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Systems-of-Systems (SoS) architectures are inherently dynamic; hence, they must support continuous modification in the behaviour and
configuration of these systems at runtime as a result of changes in the environment, new SoS missions, and failures or unavailability of
constituents. Modifications should occur without affecting the integrity of constituents, the accomplishment of SoS missions, neither their
reliability, security, safety, nor other quality attributes. Architecting SoS requires then important investments in human, time, and economic
resources, bringing big challenges. Architectural patterns have been widely used to improve software architecture quality, decreasing costs
of design and promoting reuse of good practices and well-known solutions. Nowadays, a great amount of architectural patterns is available;
most of them are domain-independent, which harness their selection in specific software projects. The main goal of this paper is to contribute
to reduce the work of architects during the choice of better architectural patterns for their SoS. For this, we present a set of patterns that
are commonly used to construct such architectures. Additionally, benefits of adopting these patterns are described. To demonstrate their
feasibility, we present HSH-SoS, a pattern-base architecture for SoS that presents how different patterns can interact to create a solution for
SoS. As results, the architectural patterns reported in this work are feasible candidates to compose a language for recurrent problems in SoS
architectures. However, formalization of such language is an open issue that we intend to address in future works.
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1. INTRODUCTION

Systems-of-Systems (SoS) have been growing in popularity, due to their complexity and adaptive characteristics
[Jamshidi 2011; Veríssimo 2006; Bondavalli et al. 2016]. SoS are complex systems composed of a collection
of distributed systems (constituents), which gather their resources and capabilities together to provide new and
enhanced services aiming at accomplishing missions that are not feasible by any of the constituents working
independently [ISO/IEC-24765 2010; Nielsen et al. 2015; Mittal and Rainey 2015; Zoppi et al. 2017]. In general,
[Maier 1998], [DeLaurentis 2005] and [Nielsen et al. 2015] defined SoS as a type of complex systems that have
five characteristics: (i) operationally independence: each constituent has its individual purpose and continues
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to operate even disassembled from the SoS; (ii) managerial independence: each constituent is developed and
maintained by independent organizations; (iii) evolutionary development: SoS development is evolutionary and
adaptive, in which structures, functions, and purposes change according to the needs of the SoS; (iv) distribution:
constituents are dispersed and must provide a communication protocol to interoperate to the SoS; and (v) emergent
behavior: behavior of the SoS emerges as a result of the interdependent collaboration of its constituents.

This scenario leads to the need of building SoS that must be developed and maintained in a way that they can
evolve more easily, and in which the impact of changes must be minimized by the operational and managerial
independence of the constituents [Nielsen et al. 2015; Zoppi et al. 2017]. The difficulties for building SoS emerge
due to the unpredicted collaborations among their constituents [Dersin 2014]. SoS must deal with the loss, inclusion,
and replacement of constituents at runtime, besides adjusting their behavior to available resources [Maier 1998].
Therefore, SoS architects must create solutions that benefit quality attributes of interoperability, maintainability,
dynamic evolution, flexibility, adaptivity (adaptation in runtime), scalability, and so forth. Moreover, architectural
decisions addressing these attributes must be well-defined and documented to facilitate the understanding of SoS
architecture by different groups of stakeholders, promoting the quality of this complex systems.

For this purpose, architectural decisions can be captured or documented through architectural patterns (some-
times referred as styles) [Harrison et al. 2007], which are well proven solutions for recurring problems. These
patterns help architects to understand the impact of architectural decisions on quality attributes requirements,
because they contain information about benefits, consequences, and context of their usage [Harrison et al. 2007].

Architectural patterns constitute a mechanism to capture domain experience and knowledge allowing their
reapplication when a similar architectural problem is encountered [Pressman and Bruce R. Maxim 2014]. According
to [Bass et al. 2013], an architectural pattern establishes a relationship among: (a) a context:, that describes the
recurrent situation which origins a problem; (b) a problem:, that generally describes the problematic found in the
context. Often, this description includes quality attributes that must be met by the pattern; and (c) a solution:, that
details the successful architectural resolution to the problem. The solution describes the architectural structures
that solve the problem, responsibilities of elements and the relationships among them, as well as their runtime
behavior during their interactions.

An important aspect of architectural patterns is to make clear what quality attributes are provided by the static
and runtime configurations of elements, since software architectures are mostly driven or shaped by quality
attributes requirements, which determine and constrain the most important architectural decisions [Clements and
Bass 2010]. These patterns represent the first place in the software creation process in which quality requirements
should be addressed. Such quality requirements are thus, satisfied by the various structures designed into the
architecture, and the behaviors and interactions of the elements that populate those structures [Bass et al. 2013].

In a broad perspective, a pattern language is a structured collection of patterns that rely on each other to
transform requirements and constraints into an architecture [Coplien 1998]. A pattern language is a way of
subdividing a general problem and its complex solution into a number of related problems and their respective
solutions. Each language pattern solves a specific problem in the common context shared by the language. Each
pattern can be used separately or with a number of patterns of the language. This means that a pattern alone is
considered useful even if the language is not being used.

Due to their benefits, pattern languages have been focus of research for different systems since the beginning of
this century. It is possible to find several studies addressing this level of abstraction of architectures [Avgeriou and
Zdun 2005; Fernandez and Pan 2001; John et al. 2009; Fehling et al. 2011]. Avgeriou and Zum [2005] presented a
language of classical patterns to guide the overall design of architectures independent of the domains. Fernandez
and Pan [2001] reported an architectural pattern language for security models. John et al. [2009] proposed a
pattern language for usability support, while the work of Fehling et al. [2011] focused on cloud-based applications.
Finally, more recent studies investigates a pattern language for scalable systems based on microservices [Márquez
et al. 2018], and for big data systems [Sena 2018].
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Regarding SoS, investigations on architectural patterns started approximately ten years ago. Ingram et al.
[2015] report some relevant characteristics required in an architectural pattern for SoS: i) the extent to which
a SoS may need to accommodate legacy constituents systems and unsynchronized evolution; ii) the level of
assurance of emergent behaviors, which are impossible to fully predict but need to be avoided; iii) the need for
a central decision-making authority; iv) the need for separation of concerns; v) the importance of resilience and
adaptability; and vi) the need for a clear chain of command, or accountability for decisions. In this perspective,
some studies have investigated taxonomies of architectural patterns and styles to address challenges associated
to these systems [Romay et al. 2013; Rothenhaus et al. 2009; Ingram et al. 2015; Garcés et al. 2019b], namely,
mitigation of the impact caused by changes occurred at constituent systems level, supporting to the understanding
of emergent behaviors in runtime, centralization or decentralization of the decision-making authority, separation of
concerns of SoS and of their constituents, facilitation of constituent systems collaboration, and adaptability and
resilience through SoS dynamic reconfigurations [Ingram et al. 2015].

