
A Pattern Sequence for Designing Blockchain-Based
Healthcare Information Technology Systems
Peng Zhang, Ph.D., Vanderbilt University Medical Center
Douglas C. Schmidt, Ph.D., Vanderbilt University
Jules White, Ph.D., Vanderbilt University

Known for its decentralized and tamper-aware properties, blockchain is attractive to enhance the infrastructure of systems that have been
constrained by traditionally centralized and vendor-locked environments. Although blockchain has commonly been used as the operational
model behind cryptocurrency, it has far more foreseeable utilities in domains like healthcare, where efficient data flow is highly demanded.
Particularly, blockchain and related technologies have been touted as foundational technologies for addressing healthcare interoperability
challenges, such as promoting effective communications and securing data exchanges across various healthcare systems. Despite the in-
creasing interests in leveraging blockchain technology to improve healthcare infrastructures, a major gap in literature is the lack of available
recommendations for concrete architectural styles and design considerations for creating blockchain-based apps and systems with a health-
care focus.
This research provides two contributions to bridge the gap in existing research. First, we introduce a pattern sequence for designing
blockchain-based healthcare systems focused on secure and at-scale data exchange. Our approach adapts traditional software patterns
and proposes novel patterns that take into account both the technical requirements specific to healthcare systems and the implications of
these requirements on naive blockchain-based solutions. Second, we provide a pattern-oriented reference architecture using an example ap-
plication of the pattern sequence for guiding software developers to design interoperable (on the technical level) healthcare IT systems atop
blockchain-based infrastructures. The reference architecture focuses on minimizing storage requirements on-chain, preserving the privacy of
sensitive information, facilitating scalable communications, and maximizing evolvability of the system.

Categories and Subject Descriptors: []: —

Additional Key Words and Phrases: Blockchain Technology, Software Engineering, Design Patterns, Smart Contracts, Smart
Contract Security and Vulnerability , Healthcare, Data Sharing, Interoperability, Solidity

1. INTRODUCTION

Blockchain technology has demonstrated its success in sustaining the secure and scalable exchanges of digital
assets through its first applications in cryptographic currency, such as Bitcoin and Ethereum [Nakamoto 2008; ?].
In essence, blockchain is a decentralized architecture built upon existing concepts from computer science and
mathematics in a manner that differs from traditional infrastructures, which have placed many restrictions on system
services and capabilities due to centralization. To achieve decentralization, information becomes transparent
and immutable to a certain degree, which enabled the Bitcoin blockchain as a viable platform for "trustless"
exchanges [Blundell-Wignall 2014] that take place directly between any two parties without the involvement of a
trusted middleman or another third party. These revolutionary concepts underlying blockchain have sparked a lot
of interest in its application from technologists and domain experts across various industries, such as finance,
healthcare, transactive energy, and the food industry.

Another mainstream public blockchain platform, Ethereum, extended the capabilities of cryptocurrency-based
blockchains like Bitcoin to enable programmability and near Turing-complete computations via “smart contracts“ [Bu-
terin et al. 2013]. Smart contracts are similar to any software program in that they have states and some instructions
to directly control the states to facilitate the exchange and/or redistribution of digital assets between two or more
parties. The instructions or code define rules or agreements established between involved parties in advance to
produce deterministic outputs. Ethereum’s successful implementation of programmable smart contracts promoted

the development of decentralized apps (DApps) [Johnston et al. 2014], which are autonomously operated services
that interact with cryptography-protected data stored on the blockchain and persist the records of transactions also
on-chain. DApps are also a medium that allows end users to directly interact with the blockchain and relevant data
on-chain.

Blockchain and smart contracts have been explored as a foundational technologies to address healthcare
interoperability challenges [DeSalvo and Galvez 2015; Das 2017]. Interoperability is the ability for various informa-
tion technology systems and applications to communicate, exchange data, and effectively digest the exchanged
information [Geraci et al. 1991]. Healthcare authorities and experts have attempted to improve the interoperability in
healthcare for decades [Richesson and Nadkarni 2011] in order to provide more continuous and consistent medical
services, including but not limited to securely and reliably delivering patient data across different episodes of care
and care locations, effectively facilitating medical communications between providers, and accurately and promptly
connecting medical devices and medical alerts to the appropriate patients [Lesh et al. 2007]. However, despite the
growing interest in creating blockchain-based healthcare systems, little information exists in current literature on the
concrete design recommendations for applying blockchain technology to address healthcare-specific challenges.

This paper focuses on addressing this research gap by providing a basic software pattern sequence for designing
blockchain-based healthcare DApps that target healthcare-specific challenges. The target audience of this paper
are health information technology (IT) system architects and developers interested in applying blockchain and
related technologies in the system design. In software engineering practice, design patterns offer general and
reusable solutions to recurring problems. They allow software engineers to communicate using well-known and
well-understood names for interactions in the software [Shvets 2015]. By documenting a sequence of reoccurring
blockchain-specific patterns taking into account domain-specific requirements, this work can assist the target
audience to more quickly adapt to this technology and create robust solutions with it in the healthcare domain.

The remainder of this paper is organized as follows: Section 2 provides an overview of blockchain technology and
the Ethereum implementation; Section 3.1 summarizes existing research related to this work; Section 4 outlines
key challenges regarding healthcare interoperability faced by the direct applications of blockchain technology;
Section 5 presents our proposed pattern sequence in detail; and Section 6 concludes the paper and summarizes
future work on applying blockchain and related technologies in the healthcare domain.

2. KEY CONCEPTS OF BLOCKCHAIN TECHNOLOGY

This section gives a general overview of blockchain and the open-source Ethereum implementation that supports
smart contracts, which enable computation and facilitate the development of decentralized apps beyond cryptocur-
rencies. The overview is followed by a discussion of Solidity, which is a programming language for writing smart
contracts in Ethereum and the basis of our pattern sequence discussed in Section 5.

2.1 Blockchain Concepts

A blockchain is a decentralized, replicated, and continually reconciled data structure that maintains an append-only
list of ordered transactions grouped into blocks, as shown in Figure 1.

