessarily generate bugs, but are seen by the community as bad quality code and, therefore, signal
the need for a refactoring. Bad smells are not absolute and can change throughout time and coding context.
For example: it used to be considered a bad smell to have your CSS code inline with the HTML code, but
with the popularization of React and other modular Web frameworks this practice begun to be
recommended as a good practice.

Anti-pattern. An anti-pattern is a workaround to a recurring coding problem that is seen as a bad practice,
but repeated by many programmers anyway. The use of an anti-pattern is commonly caused by the wrong
interpretation or even the overuse of a real “good” pattern, as it often happens with the Singleton pattern,
proposed by the Gang of Four (Erich et al. 1995).

Page -2

3. METHODOLOGY

In order to collect the bad smells and refactorings that compose the present catalogue we performed a
literature review as well as an investigation of existing static analysis tools. Exceptions bad smells, patterns
and recommendations were then collected from these sources: PMD 2018, SonarLint 2018, SpotBugs 2018,
Robusta 2018, Bloch 2017, Wirst-Brock 2006 and Adamson 2015. Overall we could collect 74 good and bad
practices related to the development of exception handling code in Java. Removing the duplicated practices
(i.e., practices that were found on different sources which had the same purpose), we came up with 23
distinct exception handling bad smells and associated refactorings presented in Table 1.

Table 1 Bad Smells and Associated Refactorings.

ID Bad Smell Short description Refactorings
Throwi i Throwi i i 8. E i
1 row1.ng Generic rowing a generic exception (e.g. Exception, Throwing Specific Exception
Exception Throwable)
. . Throw exceptions that lacks information about the |Provide context along with the
2 |Throwing Raw Exception .)
context of the failure exception
Use Try with Resources
3 Throw from Within Throw exceptions from finally blocks, possibly -
Finally suppressing another exception Add Try-catch Block Inside
Finally Block
4 ExceptioTls Signaled from | Throwing exceptions from entry points, what can Protect Entry Point
Entry Points cause the program to crash
Use Specific Exception
Throwing)) Include null checks
5 . . Throw NullPointerException from your code
NullPointerException Use Optional Object
Return Default Object
6 |Forgotten Exception Creating an exception, but never throwing it Throw Every Exception Created
7 Masking programmer Mask logical programming errors by throwing/using |Let Programming Errors Flow
errors exceptions Protect Entry Point
3 Handlir}g Generic CatchiITg and handling a generic exception (e.g. Use Specific Handlers
Exception Exception, Throwable)
9 Rely on instanceof in Using instanceof operator to simulate specific Use Specific Handlers
Catch Blocks catches
10 Catch(.es With. the Same Not groupil?g mult.iple catch blocks that have the Use a Multi-Catch Block
Handling Action same handling actions
11 |Dead Catch Block Keeping a catch block that will never run Remove Catch Block
Nesting Try-catch Block:
12 esting 1ry cz% ¢ 0CkS Using three or more nested try-catch blocks Extract Method
More than Twice
Provide Appropriate Handling
13 |Exception Swallowing Catch an exception and leave the handler empty
Let the Exception Flow
14 [Destructive Catch and rethrow an exception without preserving |Cause-Preserving

Page - 3

Wrapping/Logging the original exception Wrapping/Logging

. Using the Throwable#getCause() method to unwrap |Use alternative ways to access
15 [Relying on getCause() . .
the cause of the exception the Exception cause

3.1 Catalogue Structure

Each bad smell is presented within the sections: (i) the problem - reflecting upon why that is a bad smell or
elucidating about it’s context; (ii) a code example - showing code excerpts to illustrate the problematic
scenario; (iii) the source - which shows from which paper, book, site or tool it was taken from. Each bad
smell can be solved by applying one or more refactorings, together or exclusively. Each refactoring should
contain: (i) a solution to the problems previously shown on the bad smell; and (ii) code excerpts to illustrate
the solution.

4. EXCEPTION HANDLING BAD SMELLS AND REFACTORINGS

This section presents a list of exception handling bad smells and suggested refactorings. Although all the
examples are written in Java, some of problems and solutions presented here are also applied to other
languages that have embedded exception handling constructs.