Despite the existence of relevant works, the research on the development and application of architectural
patterns for complex and large-scale systems, as are SoS, is still in its infancy [Kalawsky et al. 2013]. Hence, more
efforts must be done to facilitate architects work, decreasing their time spent at searching best alternatives for
their SoS, and improving the quality of their architectures.

In this work we report the most common architectural patterns and styles used in SoS, highlighting their
contribution to SoS characteristics and quality attributes such as interoperability, flexibility, scalability, dynamism,
and adaptations in runtime. These patterns and styles were identified in scientific data libraries and patterns
repositories. To demonstrate their applicability in SoS, we present examples of how these patterns and styles
could cooperate to create more complete solutions. It is our intention to consider them in a patterns language for
SoS architectures.

The remainder of this paper is structured as follows. Section 2 details methods used to identify architectural
patterns for SoS. These patterns are described in Section 3, and their application in SoS is reported in Section 4.
Some discussions are presented in Section 5. Finally, conclusions and future works are disclosed in Section 6.

2. METHODS

In this section, we present methods used to identify and select the set of architectural pattens / styles more
appropriated for architecting SoS. Shortly, the following four steps were conducted:

Step - 1: To understand challenges at architecting SoS. For this, we performed: (i) a study of literature reporting
SoS fundamentals [Maier 1998; Jamshidi 2011; Nielsen et al. 2015; Bondavalli et al. 2016; Oquendo 2017];
(ii) an analysis of architectural properties of SoS [Ingram et al. 2015; Maier 1998]; and (iii) an identification of
requirements of quality attributes of SoS in different domains as healthcare [Garcés 2018], big data [Sena 2018],
crisis and emergency management [Paes et al. 2016], military [de Barros Paes et al. 2018], and smart cities
[Cavalcante et al. 2017]. Table II lists SoS requirements found in this step.

Step - 2: To characterize architectural patterns and styles used for constructing SoS architectures. For this, the
search string in Table I was executed in the data libraries Scopus and GoogleScholar. Such libraries were selected
because they index research works published in other important computer science academic libraries, such as
ACM Digital Library, SpringerLink, and IEEE Xplore. The search was constrained to Title-Abstract-Keywords.

Table I. Search String

(“architectural pattern?” OR “architectural style?”) AND (“System-of-Systems” OR “Systems-of-Systems” OR “System of Systems”)

As result of this search, the following studies were identified: [Muller et al. 2009; Rothenhaus et al. 2009; Cuesta
and Romay 2010; Nichols and Dove 2011; Cuesta et al. 2013; Kazman et al. 2013; Romay et al. 2013; Weyns
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and Ahmad 2013; Barnes et al. 2014; Ingram et al. 2014; Ingram et al. 2015; Cuesta et al. 2016]. For the best of
our knowledge, they are the only works investigating architectural patterns and styles for SoS architectures. The
identified architectural patterns and styles for SoS were: Centralized Architecture, Services-Oriented and Micro-
Services Architectures, Publish-Subscribe, Trickle-Up, Reconfiguration Control Architecture, Contract Monitor,
Pace-Layer, and Evolution Styles.

Step - 3: To investigate architectural patterns and styles for systems whose architectures present self-*
properties [Salehie and Tahvildari 2009], namely, self-configuring, self-healing, self-optimizing, self-protecting,
self-management, self-organizing, and reflection. Hence, we identified architectural solutions that allow dynamism
and self-organization of software structures in runtime, since they are important properties that SoS architectures
must address [Nichols and Dove 2011; Oquendo 2017]. Architectural patterns and styles used in systems with self-*
properties are: Layers, Pipes-and-Filters, Publish-Subscribe, SOA, Blackboard, Shared-Data Repository, Master-
Slave, Observer-Controller, Enterprise Service Bus, Epistemic Control Loop, Autonomic Manager (MAPE-K), Meta
Controller, Deep Model Reflection, Broker, Decorator, and Aggregator [Garcés et al. 2019b].

Step - 4: The patterns repositories [van der Aalst and ter Hofstede 2017; Met 2019; AEI 2019; The Hillside
Group 2019] were mined to identify possible solutions that could be adopted in SoS architectures. From these
repositories, the architectural style AMO (Adaptive Object Model) [Yoder and Johnson 2002] was selected.

Step - 5: We studied patterns and styles obtained in Steps 2, 3, and 4 and we selected the most common and
feasible architectural solutions to support the achievement of SoS requirements investigated in Step 1. Table II
lists the architectural patterns / styles that literature have reported as useful to address the specific requirements
of SoS architectures, which were obtained in the Step 1.

Table II. Relation between SoS requirements and architectural patterns / styles. Evidences from literature.
ID SoS Requirements Architectural Patterns/Styles
R01 Integration of constituent systems to enhance their

collaboration
Centralized Architecture, Publish-Subscribe, SOA (Service-Oriented Ar-
chitecture), MSA (Micro-Services Architecture), ESB (Enterprise Service
Bus), Trickle-up, Pace-Layer, MAPE-K (Autonomic Manager)

R02 Assurance of emergent behaviors Centralized Architecture, SOA, MSA, Trickle-up, Reconfiguration Control
Architecture, Evolution Styles, Reflection, MAPE-K

R03 Central decision making authority Centralized Architecture, SOA, Publish-Subscribe, Reconfiguration Con-
trol Architecture, Trickle-up, MAPE-K

R04 Separation of concerns and low coupling SOA, MSA, Publish-Subscribe, Pipes-and-Filters, Reconfiguration Control
Architecture, ESB, Trickle-up, Pace-Layer, Evolution Styles, Reflection,
MAPE-K

R05 Resilience and adaptability of decisions SOA, MSA, Publish-Subscribe, Pipes-and-Filters, Trickle-up, Reconfigu-
ration Control Architecture, Reflection, MAPE-K, AOM (Adaptive Object-
Model)

R06 Dynamic reconfigurations MSA, Pipes-and-Filters, Reconfiguration Control Architecture, Pace-Layer,
Evolution Styles, Reflection, MAPE-K, AOM

R07 Missions accomplishment Centralized Architecture, Reconfiguration Control Architecture
R08 Clear command chain and accountability of deci-

sions
Centralized Architecture, SOA

R09 SoS evolution SOA, MSA, MAPE-K, Publish-Subscribe, Pace-Layer, Evolution Styles,
Reflection, AMO

Step - 6: These patterns and styles were applied during the construction of SoS architectures in different
domains. Some experiences of using these architectural solutions were abstracted and are presented in Section 5.