All transactions are recorded in the blockchain and available to all network nodes to provide transparency of the
exchanges of digital data, such as cryptocurrencies. Only one block may be added to the blockchain at a time
following a mathematical verification (based on cryptography) to ensure that it is in sequence from the previous
block and contain all valid transactions. The most famous and robust verification process is Proof of Work (PoW)
or “mining“ [Nakamoto 2008] that is introduced in the Bitcoin blockchain. In PoW, block-mining nodes compete
to have their block of transactions be the next one added to the blockchain by solving a hard puzzle whose
solution is trivial to verify. The first node to solve the puzzle announces the solution to the entire network, and if
the solution is correct, the winner receives a mining reward paid via cryptocurrency for their contribution. PoW is
based on cryptography, game theory, and incentive engineering to ensure decentralized consensus is reached
regarding the block and transaction sequence and to protect the transaction history against tampering. The mining

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 2

Fig. 1. Blockchain Structure: A Shared, Append-Only List of Ordered Transactions Grouped into Blocks

process provides blockchain with three key properties: transparency (for easily verifying that a specific transaction
occurred at a particular point in time), immutability (that prevents existing transaction history from being altered),
and decentralization (for providing resiliency to a single point of failure with replicated storage) [Hub 2017].

In Bitcoin, blockchain serves as a public ledger that facilitates the direct financial transactions between individual
users with cryptography to secure the exchange. However, the blockchain implemented by Bitcoin is limited
to only support Bitcoin transactions and not suitable for other types of more complex data exchange beyond
cryptocurrency. To provide a more flexible framework, Ethereum was created as an alternative blockchain that
enables computation, making it a more generalized trustless platform that can run smart contracts [Buterin et al.
2013].

Ethereum is a decentralized computing system that has a native cryptocurrency powering the network and an
extended programmable capability enabled by the use of the near Turing-complete Ethereum Virtual Machine
(EVM). In Ethereum blockchain, a smart contract can be created to store data of different structures and define
protocols that interact with the data. To ensure the same level of information consistency and consensus as its
Bitcoin predecessor, Ethereum enforces a payment policy in terms of “gas" for creating and storing each smart
contract and any data operation. This policy serves two purposes: (1) it is used to pay for network nodes to verify
and execute valid transactions as an incentive and (2) it is also a financial disincentive against malicious attacks.
In addition, there is a global maximum gas limit defined by the Ethereum protocol and a sender-specified gas
limit that indicates the max gas amount that the sender is willing to pay for. If gas spent during the execution of
a transaction exceeds either of these two limits, computation will be stopped, and the sender still has to pay for
the performed computation. This protocol protects senders from completely running out of funds and also further
deters malicious attacks and abuse, such as distributed denial of service attacks in the network or hostile infinite
loops in smart contract code [Buterin et al. 2013].

2.2 Overview of Solidity

Ethereum smart contracts can be written in a Turing-complete programming language, called Solidity [Foundation
2015b], compiled by the EVM. Programmable smart contracts foster the development of DApps on the Ethereum
blockchain and are thus a feature we are exploring to potentially address certain healthcare interoperability
challenges. Solidity is an object-oriented language and is designed primarily for writing contracts in Ethereum.

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 3

A Solidity class is realized through a "contract," which is an object prototype (some code template) stored
on-chain. Just like an object-oriented class can be instantiated into a concrete object at runtime, a contract may be
instantiated into a concrete “smart contract account“ (SCA) by a transaction or a function call from another contract.
At instantiation, a contract is assigned a unique address that is similar to a reference or pointer in C/C++-like
languages. The contract can be referred to and its functions revoked using the address. A smart contract can
also define state variables to store data and functions that interact with the data. Although one contract can be
instantiated into many SCAs, it should be treated as a singleton to avoid undesired behavior and storage overhead.
A common practice is to store the address of an instantiated contract in a static location, such as a configuration
file or database. The address can then be retrieved as a parameter to access the contract’s internal states and
invoke its functions [Dourlens 2017].

Solidity also supports multiple inheritance and polymorphism [Ethereum.io 2017]. When a contract inherits
from one or more other contracts, a new contract instance is created by copying all the base contracts code into
the child contract prototype. An abstract contract in Solidity can declare function headers but without concrete
implementations, which means that it cannot be compiled into an SCA but can be used as a base contract. In this
paper, we focus the pattern discussions based on the use of Solidity.

3. RELATED WORK

3.1 Overview

Although relatively few papers focus on realizing software patterns in blockchains, some relate to healthcare
blockchain solutions and design principles in this space. This section gives an overview of related research on (1)
the challenges of applying blockchain-based technology in the healthcare space and innovative implementations
of blockchain-based healthcare systems and (2) design principles and recommended practice for blockchain
application implementations.

3.1.1 Challenges of healthcare blockchain and proposed solutions.. Azaria et al. [Azaria et al. 2016] proposed
MedRec as an innovative, working healthcare blockchain implementation for handling EHRs, based on principles
of existing blockchains and Ethereum smart contracts. The MedRec system uses database "Gatekeepers" for
accessing a node’s local database governed by permissions stored on the MedRec blockchain. Peterson et
al. [Peterson et al. 2016] presented a healthcare blockchain with a single centralized source of trust for sharing
patient data, introducing Proof of Interoperability based on conformance to the FHIR protocol as a means to
ensure network consensus.

3.1.2 Prior efforts focused on software design practice for developing blockchain apps.. Porru et al. [Porru et al.
2017] highlighted evident challenges in state-of-the-art blockchain-oriented software development by analyzing
open-source software repositories and addressed future directions for developing blockchain-based software.
Their work focused on macro-level design principles such as improving collaboration, integrating effective testing,
and evaluations of adopting the most appropriate software architecture. Bartoletti et al. [Bartoletti and Pompianu
2017] surveyed the usage of smart contracts and identified nine common software patterns shared by the studied
contracts, e.g., using "oracles" to interface between contracts and external services and creating "polls" to vote on
some question. These patterns summarize the most frequent solutions to handle some repeated scenarios. A
number of attacks on Ethereum smart contracts have been reported, including the infamous DAO attack [Siegel
2016] where $50 million worth of Ether was stolen and the critical Parity wallet hack [Palladino 2017] that incurred
in $30 million worth of Ether being exploited. Atzei et al. surveyed existing attacks on Solidity smart contracts
with code snippets showing related vulnerabilities [Atzei et al. 2017]. Meanwhile, the blockchain community also
compiled a number of software patterns and anti-patterns targeting Solidity programming around cryptocurrency
transactions in order to maximize the security of Ethereum smart contract design [ConsenSys 2018]. More recently,
Moreno et al. proposed a security pattern focusing on the use of blockchain in big data systems [Moreno et al.