Bad Smell 1: Throwing Generic Exception

Problem Declaring that a method throws a generic Exception creates a huge problem to the users
of the method because they won't be able to tell what caused that failure and how to
handle it effectively.

Code public void foo() throws Exception {

Example
}

Source PMD

Refactoring: Throwing specific exception

Solution Declare non-generic checked exceptions in the method signature and make use of
exception classes that inherit from RuntimeException.

Code public class EmptyStackException extends RuntimeException {
Example public EmptyStackException() {
super();

}
public EmptyStackException(String s) {

super(s);

}

public EmptyStackException(String s, Throwable throwable) {
super(s, throwable);

}
public EmptyStackException(Throwable throwable) {

Page -4

super(throwable);

}
}

public void foo() throws EmptyStackException {

Bad Smell 2:

Throwing Raw Exception

Problem A raw exception would be any exception that lacks useful information about its error
context.
Code public void someMethod() {
Example
throw new SomeException();
}
Source Effective Java: Programming Language Guide, Joshua Bloch, Toward Exception-Handling

Best Practices and Patterns, Rebecca J. Wirfs-Brock

Refactoring: Provide Context Along With the Exception

Solution

Sometimes the exception name or message is enough to inform about the faulty context.
In some scenarios, developers tend to reccur to exception getCause() to get a more
specific information - leading to a fragile code. However, it is prudent to pass as
arguments to the exception constructor information that might help the failure to be
solved or handled properly. Usually, relevant information can include variable values,
iterator's positions, state flags and so on.

Code
Example

public void someMethod() {

throw new SomeException(currentState, relevantVariable, revelevantIterator);

Bad Smell 3:

Throw from Within Finally

Problem

Throwing an exception from a finally block can create a huge problem by overwriting any
previous exception that might have been propagated and hiding the real problem that
caused a failure.

If the exception in thrown directly from the finally block (and not from a method inside the
finally that may sometimes throw an exception), programmers must be aware that finally
blocks are always executed, meaning that this exception will always be thrown no matter
what happened in the try block.

Code
Example

finally {

Page -5

methodThatMightThrowException();
}
or
finally {

buffer.close(); // it throws IOException
}

Source PMD
Exception-Handling Antipatterns Blog, Chris Adamson
Refactoring: Use Try with Resources
Solution If the method that may throw an exception form within the finally block implements the
AutoCloseable interface, make use of the try-with-resources.
Code try (BufferedReader buffer =
Example new BufferedReader(new FileReader(path))) {
return buffer.readLine();
}
Refactoring: Add Try-catch Block Inside Finally Block
Solution If the exception is signaled by a resource closure, and the resource does not implement
the AutoCloseable interface, or the exception is signaled within finally due to a different
reason add a try/catch block inside the finally block.
This is might be ungraceful, but if the method must be called inside the finally block, it is
better than applying a deeper refactoring.
Code finally {
Example
try {

methodThatMightThrowException();
} catch (anException e) {

}

Bad smell 4: Exceptions Signaled from Entry Points

Problem

Program entry points (such as service methods on Servlets, Android Activities life cycle
methods, run methods on Threads and the main method) are typically the last place
where an exception may be handled before the application boundary. In this sense,
signaling exceptions from the entry-point cause the application crash.

Page - 6

Code

public void doGet(HttpServletRequest request, HttpServletResponse response)

Example throws IOException, ServletException
{
String ip = request.getRemoteAddr();
InetAddress a = InetAddress.getByName(ip); /throws UnknownHostException
/...
}
Source Sonarlint
Refactoring: Protect Entry Point
Solution All exceptions should be handled by the entry point in the best way possible, may it be
showing an error message or requiring another input.
Code public void doGet(HttpServletRequest request, HttpServletResponse response)
Example throws IOException, ServletException {
String ip = request.getRemoteAddr();
try{
InetAddress addr = InetAddress.getByName(ip);
/...
}
catch(Exception e){
/...
}
}
Bad smell 5: Throwing NullPointerException
Problem A NullPointerException warns about a programming mistake and, therefore, should never
be thrown by your own code. This bad practice may hamper readability and end up forcing
other programmers to debug looking for a problem that never truly existed.
Code void foo(Integer value) {
Example if(value == null){
throw new NullPointerException("...");
}
/...
}
Source PMD
Refactoring: Use a Specific Exception
Solution If a generic unchecked exception is needed in your code, choose one of the many others
Java offers, such as the IllegalArgumentException.
Code String foo(Integer value) {
Example if(value == null){

throw new IllegalArgumentException("...");