3. ARCHITECTURAL PATTERNS FOR SOS

In this section, the patterns and styles identified for SoS architectures are described.

Towards an architectural patterns language for Systems-of-Systems — Page 4



Centralized Architecture. In a centralized architecture, a central controller, defined as a hub, is responsible
for guarantee the correct behavior and allow the accomplishment of missions of the SoS [Ingram et al. 2015].
Control can be characterized as: (i) fully centralized, when just one central controller is responsible for meeting
SoS goals; (ii) hierarchical centralized, when constituent systems act as controllers themselves; (iii) hybrid
centralized-distributed, if control activities are distributed among different constituent systems and hubs [Ingram
et al. 2015].

Service-Oriented Architecture. Service Oriented Architecture (SOA) gives support to deal with distributed busi-
ness processes. Systems participating in a SOA-based system execute business activities and are heterogeneous
and under control of different owners [Josuttis 2007]. SOA pattern promotes interoperability among distributed
systems to accomplish business functionalities (services) through the easy integration of their capabilities [Josuttis
2007]. SOA-based system behavior and performance can be studied by analyzing service descriptions [Ingram
et al. 2015]. SOA also improves reliable solutions, since capabilities can be offered by multiple providers (e.g.,
constituent systems), hence, if a provider is unavailable another can replace its participation. SOA minimizes the
impact of modifications and failures of the SOA-based systems on participant systems, and vice-versa, due this
pattern promotes loose-coupling. Moreover, SOA improves flexibility and horizontal scalability, since new systems
or systems capabilities can be added to a SOA solution due to standardized interfaces and pre defined contracts.
Vertical scalability is achieved with the coordination or adaptation of services for creating composed and process
services, which are high-level services defined to execute complex business activities work-flows.
Composed and process services are designed using orchestration or choreography approaches. In orchestration,
a central controller coordinates all process activities. Choreography approach involves collaboration between
participants (services), which are responsible for executing one or more activities. In choreography, no central
controller exists, hence, collaboration rules must be defined, since services are unaware of activities performed by
other participants [Josuttis 2007]. Choreography allows better scalability than orchestration, since control can be
distributed among participants, however, it can impact on the system performance, since the full-decentralized
control requires to exchange large amounts of information between participants [Garcés et al. 2019b].

Micro-Services Architecture. Micro-Services Architecture (MSA) are an architectural style [Lewis and Fowler
2014] that overcomes development and deployment issues initially presented in SOA [Zimmermann 2017]. MSA
can be used as style to structure SoS architectures [Cuesta et al. 2016], since MSA can promote: (i) operational and
managerial independence of constituent systems in an SoS, considering each individual system as a micro-service
that is geographically distributed and heterogeneous, and maintains its own technologies and data repositories; (ii)
evolutionary development of SoS, due the facilities for continuous development and deployment that MSA present,
without impacting other micro-services operations; and (iii) decentralized governance that allows scalability and
continuous evolution of SoS.

Enterprise Service Bus. Enterprise Service Bus (ESB) is the technical backbone of SOA [Josuttis 2007]. The
ESB provides connectivity, data transformation (to allow semantic and syntactic interoperability), protocol trans-
formation (allowing technical interoperability), intelligent routing (e.g., using mediators, point-to-point connectors,
or interceptors), means to deal with security and reliability of services, service management (adding, removing,
deactivating, or updating services), and monitoring and logging services operations (to measure Quality of Service -
QoS). In the context of SoS, heterogeneous ESB can be integrated to offer large scale mediation among distributed
heterogeneous constituent systems.

Publish-Subscribe. Publish-Subscribe pattern allows event consumers (subscribers) to be registered for specific
events, and event producers to publish (raise) specific events that reach a specified number of consumers. The
Publish-Subscribe mechanism is triggered by the event producers and automatically executes a callback-operation
to the event consumers. The mechanism thus takes care of decoupling producers and consumers by transmitting
events between them [Avgeriou and Zdun 2005].
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In the context of SoS, a constituent system can act as a publisher and/or subscriber. This pattern can be divided
in data-centric or content-based publish-subscribe pattern with centralized or decentralized control [Ingram et al.
2015]. Some benefits of this pattern are: (i) performance improvement at communicating data among SoS entities,
(ii) promotion of modifiability due to low coupling between entities, (iii) encourage dynamic scalability and evolution,
since entities can enter or exit without affecting others entities [Garcés et al. 2019b], and (iv) provides resilience,
since subscribers can register with multiple publishers for a topic [Ingram et al. 2015].
Pipes-and-Filters. Pipes-and-Filters pattern allows to divide complex task in more easy understood sub-task that
are sequentially executed. Each sub-task is implemented as filter that has as responsibility to handle only such
task. A filter has a limited amount of inputs and outputs and is connected with other filters though pipes. Filters are
unaware of the purpose of their peers. Each filter consumes and delivers data incrementally, which maximizes the
throughput of each individual filter, since filters can potentially work in parallel [Avgeriou and Zdun 2005]. This
architectural style also supports reusability of filters, since a filter can be added, removed, or composed in different
work-flows and connected through multiple pipes, without affecting other filters operations [Hohpe and Woolf 2003].
In the context of SoS, Pipes-and-Filters pattern can grant concurrent execution of adaptations by layers, where
each layer is seen as a filter [Garcés et al. 2019b].
Trickle-Up Software Pattern. The Trickle-Up pattern is a multi layered pattern that allows separation of concerns
for data management. Data object management and fusion logic are independent services that can be binding in
runtime to promote control and monitoring of data management [Rothenhaus et al. 2009]. This pattern is principally
used when environment data are collected and must be further analyzed and aggregated to create consolidated
reports of a situation. In SoS context, the trickle-up pattern can be used for knowledge aggregation and discovering
required to support SoS emergent behaviors.
Reconfiguration Control Architecture. The aim of this pattern is to promote dynamic reconfigurations of soft-
ware architectures. For this, a reconfiguration control entity (e.g., a central controller) is responsible for monitoring
constituent systems performance and functionality in the form of metadata obtained from each system. Based
on such metadata, the controller, making use of reconfiguration policies, determines when a reconfiguration is
necessary and what actions must be executed [Ingram et al. 2015]. In SoS, this pattern can be used to avoid
degradation of SoS missions due to modifications or unavailability of its constituent systems.
Contract Monitor. This pattern aims to monitor constituent systems interfaces in order to identify possible
deviations from its expected functionalities that can prejudice expected SoS emergent behaviors. For using
this pattern, it is assumed that constituent systems interfaces are associated to contracts of behavior, and that
composition of such contracts can be correlated to SoS emergent behaviors [Ingram et al. 2015]. Contract monitors
can be implemented internally in a constituent system, as an entity, under SoS control, monitoring constituent
systems interfaces, or as an external entity monitoring interactions between constituent systems to study emergent
behaviors [Ingram et al. 2015].
Pace-Layers. Also named layers of change, is proposed as an initial strategy to design SoS [Romay et al. 2013].
Layers allow the construction of complex behaviors through layers hierarchies, where lower layers implement fast
adaptations (i.e., reconfigurations on constituent systems) and higher layers are responsible for time demanding
adaptations (i.e., selection of the best policy or plan to achieve SoS missions based on current system sta-
tus)[Garcés et al. 2019b; Romay et al. 2013]. Lower layers adaptations aim to achieve performance requirements,
and adaptations in higher layers seem to address reliability requirements [Garcés et al. 2019b]. Moreover, as layers
allow separation of concerns, this property supports maintainability and reusability requirements. Interoperability
can also be supported by SoS lower layers at establishing well-defined interfaces of constituent systems.
Evolution Styles. Evolution styles have been proposed to modify software architectures of running systems
regarding new requirements, technologies, or to achieve self-* properties, e.g., self-healing, self-organization
[Cuesta et al. 2013; Garlan et al. 2009]. Evolutions styles are composed of [Cuesta and Romay 2010]: (i) evolution
conditions that allow to identify situations that should be handled through system evolution ; (ii) evolution decisions,
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that are alternatives made as reaction to an evolution condition; (iii) evolutionary steps that realize the evolution
decision; (iv) evolution patterns, that are sequence of evolution decisions, being represented as a decision tree;
and (v) evolution styles, that are a set of evolution patterns conceptually related. In SoS context, evolution styles
could orient reconfigurations of SoS architectures due to emergent behaviors or modifications in missions to be
performed by the SoS.