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 4

2019]. Relatedly, Ellervee et al. described a comprehensive reference model for blockchain-based systems using
software architecture concepts [Ellervee et al. 2017].

3.2 Gaps in Existing Research

Many research and engineering ideas have been proposed to apply blockchain technology in healthcare, and
implementation attempts are underway [Azaria et al. 2016; Peterson et al. 2016; Porru et al. 2017; Bartoletti
and Pompianu 2017]. As discussed in Section ??, prior research efforts have provided a number of design
recommendations for implementing Solidity smart contracts involving cryptocurrency transactions. Few published
studies, however, have addressed software design considerations needed to implement blockchain-based health-
care apps effectively. While it is crucial to understand the fundamental properties of blockchains and the smart
contract programming language, it is also important to apply them properly so that healthcare-specific challenges
are addressed. Even though a subset of principles from prior work may be relevant to the healthcare space,
a systematic approach to document appropriate design practice that specifically target technical challenges in
healthcare is still essential.

4. HEALTHCARE INTEROPERABILITY CHALLENGES FACED BY BLOCKCHAIN-BASED APPS

The US Office of the National Coordination for Health Information Technology (ONC) has outlined basic technical
requirements for achieving interoperability [ONC 2014]. Based on these requirements, this section summarizes
key interoperability challenges faced by blockchain-based apps, focusing on four aspects: system evolvability,
blockchain storage, information privacy, scalability, and security.

4.1 Evolvability Challenge: Maintaining Evolvability While Minimizing Integration Complexity

Many traditionally centralized apps are written with the assumption that data is easy to change. This assumption
does not hold true for blockchain-based apps. Once stored on-chain, data is difficult to modify en masse. Not only
is code manipulating the data is immutable, but data change history also persists on-chain and can be replayed
due to the nature of blockchain. Healthcare data contains sensitive personal information protected by law [CDC
2003], which, if compromised, would create severe legal, financial, and also social consequences. The vulnerability
in smart contract code leading to the infamous DAO attack [Siegel 2016] must be avoided in a healthcare app.

At the same time, healthcare systems may be subject to updates or upgrades required by clinical workflow or
healthcare regulations. This need for potential system evolution creates a tension for a blockchain-based design.
As such, a critical design consideration when building blockchain apps for healthcare is to ensure that the data
written into blockchain via smart contracts are designed to facilitate evolution where mandated.

Although evolution must be supported, healthcare data must often be accessible from a variety of deployed
systems that cannot easily be changed over time. Apps should therefore be designed in a way that is loosely
coupled and minimizes the usability impact of evolution on the clients, i.e., user services that interact with data in
the blockchain. Sections 5.1, 5.3, and 5.2 shows how using LAYERED RING, CONTRACT MANAGER, and GUARDED

UPDATE patterns from the pattern sequence, respectively, can help avoid serious attacks like the DAO [Siegel
2016] and facilitate necessary system evolution, while minimizing the impact on dependent clients, focusing on the
separation of concerns between data and logic and a type of attack called reentrancy, which will be described
further in Section 5.2.

4.2 On-Chain Storage Challenge: Minimizing Data Storage Requirements on the Blockchain

Healthcare apps can serve thousands to millions of participants, which may incur enormous overhead when large
volumes of data are stored in a blockchain–particularly if data normalization and denormalization techniques are
not carefully considered. Considering storage scalability, not only is it costly to store data, but data modifications
and access operations may also fail if/when the cost of storage or execution exceeds the allowance in a blockchain,
e.g., gas limit defined for the Ethereum blockchain as discussed in Section 2.1. An important design consideration

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 5

for blockchain-based healthcare apps is thus to minimize data storage requirements in addition to provide sufficient
flexibility to manage individual health concerns. Sections 5.4 and 5.6 show how to design smart contracts with
DATABASE CONNECTOR and ENTITY REGISTRY patterns from the pattern sequence, respectively, to improve
interoperability by standardizing interfaces to storage access and maximizes on-chain scalability by capturing
common intrinsic data sharing across entities while still allowing extrinsic data to vary in specific entity contracts.

4.3 On-Chain Privacy Challenge: Balancing Data Storage with Privacy Concerns

Blockchains and smart contracts can offer trustless digital health asset sharing, audit trails of data access, and
decentralized and replicated storage, which are essential for improving healthcare interoperability by providing
ubiquitous data store. Although there are substantial potential benefits to the availability of information if data is
stored on-chain, there are also significant risks due to the transparency of blockchain. In particular, even when
encryption is applied to sensitive data on-chain, it is still possible that the current encryption techniques may
be broken in the future [Rich and Gellman 2014] or that vulnerabilities in the encryption implementations may
later be exploited, rendering private information potentially decryptable in the future. To protect health information
privacy, in Sections 5.5 and 5.7 we discuss how designing a blockchain-based app using the DATABASE PROXY

and TOKENIZED EXCHANGE patterns from the pattern sequence, respectively, can facilitate data sharing while
keeping sensitive patient data from being directly encoded in the blockchain.

4.4 Scalable Communication Challenge: Tracking Relevant Health Changes Scalably Across Large Patient
Populations

Communication gaps and information sharing challenges are serious impediments to healthcare innovation and
the quality of patient care. Providers, hospitals, insurance companies, and departments within health organizations
experience disconnectedness caused by delayed or lack of information flow. Patients are commonly cared for
by various sources, such as private clinics, regional urgent care centers, and enterprise hospitals. A provider
may have hundreds or more patients whose associated health data must be tracked. Section 5.8 shows how a
blockchain-based app design using the PUBLISHER-SUBSCRIBER pattern from our pattern sequence can be aid in
scalably detecting and communicating relevant health changes.