)

Page - 7

/...
)

Refactoring: Return Default Object
Solution Instead of returning null your code could return a default object.
Code Object foo(Integer value) {
Example
if(result == null){
return new DefaultValue();
}
return result;
}
Refactoring: Include Null Checks
Solution Null checks should be included every time you receive data that crosses the method
boundary.
Code String void foo(Integer value) {
Example if(value == null){
//perform the proposed computation
}
/...
}
Refactoring: Use Optional Objects
Solution Since Java 1.8 there is an option to make use of an Optional object to encapsulate other
objects that may be nullable. By using this tool the method which uses the said object is
forced to check whether the nullable object is null or not.
By choosing to return an Optional object the programmer will be directly avoiding the Java
Exception handling mechanism, so this decision must be dealt with care.
Code Optional foo(Integer value) {
Example if(value == null){
return optionalObject;
}
/...
}
Bad Smell 6: Forgotten Exception
Problem There is no good reason to create an object and not make use of it, similarly, there is no
reason to create an exception and not throw it.
Code if (x<0){
Example //exception is created but never thrown

new IllegalArgumentException("x must be nonnegative");

Page - 8

}

Source SpotBugs
Refactoring: Throw Every Exception Created
Solution Create exceptions as close as possible to the line of code in which the exception is
actually thrown.
Code if (x<0){
Example throw new IllegalArgumentException("x must be nonnegative");
}
Bad Smell 7: Masking programmer errors
Problem A set of JVM runtime exceptions, such as NullPointerExceptions, ArrayOutOfBounds or
ArithmeticException, are unexpected Exceptions that can be thrown from almost all lines
of code. These Exceptions are usually caused by programming errors and are often
impossible to recover from, so it is not prudent to capture and handle them, because it will
simply hide the true problem and hamper debug.
Code void foo() {
Example
try {
someTrickyMethodWithProgrammingBugs();
} catch (NullPointerException | ArrayOutOfBounds €) {
}
}
Source PMD
Toward Exception-Handling Best Practices and Patterns, Rebecca J. Wirfs-Brock
Refactoring: Let Programming Errors Flow
Solution NullPointerException should not be captured and handled, only avoided by writing correct
code.
Code void foo() {
Example
someTrickyMethodWithProgrammingBugs();
}
Refactoring: Protect Entry Points (already described on bad smell 4)
Bad Smell 8: Handling Generic Exception

Page -9

Problem

Catching the Throwable or Exception classes is a tempting move when programming under
pressure, nevertheless, even though dealing with all checked exceptions at the same time is
pretty convenient, it can lead to serious problems such as swallowing relevant exceptions
and implementing inefficient handling mechanisms. In fact, having a generic catch as the
standard strategy to avoid dealing with Java's obligations sabotages the whole purpose of
the exception handling mechanism.

Likewise, the Error class should not be caught either, for it indicates internal system
problems that aren't in the responsibility of the software.

Code catch (Throwable e) {
Example
}
Source PMD
SonarLint
Exception-Handling Antipatterns Blog, Chris Adamson
Refactoring: Use Specific Handlers
Solution Avoid implementing catch blocks that capture Throwable, Exception, and Error, except
when the method signature carelessly throws these exception classes.
Code catch (FirstException e) {
Example
}
catch (SecondException e) {
}
catch (ThirdException e) {
}
Bad Smell 9: Rely on instanceofin Catch Blocks
Problem The use of "instanceof" is usually a lazy workaround to avoid catching specific exception
classes individually with several catch blocks.
This bad practice may cause problems if an unexpected instance of an exception is
propagated through that catch block, which won't be prepared to handle it properly.
It also hurts readability and code maintainability, for new exception may arise as the
system evolves, but the exception handling architecture will always be dependent on this
rudimentary hard coded checking.
Code try {
Example
} catch (SomeBaseException e) {
if(e instanceof MyException) { ... }
if(e instanceof OtherException ... }
}
Source Sonarlint