Reflective Architecture. Reflection is defined as “the capability of a system to rationalize and act upon itself”
[Cuesta et al. 2001; Maes 1987]. A system with reflection capability is composed of two layers. A bottom layer
describing system operations and configuration (e.g., components, interfaces, data, interconnections, etc.), and
an upper layer embracing an internal meta-model representing how the system perceives and/or modifies itself
[Cuesta et al. 2001]. Such model contain all structural an behavioral aspects of the system and is separated from
the application logic components [Avgeriou and Zdun 2005]. Hence, the system will reflect changes performed
in the model, and vice versa through the execution of two basic operations named reification and reflection.
Reification is the action to transfer current system status to make alterations in the meta-model. Reflection is
the operation of change system configuration or behavior regarding modifications in the meta-model. In this
perspective, reflection architecture makes the system more flexible, since it can adapt itself to changing conditions
[Cuesta et al. 2001; Cuesta and Romay 2010]. Moreover, reflection allows for coping with unforeseen situations
automatically [Avgeriou and Zdun 2005]. In SoS, the reflection architecture can support evolution and changes in
runtime, promoting the anticipation of SoS predicted emergent behaviors and the detection of unforeseen ones.

AOM. The Adaptive Object-Model (AOM) is an architectural style used as a strategy to build dynamic and
adaptable systems. AOM are also known as a particular kind of reflective architecture [Yoder 2017]. An AOM
represents, as metadata, classes, attributes, relationships, and behavior that rule a software system. Hence, the
system’s architecture is an abstract model that can be instantiated to the system during its operation. The metadata
(object model) can be changed at anytime by users to reflect changes in the domain. These changes modify
the system’s behavior and structure. Hence, the system stores its Object-Model in a database (or repository)
and interprets it. Consequently, the model is adaptable; when the descriptive information is modified, the system
immediately reflects those changes [Yoder and Johnson 2002].
SoS architectures must be defined in an abstract way [Oquendo 2017], describing possible arrangements or
coalitions (among SoS’ independent systems and dependent software entities) that could be configured by the
central authority to achieve different missions. Hence, the application of the AOM style in SoS can favor the
abstract descriptions and modifications of their architectures.

MAPE-K. Autonomic computing has feedback control loops as first-class entities. The most used one is the
Autonomic Manager [IBM 2006], or MAPE-K loop, which consists of five components, i.e., Monitor, Analyser,
Planner, Executor and Knowledge, and two pairs of sensors and actuators as input and output interfaces,
respectively.
Sensors collect information about the monitored system (e.g., constituent system). The monitor component filters
the accumulated sensor data, and stores relevant events in the knowledge base for future reference. The analyzer
compares event data against patterns in the knowledge base to diagnose and store symptoms. The planner
interprets symptoms and devises a plan to execute changes in the managed system (e.g., the SoS or parts of it)
through the actuators [IBM 2006; Muller et al. 2009]. An autonomic manager maintains its own knowledge (e.g.,
information about its current state as well as past states) and has access to knowledge that is shared among
collaborating autonomic managers. MAPE-K loops have been used as an architectural solution to design software
architectures of systems with adaptations at runtime, such as are SoS [Arcaini et al. 2018; Garcés et al. 2019b].
Control in autonomic managers can be centralized, decentralized or fully-decentralized [Weyns et al. 2013].
Decentralization level is defined based on how control decisions in the system are coordinated among the MAPE
components. In centralized control, a single component dedicated to one of the MAPE activity exists. Decentralized
control is characterized by the existence of multiple components responsible for one of the MAPE activities, i.e.,

Towards an architectural patterns language for Systems-of-Systems — Page 7



multiple components realizing monitoring activities. In centralized and decentralized control, MAPE components
are deployed in a single node. Fully-decentralized control is similar to decentralized control, but with multiple MAPE
components deployed in multiples nodes [Garcés et al. 2019b]. To realize decentralized and fully-decentralized
systems, an arrangement of collaborating autonomic managers works towards a common goal [Muller et al. 2009].
Arrangements can be done through sensors and actuators, which communicate autonomic manager status to
peers and execute input policies sent from peers.

4. APPLYING ARCHITECTURAL PATTERNS IN SYSTEMS-OF-SYSTEMS

The abovementioned architectural patterns were used by authors during the architectural design of SoS in domains
of healthcare [Garcés 2018], crisis and emergency management [Paes et al. 2016], and big data [Sena 2018].
Patterns application was assessed through the conduction of case studies, therefore, evidences presented in this
section have been conceptually proven.