4.5 Security Challenge: Preventing Unintended Software Loopholes and Safeguarding On-Chain Data

Similar to information privacy that protects the identity of users and data holders, information and system security
is also paramount in healthcare systems to safeguard against unintended software loopholes or unauthorized
access that could lead to compromised data. Due to the decentralized nature of blockchain and related technology,
the security of information faces higher risks because it is exposed to a much wider, and sometimes uncontrolled,
audience and it is usually not immediately amendable. In recent years, software loopholes that existed in several
major blockchain-based crytocurrency services have been exploited by attackers, causing significant financial
losses to users and the service providers []. To prevent similar predicament from happening to healthcare services
hosted in blockchain-based infrastructures, security risks must be recognized in the early stage of system designs
in addition to the construction of a safeguarded system. Sections 5.2 and 5.8 are two examples of security
protection in a blockchain-based healthcare app.

5. A KEY PATTERN SEQUENCE FOR DESIGNING BLOCKCHAIN-BASED HEALTH APPS

This section presents a key pattern sequence for creating blockchain-based health system designs that address
the major challenges described earlier in Section ??. Our research approach that developed this sequence has
three folds. First, because the topic of design patterns focused on using blockchain technology for healthcare
has received limited attention in literature, we had extracted a subset of the patterns using commonality and
variability analysis [Coplien et al. 1998]. Specifically, we obtained a number of verified smart contract source
code from Etherscan.io [Etherescan nd] to capture common portions repeatedly used across various contracts

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 6

and/or supporting library contracts, which we codified into patterns of this sequence, such as LAYERED RING

and CONTRACT MANAGER Second, based on our experience from previous work on researching healthcare data
sharing solutions [Zhang et al. 2017b; Zhang et al. 2018] and our understanding of the healthcare domain and the
technical requirements for its systems [Zhang et al. 2017a; Zhang et al. 2018], we codified the design practice
we learned from prior research into several patterns in the key sequence, such as DATABASE CONNECTOR and
TOKENIZED EXCHANGE. Third, given the extensiveness and maturity of existing research on centralized and
distributed software engineering design practice, we have applied, wherever necessary for a blockchain-based
healthcare system, design principles widely accepted to our pattern sequence with blockchain-focused design
considerations, such as DATABASE PROXY, ENTITY REGISTRY, AND PUBLISHER-SUBSCRIBER. Additionally, due to
the growing popularity of Solidity (which is the primary programming language for creating smart contracts) and
attacks that have occurred to public smart contracts, the Ethereum community has captured a number of Solidity
code patterns for preventing similar attacks. Although those code patterns were almost exclusively targeting
cryptocurrency or other apps with financial incentives, we identified one code pattern that would be particularly
critical in a healthcare system, namely, GUARDED UPDATE.

The remainder of this section applies a pattern form variant to motivate and show how our pattern sequence
aids in designing blockchain-based healthcare apps. In particular, we present eight software patterns—LAYERED

RING, GUARDED UPDATE, CONTRACT MANAGER, DATABASE CONNECTOR, DATABASE PROXY, ENTITY REGISTRY,
TOKENIZED EXCHANGE, and PUBLISHER-SUBSCRIBER [Gamma et al. 1995; Buschmann et al. 2007]. We describe
key healthcare challenges that they resolve in the blockchain platform and detail their structure and composition. 1.

Table 5 provides an overview of the pattern sequence, showing how the patterns relate to healthcare-specific
challenges described previously in Section 4 and what specific sub-challenge each pattern aims to solve.

Table I. Overview of Proposed Pattern Sequence for Designing Blockchain-Based Healthcare
Apps

Pattern Targeted Category Specific Challenge to Solve

Layered Ring Evolvability
Defining the data sharing systemâĂŹs base
architecture

Guarded Update Evolvability & Security
Preventing unexpected reentrancy attacks
that occurred in the DAO

Contract Manager Evolvability
Separating data from logic to ensure data
availability via clean separation of concerns

Database Connector On-Chain Storage
Ensuring on-chain storage scalability and
interoperability via standardized and minimal
interfaces to off-chain storage

Database Proxy On-Chain Privacy
Providing an additional layer of security by
performing lightweight tasks before permitting
access to database connectors

Entity Registry On-Chain Storage
Managing healthcare entities on-chain and other
types of common data at scale

Tokenized Exchange On-Chain Privacy
Authorizing access to data storage and
maintaining verifiable access logs

Publisher-Subscriber
Scalable Communication
& Security

Providing user notifications when events of
interest occur across the decentralized network

Each of the patterns in this sequence is discussed in depth below.

1Naturally, there are other patterns relevant in this domain, which can be the focus of future work.

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 7

5.1 A Blockchain-Based Architecture for Health Data Sharing Systems

Design problem faced by blockchain-based apps. Healthcare data exists in siloed data warehouses across
different healthcare organizations, private practices, and, more recently, mobile health app providers [Ajami and
Bagheri-Tadi 2013; Zhang et al. 2018]. Despite the adoption of certified EHRs or other data exchange solutions that
can provide direct data exchange between providers within the same network (e.g., using an EHR system provided
by the same vendor), impediments for healthcare providers and researchers to access those heterogeneous data
silos still exist.

Solution → Apply the LAYERED RING pattern to define the base architecture of the health data sharing
system. The emerging blockchain technology that supports decentralized data storage and executable code via
smart contracts, with Ethereum [Buterin et al. 2013] being the most popular, has presented itself as a potential
infrastructure to connect existing healthcare data silos [Peter B. Nichol 2016; Broderson et al. 2016; Dubovit-
skaya et al. 2017] with its success in maintaining tamper-proof cryptocurrency transactions between worldwide
Internet users [Nakamoto 2008; Cap nd] and managing verifiable collectibles or rewards from cryptogaming like
CryptoKitties [CryptoKitties nd].