Page - 10

Refactoring:

Use Specific Handlers (already described on bad smell 8)

Bad Smell 10: Catches With the Same Handling Action

Problem Having multiple catches that implement the same handling actions tend to overextend the
code and hinder maintainability.
Code catch (IOException e) {
Example doCleanup();
logger.log(e);
}
catch (SQLException e) { // Noncompliant
doCleanup();
logger.log(e);
}
catch (TimeoutException e) { // Compliant; block contents are different
doCleanup();
throw e;
}
Source Sonarlint
Refactoring: Use a Multi-catch Block
Solution Since Java 7 it is possible to combine multiple exceptions classes in a same catch block,
but programmers are still reluctant to use this convenient tool, probably out of
unfamiliarity or simply because sometimes coping and pasting a code block seems easier
than agglutinating exceptions in a single line.
If multiple exceptions happen to be handled the same way, combine them in one single
catch block.
If these exceptions happen to always be handled the same way, it would be prudent to
check if both exception are truly needed. If they are not, refactor the code.
Code catch (IOExceptionISQLException e) {
Example doCleanup();
logger.log(e);
} catch (TimeoutException e) {
doCleanup();
throw e;

J

Bad Smell 11: Dead Catch Block

Problem

Dead code is any piece code that is unreachable and will never be executed. A dead catch
block is one that tries to catch exceptions that are not thrown by any line of code in its
associated try block.

Page - 11

Code

try {

Example methodWithoutCheckedException();
} catch (Exception e) {
}
Source Spotbugs
Refactoring: Remove Catch Block
Solution Simply don’t use a try/catch in that case.
Code methodWithoutCheckedException();
Example
Refactoring 27: Handle Unchecked Exceptions Directly
Solution Handle unchecked exceptions directly.
Code try {
Example methodWithoutCheckedException();

} catch (UncheckedExceptionTheMethodMayThrow e) {

}

Bad Smell 12: Nesting Try-catch Blocks More than Twice

Problem

information from the original exception, which might be overwritten by a new one.

Nested try-catches hamper code readability and maintainability. It is acceptable to have it
nested once, but be careful when the nesting goes deeper for it can lead to loss of context

Code
Example

public void method1() {
try {

-
-

} catch (YetAnotherException e){

}
} catch (AnotherException e){
}
} catch (AnException e) {
}
}

Source

Sonarlint
Robusta

Page - 12

Refactoring: Extract Method

Solution Refactoring the code and extracting the inner try blocks are the best way to fix this code
smell and prevent confusing debugging sessions.
Code public void method1() {
Example try {
method2();

} catch (AnException e) {
J
}
public void method2() {
try {
} catch (AnotherException e){
J
}

Bad Smell 13:

Exception Swallowing

Problem

Ignoring an exception is like turning off a fire alarm and pretending nothing went wrong.
But with an exception it is even worse, for the problem may be kept hidden inside the
system and cause many other failures.

Exception handling is a skill all Java programmers must develop in order to guarantee
their systems will be able to recover gracefully from errors and expected user mistakes.

Code
Example

try {

} catch (SomeException e) {

}

Source

PMD

SpotBugs

Robusta

Effective Java: Programming Language Guide, Joshua Bloch
Exception-Handling Antipatterns Blog, Chris Adamson

Refactoring: Provide an Appropriate Handling

Solution The obvious solution for this problem is to properly handle the exception, or, if that is not
possible, rethrow the exception, inform the user about the error..

Code try {

Example

} catch (SomeException e) {
dealWithException();

}

Page - 13

or

try {

} catch (SomeException e) {
throw e;

}

or

try {

} catch (SomeException e) {
System.out.print(e.getMessage());

}

Refactoring: Let the Exception Flow

Solution If no appropriate handling can be given to the exception the method should let the
exception flow until it reaches the entry points or places where an appropriate handling
may be given.

Code public void methodA() throws SomeException{

Example

methodB(); // throws SomeException but I do not know how to handle it

Bad Smell 14: Destructive Wrapping/Logging

Problem

When an exception is rethrown or logged, the original exception object might be discarded
by an inattentive programmer, nevertheless this object might contain crucial information,
like the stacktrace or context in which the failure happened.