Specifically, in this section, we explain the use of architectural patterns and styles through the presentation
of the architecture of Healthcare Supportive Home SoS (HSH-SoS) [Garcés 2018]. HSH-SoS are collaborative
SoS, since each constituent system maintains its operational and managerial independence, but constituents
collaborate with the HSH system to achieve and evolve the global missions. Examples of constituent systems
are smart homes, domotic systems, electronic health records (EHR) systems, Health Information Systems (HIS),
telemedicine systems, teleconsultation systems, emergency systems, activity monitoring systems, physiological
monitoring systems, smart devices, company robots, mobile apps, smart TV apps, and rehabilitation systems,
among others. HSH-SoS provide health services to patients in their residence and supply them with autonomy
through the interaction and coordination of their constituent sytems. An example of an HSH-SoS for patients with
diabetes mellitus can be consulted in [Garcés 2019].

The general representation of HSH-SoS architecture is depicted in Figure 1. HSH-SoS’ structures are organized
following the SOA pattern, specifically the Service-Oriented Solution Stack (S3) reference architecture [Arsanjani
et al. 2007]. HSH-SoS are structured in seven layers as presented in Figure 1:

Basic Services layer

It is the lowest level layer, containing two types of services, named constituent systems services and control
services.

Constituent Systems Services, consist of capabilities offered by individual systems and that are needed to
achieve SoS missions. It is important to highlight that, due to the fact that such services are offered by constituent
systems, they are not under the control of the SoS, but they operate and are managed independently by external
organizations. Hence, constituent systems services can be developed as micro-services and deployed in the
SoS architecture following well structured interfaces and contracts [Cuesta et al. 2016].

In the context of HSH-SoS, a type of constituent systems’ services are those responsible to offer patient’s
physiological parameters, for instance, body temperature, body measures (e.g., weight, height, waist diameter),
heart rate, respiratory rate, blood pressure, oxygen levels (SPO2), among others parameters. Additional services
required in HSH-SoS are those for defining patient’s activities levels, assessing patient’s nervous and cardiovascular
system, and monitoring patient’s environment (e.g., house).

Constituent systems capabilities can be developed as micro-services and deployed in the SoS architecture
following well structured interfaces.

Control services, allow orchestration and choreography of basic services and their composition into business
process services. In SoS, control services were proposed to the construction of autonomic managers (e.g.,
MAPE-K) as manager services located in the Business process layer and Quality of service layer. Hence, each
control service performs specific functionalities of elements in the MAPE-K pattern, namely monitor (M), analyser
(A), planner (P), executor (E), and data access (K). Additionally, a service for handling incoming events is also
considered in this layer. The MAPE-K pattern was presented in Section 3.

Towards an architectural patterns language for Systems-of-Systems — Page 8



Fig. 1. HSH-SoS architecture overview. Application of the SOA pattern. Adapted from [Garcés 2018].

Each controller service acts as a Filter, that is, executing sequences of tasks (e.g., monitoring, analysing,
planning, or executing), and each task is implemented and handled by a specific control service. Moreover,
controller services communicate the output of their processing through a directed channel or Pipe, forming thus, a
sequential work-flow. More information about control services behaviors is offered in [Garcés et al. 2018; Garcés
et al. 2019a].

In HSH-SoS, control services are used to coordinate work-flows of business processes services, such as the
Patient Care Manager and the Emergency Manager, as depicted in Figure 2. The Patient Care Manager service
is structured following the MAPE-K pattern, and is composed of the Patient Sign & Symptom that is an instance of
the Monitor service, the Patient Physical Status as instance of the Analyser service, and the Patient Status and
Sign & Symptoms Monitor as a Planner service.
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Fig. 2. Patterns involved to achieve a business process in the HSH-SoS.

Business process services layer

Services in this layer, represent macro-flow activities specified in business processes that the SoS must accomplish.
These services are composed of basic services, i.e., constituent systems services and control services. Business
services realize the logic to orchestrate basic services to execute a business process. In SoS, business process
services are responsible for performing high-level missions, and they are under the control of the SoS (unlike
constituent services that are independently controlled).

In HSH-SoS, a business process is related to those work-flows required to bring healthcare services at patient’s
home, e.g., activities performed by the healthcare team to successfully manage patient’s condition [Garcés 2018].
Example of business process services in HSH-SoS are the ones presented in the top of Figure 2. The Patient
Care Manager is a composite service that executes the work-flow presented in Figure 3 and for that it coordinates
the following services: (i) the Patient Sign & Symptom service, a Monitor, responsible to: collect patient’s health
parameters from constituent systems services, aggregate such parameters in coherent clinical information, store
such information in the personal health record, and communicate them to the Patient Physical Status service; (ii)
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the Patient Physical Status is an Analyser responsible to infer the patient’s physical status based on historical
information stored in the health records and the current patient’s parameters. For this, it uses some inference rules
stored in the Inference Engine repository (which is located in the Information architecture layer); (iii) the Patient
Status and Sign & Symptom Monitor that receives the inferred patient’s status and defines the best intervention
plan for the patient, following instructions stored in the Emergency Intervention Plan repository. The execution of
such plan is the resposibility of the Emergency Manager service that communicates and coordinates the involved
entities and services, e.g., home healthcare team, emergency (ambulance, firefighters), and other services located
in the Consumer layer.

Fig. 3. Excerpt of the orchestration plan for the business process service: "Patient Care Manager". Source: [Garcés 2018].

Besides SOA, MSA, Pipes-and-Filters, and MAPE-K, the following architectural patterns are used to allow
the execution of SoS business processes, and thus, the accomplishment of their goals or missions: (i) the
Patient Care Manager follows a centralized architecture (C-A) to control interactions of individual services and
ensure the execution of the respective business process. The Emergency Manager follows a similar structure;
(ii) The Information Architecture layer follows the Trickle-Up (T-U) pattern, since repositories in this layer stores
aggregated data and information for controlling, monitoring, and decision making purposes, for instance the
information stored in the Patient Records and Inference Engine repositories are used by the Monitor (Patient Sign
& Symptom) and Analiser (Patient Physical Status) to establish patient’s health situation, as described before;
(iii) SoS missions are specified through service orchestration following business processes, and are stored in
the Service Orchestration Plans and Services & Contracts repositories. Hence, the Governance & Policies layer
follows the AOM (Adaptive-Object Model) style, since specifications ruling the SoS behavior are represented as
metadata stored in repositories allocated in this layer.
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Consumer services layer

This layer contains services to handle interaction with users or other stakeholders. An important type of consumer
services are the System Management Services, that manage configurations and modifications of the SoS, for
instance: (i) Plans Configuration Services, offering functionalities to modify the Environment Configuration Plans
repository in the Governance & Policies layer; (ii) services & contracts management services, allowing the insertion,
modification, or deletion of specifications of services, contracts, and protocols that are allowed in the SoS, and
that are stored in the Services & Contracts Repository, which is located in the Governance & Policies layer;
(iii) Missions Management Services, providing means to add, modify, or delete missions specifications of SoS
from the Missions Repository, allocated in the Governance & Policies layer; (iv) Quality Management Services,
allowing the management of quality plans, e.g., security, safety, reliability, and performance plans, which are
stored in repositories in the in the Governance & Policies layer; and (v) standards configuration services, offering
functionalities to modify, update, and add Interoperation Standards and Transformation Rules, which are located in
the Information Architecture layer. Through services offered in the Consumer Services layer, it is possible to follow
an evolutionary development during the SoS life cycle, ensuring their sustainability over time.