At the architectural level, the healthcare data sharing problem is not too different from those successful use
cases of blockchain. Figure 2 compares the high-level architecture of data sharing in healthcare with that of
blockchain-based cryptocurrency exchange and cryptogaming. In this figure, the bottom level in both architectures
1 and 2 contains a number of heterogeneously represented objects, i.e., siloed healthcare data sources (e.g.,
low-frequency, high-fidelity clinical data, or LFQ, captured by trusted sources and high-frequency, low-fidelity data,
or HFQ, generated by patients or wearable and mobile devices) in Architecture 1 and geographically dispersed
Internet users in Architecture 2. Data sources generated by healthcare professionals via from diverse, centralized
EHR systems on the left may or may not inter-operate, depending on if an authorized exchange service is available
between the data sources. Whereas on the right, data (like identifiers of users/gamers) and data requests flow into
and out of the same service implemented on the blockchain that is decentralized and widely accessible, with or
without a user interface.

Consequently, a blockchain-based healthcare data sharing can apply the same basic pattern of Architecture 2
in Figure 2, except that a user interface is needed for normal healthcare users who typically do not have advanced
knowledge about how to execute smart contract functions. In fact, most blockchain apps, such as CryptoKitties
(a cryptogame for collecting and breeding digial cats) [CryptoKitties nd], Fomo3D (a gambling game for winning
cryptocurrency lotteries) [FOMO3D nd], and IDEX (a cryptocurrency trading platform) [IDEX - Decentralized
Ethereum Asset Exchange 2018], implement a user-friendly interface that encapsulates the blockchain component,
providing users with familiar experience as if interacting with any other centralized web app.

In Figure 3 we present the first pattern in the sequence, LAYERED RING, generalized from Architecture 2 above
with a bird’s eye view to better illustrate the scale of involved entities in each layer. The outermost layer is a Storage
Layer, which contains a large number of data sources, each maintained by its owner (e.g., a private practitioner, a
healthcare organization, or a 3rd party HFQ data provider). The middle Blockchain Layer connects data sources
from the outer layer and would be maintained by key stakeholders or mid- to large-size healthcare organizations
in a consortium environment. The innermost Web App Layer provides a convenient interface for interacting with
data and operations defined in the blockchain. It is also the most centralized piece of the system because a web
app is usually hosted in a centralized server. Nevertheless, with a careful design of the web app server, this layer
would not introduce additional dependency to the rest of the system and thus maximize the separation of concerns
across the overall system.

The LAYERED RING pattern is also a variant of the ENTERPRISE SERVICE BUS (ESB) pattern [Zdun et al. 2006;
Fernandez 2013], which provides a common data model and a messaging infrastructure to allow different systems
to communicate through a shared set of interfaces. In LAYERED RING, the Blockchain layer acts as the messaging
bus that provides services to the rest of the components. However, unlike the ESB, the interface of Layered Ring

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 8

Fig. 2. Comparing the Current State of Traditionally Centralized Healthcare Architecture with that of Popular Blockchain-Based Use Cases

Fig. 3. Structure of the LAYERED RING Pattern that Defines the Base Architecture of the Data Sharing System

focuses only on the structural and syntactic level of the exchanged data and does not itself create a common
ontology for interpreting the semantics of shared data, which is an entirely separate and complex topic being
researched on by domain experts.

After defining the base-line architecture for a blockchain-based data sharing system, we will present other
patterns in the sequence applied in each layer to address healthcare-specific challenges described previously in
Section 4.

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 9

5.2 Preventing Reentrancy Attack in the Blockchain

Design problem faced by blockchain-based apps. Despite the growing interest in using blockchain technology
for healthcare, a lot of recent attacks on some of the major blockchain-based apps have raised security concerns
regarding the use of this technology in especially the healthcare industry that requires compliance to strict security
and privacy regulations. An infamous example of such attacks is the DAO attack [Siegel 2016] in which a reentrancy
bug was discovered and exploited that causes then worth $30 million of Ethereum being stolen. Even though the
immutability and decentralization properties of blockchain technology can provide tremendous value to the direct
exchange of digital information, without proper design decisions made prior to deploying a system on-chain could
yield destructive consequences.

Solution → Apply the GUARDED UPDATED pattern to prevent unexpected reentrancy attacks. We deem
attack prevention as the utmost important design consideration in the development cycle of a blockchain-based
healthcare system and therefore introduce GUARDED UPDATED as the second pattern in our pattern sequence
after defining a base layer with the LAYERED RING. The goal of this pattern is to provide software engineers with a
pattern that prevents an important yet serious reentrancy attack early on during the development cycle in order to
help design the rest of the system wherever this pattern may apply.

Fig. 4. Example Vulnerable Solidity Code of the Simplified Reentrancy Bug and its Exploitation

A simplified reentrancy bug that affected the DAO app appears in the code snippet shown in Figure 4. Function
withdraw in the VulnerableContract sets the caller’s balance after checking if the asset transfer to the caller
(msg.sender) is successful. The attack in ExploitVulnerableContract exploits this vulnerability by calling the
withdraw function in a fallback function that is executed by the call.value method, creating recursions that bypass

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 10

the statement on line that sets the user balance supposedly after the vulnerable statement returns [ConsenSys
2018].

Although the reentrancy bug primarily targets cryptocurrencies in the interest of gaining financial returns, this
bug could also plague systems designs for healthcare functions if prevention is not implemented in advance. As a
key pattern in the sequence, GUARDED UPDATE aims to prevent reentrancy attack by ensuring atomic update to
critical data in the blockchain-based healthcare system. The structure and code examples of this pattern appears in
Figure 52. As shown in the figure, a boolean guarding condition (i.e., reentrancyMutex) is used to control operations
on protected state variable(s) (i.e., conditions). Once the variable(s) has been modified, the guarding condition
can be reset to the initial state to permit other memory contexts to act upon the guarded data. Another, more
systematic way to achieve this is to create a modifier in a Solidity interface contract, which can then be included in
the declaration header of functions in other contracts.