Code
Example

try { ... }
catch (CauseException e) { LOGGER.info("context"); }

try { ... }
catch (CauseException e) { LOGGER.info(e.getMessage()); }

try { ... }
catch (CauseException e) {
throw new MyException("context");

}

Source

PMD
SonarLint
Exception-Handling Antipatterns Blog, Chris Adamson

Refactoring: Cause-Preserving Wrapping/Logging

Page - 14

Solution

When logging or rethrowing an exception always pass the original exception as a
parameter to guarantee the context information won't be lost.

Code
Example

try{ ... }
catch (CauseException e) { LOGGER.info("context", e); }

try{ ... }
catch (CauseException e) { LOGGER.info(e); }

try{ ...}
catch (CauseException e) {
throw new MyException("context", e);

}

Bad Smell 15:

Relying on getCause()

Problem

The getCause() method returns null if the current exception isn’t wrapping a previous
exception and returns such the previous exception otherwise.

Relying on the exception getCause() method can make exception handling fragile,
because if the exception is encapsulated again (during a maintenance task for instance)
the previously implemented handling code may fail since the code will receive to a
wrapped exception instead of the original cause.

Code
Example

catch(DirectException e){
if(e.getCause() instanceof CauseException){

-
}

Source

Exception-Handling Antipatterns Blog, Chris Adamson

Refactoring: Use alternative ways to access the Exception cause

Solution If the getCause() of an exception must be checked in order to give it proper handling,
then all causes must be decapsulated until the root cause is reached.
Another option would be to verify if one of the causes of the exception has a determined
type using ExceptionUtils from ‘Apache Commons Lang’.

Code catch(DirectException e){

Example if(ExceptionUtils.getRootCause(e) instanceof CauseException){

-
}

or

catch(DirectException e) {
if(ExceptionUtils.hasCause(e, CauseException.class)){

-
}

Page - 15

5. RELATED WORKS
5.1 Guidelines to Exception Handling Design and Implementation

The work closest to ours is the work of Haase 2002. Haase proposes a pattern language composed by eleven
Java patterns to support the high level design of the exception handling behaviour of a system. This pattern
language aims at bringing the exception handling concerns to the early phases of software development and
proposes a set of patterns to be applied when designing the exception handling behaviour of a system.
Although can be found some similarities between few patterns of the the catalogue presented here and the
pattern language proposed by Haase, each patterns set focus on a different level of abstraction. While the
pattern language (comprising 11 patterns) proposed by Haase tackles on early phases of software
development such as architecture and high-level design phases, this catalogue (comprised by 40 patterns)
aims at helping developers during the low-level design and implementation of the exception handling code.
Hence, our work complements the work of Haase.

Chen et al. 2009 present six bad smells on the exception handling code and propose a set of refactorings to
make the exception handling code more reliable. All bad smells pointed in this work can be automatically
detected by Robusta tool and were included in the present catalogue.

5.2 Bug Classification

This catalogue presents a set of problems on the exception handling code that can lead to a failure. Some of
the problems presented here are not a bug in itself (i.e., nested try blocks) but can lead to one. Hence, the
catalogues aims at preventing bugs on the exception handling code by point to possible bugs and bug
hazards in the code. Other works (Barbosa et al. 2014) (Ebert et al. 2015) (Yuan et al. 2014) (Coelho et al.
2015) performed investigations on the other way around: they inspected crash reports and connected some
real failures with bugs and bug hazards in the exception handling code. These works motivated the need
for the present catalogue as they linked real failures to a set of problems on the exception handling code
discussed in this catalogue.

6. CONCLUDING REMARKS

In this work we have presented a catalogue on exception handling patterns to support Java development.
This catalogue was created by compiling, explaining and expanding a set of practices taken from (Bloch
2017), (Wirfs-Brock 2016), (Adamson 2015), (Gosling et al. 2000) and also from static analysis tools, also
known as “linters”: Robusta (Robusta 2018), SpotBugs (SpotBugs 2018), SonarLint (SonarLint 2018) and
PMD (PMD 2018).