As aforementioned and depicted in Figure 2, the Information Architecture layer implements the Trickle-Up
pattern, and the Governance & Policies layer follows the AOM (Adaptive-Object Model) style. Moreover, this last
layer together with services in the System Management layer are also aligned with the Pace Layer (P-L) style,
since they are responsible for configuring time demanding adaptations, such as the selection of the best plan for
ensuring SoS missions.

System-of-Systems Service Bus (SoSSB) layer

The SoSSB is a specialization of the ESB and is analogous to the integration layer specified in the S3 reference
architecture [Arsanjani et al. 2007]. In the context of HSH-SoS, the SoSSB received the name of Health Service
Bus.

Capabilities offered by the SoSSB are mediation, routing, and transportation of services messages and events
through the Communication mediators services [Garcés et al. 2019a]. The SoSSB also allows message and
protocol transformation to grant services interoperability and integration, through the use of Conversion mediators
[Garcés et al. 2019a].

For communication, collaboration, and coordination purposes, the SoSSB defines three mediators, as depicted
in Figure 1: (i) a discovery service, responsible for detecting possible providers of services requested by services
in the consumer layer (e.g., stakeholders services), and for verifying if contracts are correctly addressed by
participating services; (ii) an interceptor service, responsible for routing messages in the SoSSB, verifying
permissions of services over operations and data, and recording all operations occurred in the bus into the system
logs repository; and (iii) a container service, which is in charge of updating services registers, such as capabilities
offered, implemented standards, availability level, roles, profiles and quality metrics.

For integration and interoperation ends, SoSSB offers four conversion mediators: (i) a filter service, responsible
to decode a message and select specific sets of information contained in a message; (ii) a translator service, which
aims to achieve semantic interoperability, interpreting information contained in a message and translating the
information to be interpreted by other participants; (iii) a wrapper service, which intends syntactic interoperability,
encoding information in specific message format to be understood by other participants; and (iv) a broker service
that coordinates services offered by filter, translator, and wrapper services to offer a composed service for collecting
messages from a provider and transforming and routing messages to consumers in an interoperable way. More
details about software mediators in SoS can be found in [Garcés et al. 2018; Garcés et al. 2019a]. Moreover, to
achieve confidentiality and integrity of data, filters, wrappers, and brokers can include operations to implement
end-to-end security mechanisms, e.g., encrypting and decrypting of messages.
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Fig. 4. Integration of constituent systems.

The SoSSB is designed to improve flexibility and evolution of SoS, since it is possible to add, remove, modify
or reconfigure services during SoS operation. For instance in HSH-SoS, in Figure 4, the required constituent
system services (e.g., thermometer, heart rate monitor, respiratory rate monitor, SPO2 monitor, and blood pressure
monitor) are connected to the Health Service Bus through conversion mediators to ensure data interoperability.
Moreover, they are verified by the Discovery service to check if their contracts specifications are adequate for
participating in the HSH-SoS. Contracts specifications are previously defined and their specification is stored in
the Services & Contracts repository. Therefore, the Discovery service follows the Contract Monitor (C-M) pattern.
Once contracts are verified, the constituent systems services are authorized to compose a business process
service, and hence, to participate in the execution of an SoS mission.

Moreover, ESB can be assembled to allow the integration of other SoS as illustrated in Figure 5. In our
example, different HSH-SoS can be temporary assembled to allow higher missions, for instance, the monitoring of
chronic patients at municipal level. For this, different Health Service Buses deployed in patient’s residence can
publish information about patients into a municipal service bus, and communicate such information to health
organizations (subscribers) for executing healthcare prevention and promotion plans for the community. Moreover,
municipal service buses can collaborate and publish relevant information into a national service bus for allowing
epidemiological monitoring.

In this perspective, the coalition of distributed ESB favors scalability of SoS and dynamic evolution of such
systems regarding changes of their missions.

Quality managers layer

As defined in the S3 reference architecture [Arsanjani et al. 2007], the Quality of Service (QoS) layer is responsible
for capturing, monitoring, logging, and signalling non compliance with non-functional requirements that relate to
the service qualities. This layer observes the basic, business process, and consumer services layers, as well as
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Fig. 5. Scalable architecture of SoS through coalitions of ESB

the SoSSB layer, and emits events when it detects or anticipates non compliance with reliability, performance,
security, and safety requirements. Henceforth, the aim of QoS layer is to ensure the SoS and their constituents
meet non-functional requirements.

In HSH-SoS, several Quality Managers Services were defined, i.e., reliability, performance, security and safety
managers. The internal structure of a Quality Manager Service is presented in Figure 6. A quality manager is
composed of Control Services, monitor, analyser, planner, executor, data access, following the MAPE-K pattern.
These managers are responsible for monitoring quality metrics, analysing non compliance of quality specifications,
planning and executing required reconfigurations to maintain the desired quality level of the SoS, as specified in
the Quality Plans repositories located in the Governance & Policies layer.

In HSH-SoS, a quality manager was allocated for a specific quality attribute (e.g., safety, security, reliability, per-
formance). Each manager has a Centralized Architecture (C-A). Moreover, each quality manager is responsible
to detect possible faults that affect the specific quality and recover the SoS through executing reconfiguration plans.
Therefore, quality managers implements the Reconfiguration Control (R-C) architectural pattern.

The Quality of Service layer adds Reflection (Refl) properties to SoS architectures, since such systems can
observe their own status at any moment and take decisions for their reconfigurations in order to maintain the
desired quality levels without degrade their operations. This is also possible because the quality managers
based their decisions in quality plans stored as metadata in the Governance & Policies layer, following the AOM
(Adaptive-Object Model) pattern.

Additionally, reconfiguration of HSH-SoS is feasible due to the hierarchical structure in layers following the
Pace-Layer (P-L) pattern: the Health Service Bus executes fast reconfigurations at creating, adding, removing
services (e.g., constituent systems services, control services, business process services, communication mediators
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Fig. 6. Internal structure of a Quality Manager - Activities diagram. Adapted from [Garcés 2018].

services and conversion mediators services), the Quality of Service layer taking decisions about reconfiguration
plans for ensuring SoS qualities (e.g., security, safety, reliability, performance), the System Management layer
modifying SoS plans (e.g., environment configuration plans, missions, service orchestration plans, and quality
plans), and the Governance & Policies layer that stores the required metadata to support reconfigurations in all
levels.