Fig. 5. Structure and Example Solidity Code Snippet of GUARDED UPDATE Pattern to Prevent Reentrancy Attacks on-Chain

Protecting atomic updates to state variables in the smart contracts prevents serious reentrancy attacks to
occur, however, one major drawback is that atomic executions may slow down runtime performance of the system,
particularly in a decentralized environment.

5.3 Separating Data from Logic to Ensure Data Availability via a Manager Contract

Design problem faced by blockchain-based apps. The immutability property of blockchains can ensure non-
repudiation of data operations and/or transactions of data but can also become a major hurdle to data flow. On the
one hand, immutability is important for achieving interoperability in a healthcare environment as it makes data
objects (whether it is a reference pointer to a data store or an authorization request that grants a provider access to
healthcare data) on the blockchain always available, even when one of the key maintainers of the network becomes
unavailable. On the other hand, without a loosely-coupled design that focuses on clean separation of data and

2The code examples are based on https://github.com/o0ragman0o/ReentryProtected

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 11

logic, immutability makes any upgrade to a blockchain-based health system hard to perform. Data, in such a
system, does not only include information being exchanged across various network participants but also needs to
contain meta data regarding the system that provides users with the most up-to-date knowledge regarding the
system; whereas, logic refers to any operation or event that acts upon the data, typically implemented to read,
update, or remove a data object.

Solution → Apply the CONTRACT MANAGER to separate data from logic to ensure data availability via
clean separation of concerns . The CONTRACT MANAGER pattern aims to address the separation of data and
logic via a permanent storage structure, which has been described in [ConsenSys 2018]. Figure 6 presents the
composition of this pattern.

Fig. 6. Structure and Example Solidity Code of CONTRACT MANAGER Pattern for Maintaining Key Meta-Data on-Chain

Permanent storage maintains one or more data fields used throughout the system and provides permanent
access to data with getter and setter functions for each one of the data fields. This ensures that all meta data
accessed by the system (such as the version or address information of any smart contract dependencies and
other data structures shared across different smart contracts) remains readable even when logic contracts are
outdated. Additionally, contract manager stores a Contract Repository of meta data that describes versions of
the system (including but is not limited to addresses of the latest logic contract components and history contract
addresses). To better ensure upgradeability of the system, CONTRACT MANAGER also defines access privilege of
smart contracts by allowing the original owner of the storage contract to configure an access group for delegating
or revoking certain or all rights of accessing or manipulating the data to other members to prevent data locking.

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 12

One disadvantage to the introduction of CONTRACT MANAGER is that all other logic contracts must execute
additional calls to this contract for versioning checks and data queries. An alternative design is to leverage the
AUTHORIZER pattern [Fernandez 2013] along with fine-grained authorization models such as role-based access
control models [Sandhu et al. 1996] or access matrix [Sandhu and Samarati 1994] to separate the definition of
access rules, further decoupling the rules from the storage component.

5.4 Standardized On-Chain Interfaces to Off-Chain Storage Access

Design problem faced by blockchain-based apps. EHR systems have served the U.S. healthcare for decades
and, unavoidably, have accumulated enormous amounts of valuable medical records that either exist in legacy
systems or in more modern certified EHRs. Health data sharing today is only possible between healthcare
professionals using the same EHR systems or compatible health information exchange services, which are exactly
the third-party reliance that blockchain technology helps eliminate with its decentralized, trustless infrastructure.
The direct exchange of digital information on the blockchain is only possible if such information or its representation
is encoded on the blockchain with some degree of verifiable integrity. Due to the scale and privacy of healthcare
data, it is unrealistic to store encrypted or hashed version of the actual data on the blockchain. Furthermore, it is
impractical to create a blockchain-based system that completely replaces existing EHR systems or duplicates
their functionality. The design of a scalable and standardized component that connects existing EHR data to a
decentralized system offering interoperable data sharing is therefore needed.

Solution → Apply the DATABASE CONNECTOR pattern to ensure on-chain storage scalability and inter-
operability via standardized and minimal interfaces to off-chain storage. Figure 7 presents the composition
of the DATABASE CONNECTOR pattern. The Database Connector component defines a standardized interface
between the blockchain and storage layers. The interface provides an abstraction of the heterogeneous health data
silos (e.g., EHR or other LFQ databases and HFQ data) to expose only minimal amount of information regarding
each data source to the blockchain layer. As shown in Figure 7, the interface may only need to capture the name
or description of a data source, some "meta data" providing reference pointers to the data source, and a verifiable
digital signature of the data source owner that provides some level of integrity. Database Connector is also closely
associated with the DATABASE PROXY pattern (discussed next in Section 5.5) that uses a Connector Handler
component in the blockchain layer to provide data access to the connector.

Fig. 7. Structure of the DATABASE CONNECTOR Pattern Used to Standardize on-Chain Interfaces to off-Chain Storage Access

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 13

The main benefits of DATABASE CONNECTOR are (1) the storage scalability it provides on the blockchain that
allows efficient sharing of connectors and (2) a standardized interface that unifies the on-chain representation of
off-chain databases. The drawback is the additional implementations that are required for creating connectors to
existing databases.

5.5 Security Checking before Accessing Off-Chain Storage

Design problem faced by blockchain-based apps. If a blockchain-based healthcare app must expose sensitive
data or metadata (such as patient identifying information) on the blockchain, it must be designed to maximize health
data privacy while facilitating health information exchange. In particular, a fundamental aspect of a blockchain is
that data and all change history stored on-chain are public, immutable, and verifiable. For financial transactions
focused on proving that transfer of an asset occurred, these properties are critical. When the goal is to store data
in the blockchain, however, it is important to understand how these properties will impact the use case.

For example, storing patient data in the blockchain can be problematic since it requires that data be public and
immutable. Although data can be encrypted before being stored, should all patient data be publicly distributed to
all blockchain nodes? Even if encryption is used, the encryption technique may be broken in the future or defects
in the implementation of the encryption algorithms or protocols used may make the data decryptable in the future.
Immutability, on the other hand, prevents owners of the data from removing the data change history from the
blockchain if a security flaw is found. Many other scenarios, ranging from discovery of medical mistakes in the
data to changing data standards may necessitate the need to change the data over time.