This work is an afford in the direction of structuring the knowledge on Java exception handling as a set of
patterns. The aim of this catalogue is not to be complete, other patterns and good design and
implementation solutions may exist on other sources that were not included in this catalogue. However,
through this catalogue we aim at supporting the development of more robust Java systems, helping
developers to detect and prevent bugs when developing the exception handling code. Although most of the
patterns presented here focuses on Java exception handling constructs some of the ideas presented here
may also be useful when developing in other languages (e.g., C#, C++) which contains similar exception
handling built in constructs.

REFERENCES

Barbosa, E. A., Garcia, A., & Barbosa, S. D. J. (2014, September). Categorizing faults in exception handling: A study of open
source projects. In Software Engineering (SBES), 2014 Brazilian Symposium on (pp. 11-20). IEEE.

Bloch, J. (2017). Effective java. Addison-Wesley Professional.

Chen, C. T., Cheng, Y. C., Hsieh, C. Y., & Wu, 1. L. (2009). Exception handling refactorings: Directed by goals and driven by bug

Page - 16

fixing. Journal of Systems and Software, 82(2), 333-345.

Chris Adamson. (2015). Exception-Handling Antipatterns Blog. Retrieved May, 2018 from
https://community.oracle.com/docs/DOC-983543.

Coelho, R., Almeida, L., Gousios, G., & van Deursen, A. (2015, May). Unveiling exception handling bug hazards in Android
based on GitHub and Google code issues. In Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on (pp. 134-145). IEEE, 2015.

Coelho, R., Rashid, A., von Staa, A., Noble, J., Kulesza, U., & Lucena, C. (2008, October). A catalogue of bug patterns for
exception handling in aspect-oriented programs. In Proceedings of the 15th Conference on Pattern Languages of Programs
(p. 23). ACM, 2008.

Ebert, F., Castor, F., & Serebrenik, A. (2015). An exploratory study on exception handling bugs in Java programs. Journal of
Systems and Software, 106, 82-101.

Gamma, Erich, et al. (1995). Design patterns: Elements of reusable software components. Addison-Wesley.

Gosling, J., Joy, B., & Steele, G. (2000). The Java language specification. Addison-Wesley Professional.

Haase, A. (2002, July). Java Idioms-Exception Handling. In EuroPLoP (pp. 41-70).

Jenkov, dJ. (2014). Checked or unchecked exceptions? Retrieved May, 2018 from
http://tutorials.jenkov.com/java-exception-handling/checked-or-unchecked-exceptions.html.

Miller, R., & Tripathi, A. (1997, June). Issues with exception handling in object-oriented systems. In European Conference on
Object-Oriented Programming (pp. 85-103). Springer, Berlin, Heidelberg.

Phamn, Thang. (2011). Java: checked vs unchecked exception explanation. Retrieved May, 2018 from
http://stackoverflow.com/questions/6115896/java-checked-vs-unchecked-exception-explanation.

PMD. (2018). Retrieved May, 2018 from https:/pmd.github.io/.

Robusta. (2018). Retrieved May, 2018 from https://marketplace.eclipse.org/content/robusta-eclipse-plugin.

SonarLint. (2018). Retrieved May, 2018 from https://www.sonarlint.org/.

SpotBugs. (2018). Retrieved May, 2018 from https://spotbugs.github.io/.

The Java tutorials (2017). Unchecked exceptions: The controversy. Retrieved May, 2018 from
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html.

Wirfs-Brock, R. J. (2006). Toward exception-handling best practices and patterns. IEEE software, 23(5), 11-13.

Yuan, D., Luo, Y., Zhuang, X., Rodrigues, G. R., Zhao, X., Zhang, Y., ... & Stumm, M. (2014, October). Simple Testing Can
Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems. In OSDI (pp.
249-265).

Page - 17

https://community.oracle.com/docs/DOC-983543
http://tutorials.jenkov.com/java-exception-handling/checked-or-unchecked-exceptions.html
http://stackoverflow.com/questions/6115896/java-checked-vs-unchecked-exception-explanation
https://pmd.github.io/
https://marketplace.eclipse.org/content/robusta-eclipse-plugin
https://www.sonarlint.org/
https://spotbugs.github.io/
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