Information architecture layer

This layer contains knowledge, represented as repositories, offering intelligence to SoS to achieve their missions.
This layer is subdivided into the Interoperation standards layer and the Business plans layer. In the former layer,
protocols for information exchange are allocated, and transformation rules between protocols are provided. These
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rules are used by brokers to allow transformation of messages for interoperable purposes. The latter layer includes
all information required to allow the accomplishment of SoS missions, hence, it allocates the business logic that
is represented as Business Plans. This information can be stored as meta data content, using ontologies or
well-defined repositories. Moreover, rules to allow knowledge discovering that enable prediction of SoS behavior
(considered as emergent behavior in the SoS context) are defined in this layer. Additionally, data transformation
rules are also placed in this layer.

In HSH-SoS, the Information architecture layer was conceived following the Trickle-Up pattern, as depicted
in Figure 2. Interoperation standards are represented following this pattern. Examples of such standards are
HL7 (High Level Seven) version 2 and 3, GALEN ( healthcare codes provided by the Galen Medical Group),
ICD (International Classification of Diseases), LOINC (Logical Observation Identifiers Names and Codes), and
SNOMED CT (Clinical Terms).

Governance and policies layer

This layer covers all aspects of managing the SoS operations life cycle. It provides guidance and policies for
managing service-level agreements, including performance, security, and monitoring [Arsanjani et al. 2007].
Therefore, this layer is applicable to all other layers of an SoS. Specifically, quality plans, reconfiguration plans,
repositories of missions, services and contracts specifications, and system logs are contained in this layer.
Modifications of information comprised in this layer can be made using the System management services located
in the consumer layer. Finally, as stated before, the Governance & Policies layer is an implementation of Pace-Layer
and AOM (Adaptive-Object Model) styles.

5. DISCUSSIONS

During the application of architectural patterns and styles introduced in this paper, it was possible to identify
important collaborations among them to achieve specific SoS requirements. In this section we relate these patterns
and styles with the following requirements, which were listed in Table II: (R01) integration of constituent systems to
enhance their collaboration; (R02) assurance of emergent behaviors; (R03) necessity of central decision making
authority; (R04) separation of concerns and low coupling; (R05) resilience and adaptability of decisions; (R06)
dynamic reconfigurations; (R07) missions accomplishment; (R08) clear command chain and accountability of
decisions; and (R09) evolution of SoS.

5.1 Integration of constituent systems

SoS architectures must allow the integration of heterogeneous, distributed, and independent systems during the
execution of SoS missions [Ingram et al. 2015]. Moreover, when a mission is finished, participating systems must
be disassembled without affecting their individual operations and goals. Hence, SoS architectures must allow
dynamic plugging and unplugging of constituent systems [Maier 1998].

For this purpose, the architectural styles and patterns showed in Figure 7 can be used. Constituent systems
capabilities can be deployed following the MSA, a sub-style of SOA [Zimmermann 2017]. Services provided by
these systems are integrated to the SoS through the SoSSB, a specialization of the ESB [Keen et al. 2005]. The
SoSSB is responsible for mediating, routing, and conversion of data provided by all services participating in the
SoS. The SoSSB can make use of the Publish-Subscribe pattern to route messages in an asynchronous way.
During the integration process, the SoSSB must verify services contracts before authorizing them to participate in
the SoS. For this, the SoSSB applies the Contract Monitor pattern. This monitor is supported by the AOM style
that orients to store contracts specifications (metadata) in repositories to facilitate their change in runtime without
affecting SoS operations.

Once the constituent systems services are integrated to the SoSSB, they are enabled to collaborate in the
execution of SoS missions. Hence, these services can participate in work-flows coordinated by business process
services. Work-flows can be structured following the Pipes-and-Filters pattern [Hohpe and Woolf 2003]. In this
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Fig. 7. Architectural styles and patterns used to allow the integration of constituent systems in an SoS.

scenario, business process services are considered central controllers and their responsibilities are the execution
of SoS missions and orchestration of constituent systems services capabilities. Therefore, each business process
service follows a Centralized Architecture.

Following the SOA pattern favors the dynamic composition of business process services based on capabilities
offered by constituent systems services. Moreover, by deploying capabilities of constituent systems following MSA
it is possible to plug and unplug these systems with more flexibility without affecting the individual operation of
each system [Cuesta et al. 2016].

5.2 Emergent behaviors, missions accomplishment, and evolution of SoS

SoS behaviors emerge as a consequence of constituent systems interactions. These behaviors are required to
support the achievement of SoS missions since is through SoS’ constituents collaborations that higher goals can
be accomplished. In this context, expected emergent behaviors must be granted, as well as undesired behaviors
should be prevented. Therefore, SoS architectures need to be structured to permit reasoning about emergent
behaviors.

Figure 8 depicts some architectural styles and patterns that, in our experience, support the design of SoS
architectures with capabilities for reasoning about their own behavior and structure. By using SOA it is possible to
allocate a mission under responsibility of a dedicated business process service, which will accomplish the mission
through the orchestration of constituent systems services. For coordinating a specific mission accomplishment,
the responsible business process follows a Centralized Architecture. Is through such coordination that SoS
behaviors are systematized generating a new behavior as the composition of all capabilities offered by constituent
system services.

Moreover, business process services can also be orchestrated by higher-level business process services to
compose more complex missions. SOA allow both vertical and horizontal scalability of SoS missions, allowing
the manifestation of new behaviors in a (semi) controlled way. Figure 9 illustrates SoS evolution in terms of the
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Fig. 8. Architectural styles and patterns supporting the accomplishment of missions and emergent behaviors of SoS.

increment of their complexity (i.e., an SoS requires to achieve diverse missions in different levels of composition)
and size (i.e., the amount of constituent systems increase as new missions are configured in an SoS).

Fig. 9. Evolution of an SoS

The understanding about how to compose business processes services in runtime and in different levels can
be possible by following the AOM (Adaptive-Object Model) style, a type of Reflective Architecture [Yoder 2017].
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This style can be applied to define missions specifications (as metadata), containing information about capabilities
of constituent systems, exchanged data, and work-flows required in a mission. Specifications are interpreted and
executed by the business process service responsible for the mission.