In scenarios where the data may need to be changed, the public and immutable nature of the blockchain creates
a fundamental tension that must be resolved. On the one hand, healthcare providers would like incorruptible data
so its integrity is preserved. At the same time, providers want the data changeable and secure to protect patient
privacy and account for possible errors. An interoperable app should protect patient privacy and also ensure data
integrity.

Solution → Apply the DATABASE PROXY pattern to provide an additional layer of security by performing
lightweight tasks before permitting access to database connectors. DATABASE PROXY is akin to the tradi-
tional PROXY pattern [Gamma et al. 1995] with a slightly different focus unique to a blockchain-based design. To
reduce computational costs on-chain, the Database Proxy interface defines some lightweight representation or
placeholder for the real data object and encodes some lightweight security checks or auditing tasks until retrieval of
the original data object is required. It is worth noting that because protected health information is only unpackaged
or decrypted off-chain, any regulatory or security checking (which is more rigorous), such as authentication or
authorization requirements defined by HIPAA or other privacy standards, is performed off-chain instead of on-chain.

Figure 8 illustrates the structure of DATABASE PROXY pattern and its interaction with the Database Connector
object described previously in Section 5.4.

The Database Proxy interface maintains a reference to a Connector Handler object that forwards the read and
write access to the appropriate Database Connector for access databases in the storage layer of the system. Each
read request and modification operation through the Connector Handler can be logged in an immutable audit trail
that is transparent to the entire blockchain network for verification against data corruption. In the case of a proxified
contract (i.e., Database Connector that has somewhat heavyweight implementation) being updated with a new
storage configuration (e.g., when a data source has been introduced a new management system that requires
some change in its Database Connector abstraction), the interface to the proxy contract can remain unchanged,
encapsulating lower-level implementation variations.

As with the traditional PROXY pattern [Gamma et al. 1995], a proxy object can perform lightweight housekeeping
operations, such as security checks of administrative access and auditing tasks that log existing data requests, by
storing some commonly used metadata in its internal states before retrieving the actual data. This component
follows the same interface as the real object and can execute the original data object’s function implementations as
needed. It provides an additional layer for securing access to the real data object. However, Database Proxy may

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 14

Fig. 8. Composition of DATABASE PROXY Pattern for Performing Additional Security Checks before Accessing off-Chain Data Store

cause disparate behavior when the real object is accessed directly by some other component in the system while
the proxy surrogate is accessed by others. It also creates an additional level of indirection for accessing actual
data objects.

5.6 Managing Healthcare Entities and Other Types of Common Data on-Chain at Scale

Design problem faced by blockchain-based apps. All data and transaction records maintained in the blockchain
are replicated and distributed to every node in the network. In a public blockchain, to compensate blockchain
miners for contributing expensive hardware to store and maintain on-chain data, fees are charged based on the
storage requirement of an application. Although a fee is not necessarily charged in a consortium blockchain
with like-minded parties, other forms of compensation may exist to provide some incentives for the decentralized
network maintainers. To minimize on-chain storage burden, a blockchain-based healthcare app that requires
storage of some data on-chain must maximize data sharing among entities thus limit the amount of information
stored.

In a large-scale healthcare setting, if a blockchain is used to store patient billing data, there will be millions of
records replicated on all blockchain miner nodes. Moreover, billing data could include detailed patient insurance
information, such as their ID#, insurance contact information, coverage details, and other aspects that the provider
needs to bill for services. Capturing all this information for every patient can generate excessive amounts of data
in the blockchain.

Suppose it is necessary to store a patient’s insurance and billing information (encrypted) in the blockchain.
Most patients are covered by one of a relatively small subset of insurers (in comparison to the total number of
patients, e.g., each insurance policy may cover 10,000s or 100,000s of patients). Therefore, a substantial amount
of intrinsic, non-varying information is common across patients that can be reused and shared, such as details
on what procedures are covered by an insurance policy. To bill for a service, however, this common intrinsic
information must be combined with extrinsic information (such as the patient’s ID#) that is specific to each patient.

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 15

A good design should maximize sharing of such common data to reduce on-chain storage cost and meanwhile
have the capability to provide complete data objects on demand.

Solution → Apply the ENTITY REGISTRY pattern for managing healthcare entities on-chain at scale. As
shown in Figure 9, the ENTITY REGISTRY mimics the traditional FLYWEIGHT pattern [Gamma et al. 1995] with a
factory [Gamma et al. 1993] object to help manage healthcare entities on-chain at scale. In particular, getEntity
uses a factory to create entity objects and maintain references (addresses) to created Entity objects in a common
smart contract (i.e., Entity Registry). It internalizes common data across a number of Entity ’s data field while
externalizing varying data storage in entity-specific contracts (such as Patient or Provider entity). Using references
(i.e., addresses) to entity-specific contracts stored in the registry, combined extrinsic and intrinsic data can be
retrieved upon request to return a complete dataset.

Fig. 9. ENTITY REGISTRY Pattern Used with a Factory to Manage Entities and Other Types of Common Data while Minimizing On-Chain
Storage Requirements

Applying this pattern to the earlier scenario, shared patient insurance information is stored only once in the
registry, avoiding an exorbitant amount of memory usage from saving repeated data in all patient accounts. Varying,
patient-specific billing information is stored in corresponding patient-specific entity contracts.

The registry can also maintain a mapping between unique entity identifiers and the referencing addresses of
already deployed entity contracts to prevent account duplication. At account creation, only if no account with the
specified entity identifier exists in the registry does it deploy a new entity contract; otherwise the registry retrieves
the address associated with the existing entity contract. To retrieve complete insurance and billing information of a
particular patient, clients need only invoke a function call from the registry with the patient identifier to obtain the
combined intrinsic and extrinsic data object.

ENTITY REGISTRY provides better management for the large pool of objects (such as user accounts in the
example above). It minimizes redundancy in similar objects by maximizing data and operation sharing. Particularly
in the insurance example, if common insurance policy details are not extracted from each patient’s contract, the
cost to change a policy detail will be immense–it will require rewriting a huge number of impacted contracts. Data
sharing with flyweight registry helps minimize the cost to change the common state in objects stored on-chain.