5.3 Central authority for decision making

SoS can be classified as [Maier 1998; Nielsen et al. 2015]: (i) Directed, if the constituent systems are controlled by
a central authority to satisfy the SoS missions; (ii) Acknowledged, if the constituent systems maintain independent
management and missions, but collaborate with the SoS to achieve its missions; (iii) Collaborative, when the
constituent systems are not forced to follow a central management, but voluntarily collaborate to achieve the SoS
missions; and (iv) Virtual, if the SoS has not clear missions, hence, the SoS behaviors are highly emergent.

In some types of SoS (e.g., directed and acknowledged) a clear command chain is required [Ingram et al. 2015;
Maier 1998]. Hence, it is important that SoS architectures consider a central authority to manage SoS operations
and mediate constituent systems interactions.

The establishment of services following a Centralized Architecture in higher-layers, i.e., System Management
Services layer and Business Process Services layer (See Figure 1), can be a strategy to create central authorities
responsible for specific decision making.

5.4 Separation of concerns and low-coupling

SoS architectures must be able to incorporate, sometimes in runtime, independent, distributed, and heterogeneous
constituent systems [Maier 1998; Ingram et al. 2015; Oquendo 2017]. Henceforth, these architectures must be
designed thinking on separation of concerns and low coupling of their components.

Fig. 10. Architectural styles and patterns supporting separation of concerns and low-coupling in SoS architectures.
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A first strategy to achieve these requirements is to deploy constituent systems capabilities following MSA. These
systems can be assembled/disassembled on-the-fly from the SoS without affecting neither SoS or other systems
operations. As microservices, constituent systems can participate of several missions of an SoS, or even be part
of different SoS at the same time. Moreover, structuring the whole SoS following the SOA style allow that services
under the SoS control can be independent from services offered by constituent system.

Layers also promotes separation of concerns, since different layers can be defined for distinct purposes. For
instance, in Figure 1 some layers were specified to organize types of (composed) services, e.g., the business pro-
cess services responsible for assuring mission execution and quality manager services in charge of guaranteeing
the desired quality levels in an SoS.

5.5 Resilience, adaptation, and dynamic reconfiguration

SoS architectures must offer mechanisms to identify faults (e.g., connectivity problems, unavailability of constituent
systems, unauthorized operations, or undesired behaviors). When such failures are identified, the SoS must
execute actions of prevention or recovering. SoS must execute dynamic reconfigurations of their behaviors or
software elements. Therefore, SoS architectures must be designed to allow reconfigurations in runtime [Ingram
et al. 2015].

Fig. 11. Architectural styles and patterns supporting dynamic reconfiguration and adaptations of SoS architectures at runtime.

The low-coupling and separation of concerns obtained by applying MSA and SOA can support restarting and
re-integration of services in the SoS. Moreover, by adopting the tuple ESB and Publish-Subscribe to define the
SoSSB (Systems-of-Systems Service Bus) can bring scalability to SoS architectures. This can allow the replication
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of services and ensure resources availability, dynamic connection of new services, and modifications in SoS
structures as described in Section 5.2.

Dynamic reconfigurations and adaptations of SoS architectures at runtime also is possible by adopting Pace-
Layer style to specify the Governance & Policies layer, System Management Services layer, Quality of Service
layer, and SoSSB layer. Pace-Layers can be defined to monitor services allocated in lower layers, and define and
execute reconfigurations in different levels. Hence, higher layers modify SoS elements in lower layers. Additionally,
hierarchies of Pace Layers allows the adoption of Reflective Architecture style, enabling SoS architectures to
implement reflection capabilities, i.e., these architectures could be able to monitor themselves and define best
reconfiguration policies for maintaining SoS operations under desired quality levels.

A dedicated quality manager service can be responsible for assuring quality levels of the SoS architecture
(e.g., security, safety, reliability). For this, these managers can follows the tuple Centralized Architecture and
Reconfiguration Control Architecture patterns. Additionally, quality manager services can organize their internal
work-flow as Pipes-and-Filters, where filters can implement autonomic manager activities as those specified
in the MAPE-K pattern. Reconfigurations defined by the quality manager services (e.g., reliability manager
service, security manager service) can be supported by quality plans allocated in the Governance & Policies layer.
Decoupling of managers from plans can be guided by the AOM (Adaptive-Object Model) style.

5.6 Trade-offs of architectural patterns and styles

It is widely known that combining different patterns and styles for architecting a software system leave to trade-offs
between quality attributes. For the patterns and styles exposed in this work, we can identify some liabilities that
could occur at using these solutions for SoS architectures.

Security of exchanged data between constituent systems and the SoS could be affected, mainly due to the
distribution, low coupling, and separation of concerns of structures and operations in the SoS. Data require
to be shared and manipulated to support SoS missions. Hence, data privacy tactics must be included in SoS
architectures.

Efficiency of SoS operations could be prejudiced since business operations are distributed over different services
layers. Hence, propagation of calls through layers (e.g., using a service bus as mediator) can be inefficient [Harrison
et al. 2007]. Moreover, the use of service bus can imply in some communication overhead, due to the multiple
messages and events, provided by constituent systems and managed by the SoS, that the bus must route. The
adoption of a reflective architecture also could imply low efficiency during reconfiguration procedures, because
metadata (i.e., represented as AOM - Adaptive-Object Model) often are inefficient [Harrison et al. 2007].

Reliability of SoS could be also narrowed by adopting central architecture as the style to structure business
process services and quality manager services. By doing this, each central controller could be a single point of
failure, then, they must be replicated for availability purposes. Moreover, the reliability of SoS operations depend of
the robustness of quality protocols that are used by quality managers.

6. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a list of architectural patterns (some of them defined as styles) that have been reported
in literature as the most adequate for SoS architectures. The application in conjunction of these patterns was
illustrated through the explanation of HSH-SoS’ architecture. In HSH-SoS, patterns and styles were selected
to achieve requirements that SoS architectures must address and that were presented in Table II. We believe
this work is a first step to consolidate a pattern language and contribute to the quality of further SoS. However,
it is required more understanding about how patterns and styles can be used to assure requirements related to
interoperability in SoS.

As future works we intend to investigate additional solutions (e.g., tactics, techniques or other styles and patterns)
to overcome the identified liabilities of applying the architectural patterns and styles exposed in this work. Moreover,
a deep study about how interoperability can be supported in SoS architectures, is also required. Additionally, we
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aim to obtain evidences for allowing the consolidation of a patterns language for SoS. For this, simulations of SoS
architectures constructed based on patterns, styles, and tactics will be performed. This will allow to understand
trade-offs of using such solutions in runtime for different types of SoS, i.e., directed, acknowledged, collaborative.
Moreover, we aim to develop a software platform based on these solutions to support the architecture design, and
development of SoS.
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