Although applying the ENTITY REGISTRY pattern creates an additional transaction to verify and include in the
blockchain (i.e., the flyweight object instantiation) before it can be used, this extra step can be outweighed by the

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 16

resulted efficiency in data management. The application of this pattern alone does not ensure integrity of the data
being exchanged because it exposes only reference information for retrieving actual data objects for security and
privacy reasons. It would rely on an off-chain or a 3rd party oracle service [Xu et al. 2016] to certify the integrity of
the data either via hashing functions or other data verification protocols.

5.7 Securing and Recording Data Access

Design problem faced by blockchain-based apps. Smart contracts are powerful for automating executions
of predefined agreements directly between involved entities especially when the entities are registered on
the blockchain using its native cryptographic keys and agreed terms are simple updates to cryptocurrency
wallets/balances that are easy to update. The direct exchange of healthcare data unfortunately cannot easily be
achieved on-chain due to the complexity and variability in the warehouses and management systems data resides
in. Even when data sharing is made possible in such a decentralized environment, the shared information should
not be available to the entire network, unlike an app that involves cryptocurrency. Instead, proper authorizations of
sensitive health data access must be safeguarded.

Solution → Apply the TOKENIZED EXCHANGE pattern to authorize access to off-chain data storage and
maintain a verifiable data access history. Variability of off-chain data sources can be encapsulated with a
standardized interface that encodes a set of attributes describing the sources and some basic operations acting
upon them (i.e., functions to retrieve the original data source and verify the digital signature to ensure data is
originated from the expected sender.). Figure 5.7 presents the structure of the TOKENIZED EXCHANGE pattern
in the sequence that defines a Token interface off-chain to represent each data source in a more consistent
manner. With this interface, the Database Connector Object from the DATABASE CONNECTOR pattern discussed in
Section 5.4 that references an off-chain data source can be "tokenized" off-chain with access authorizations being
encoded to a standard format using secure encryption and signing algorithms. Types of algorithms employed
along with public keys used to generate the tokens are captured by the attributes defined in the interface. Tokens
generated are then stored on-chain in a shared Token Registry smart contract. Token Registry builds an audit trail
of the creation, update, deletion, and access requests to each of the tokens. To retrieve the Database Connector
Object, the recipient must possess the authorized party’s secret key in order to decrypt and retrieve the original
data source via the DATABASE PROXY pattern presented in Section 5.5.

This approach ensure that even when tokens carrying actual information of a particular data source are shared
with a wide network, they can only be consumed by the intended recipient(s) with proper cryptographically
paired keys. One drawback to this pattern is that there could be tokens that are not generalizable, in which
case, implementations of other interfaces may be required. Example interfaces include role-based access control
models [Sandhu et al. 1996] and access matrix [Sandhu and Samarati 1994], which provide more fine-grained
authorizations and organizatin-specific rules to grant lower-level permissions to the access tokens.

5.8 Providing Notifications of Relevant Healthcare Activities at Scale

Design problem faced by blockchain-based apps. A blockchain-based healthcare system that needs to track
relevant health changes across large patient populations must be designed to filter out useful health-related
information from communication traffic (i.e. transaction records) in the blockchain. For example, the Ethereum
blockchain maintains an immutable record of contract creations and operation executions along with regular
cryptocurrency transactions. The availability of this information makes blockchain a more autonomous approach to
improve the coordination of patient care across different participants (e.g., physicians, pharmacists, insurance
agents, etc) who would normally communicate through various channels with a lot of manual effort, such as
through telephoning or faxing. Due to the continually growing list of records on the blockchain, however, directly
capturing any specific health-related topic from occurred events implies exhaustive transaction receipt lookups and
topic filtering, which requires non-trivial computation and may result in delayed responses.

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 17

Fig. 10. Structure of TOKENIZED EXCHANGE Pattern for Authorizing off-Chain Data Access and Recording Verifiable Data Access Logs

A good model should facilitate coordinated care and support relevant health information relays. For instance,
health-related activities should be seamless communicated from the point when a patient self-reports illness
(through a health DApp interface) to the point when they receive prescriptions created by their primary care
provider; clinical reports and follow-up procedure should be relayed to and from the associated care provider
offices in a timely manner.

Solution → Apply the Publisher-Subscriber pattern to manage user notifications at scale when events
of interest occur across the decentralized network. Incorporating a notification service using the Publisher-
Subscriber pattern [Buschmann et al. 2007] can facilitate scalable information filtering. In this design, changes
in health activities are only broadcast to providers that subscribe to events relating to their patients. It alleviates
tedious filtering of which care provider should be notified about patient activities as large volumes of transactions
take place. It also helps maintain an interoperable environment that allows providers across various organizations
to participate.

Due to the deterministic nature of blockchain that supports smart contracts, communications between the
on-chain address space and off-chain services can only occur in two ways. The first way is a regular or constant
poll, in which an off-chain server delegates a Messenger component to monitor changes and new events in the
system. The second way pushes data out to an Oracle service, which is a trusted third-party that performs some
computation off-chain and then forwards the results back to the blockchain address space via a callback function3,
such as in [Foundation 2015a]. An Oracle service often charges a fee associated with its service provided to the
blockchain and at its current stage today, it is not yet ideal for supporting large and sensitive data operations that
are commonly experienced in a healthcare system.

The first variant avoids computation overhead on the blockchain because an off-chain server is responsible for
querying and processing health events recorded on-chain. Specifically, when the publisher sends an update, its
subscribers only need to do a simple update to an internal state variable that records the publisher’s address, which

3https://blockchainhub.net/blockchain-oracles/

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 18

the DApp server delegates a Messenger to actively monitor changes. When a change occurs, the responsibility
for the heavy computational content filtering task (e.g., retrieving the change activity from the publisher using the
address) is delegated to the DApp server from the blockchain. The DApp server is context-aware at this point
because each subscriber has an associated contract address accessible by the server. The Messenger can then
filter the content based on subscribed topics and update the contract states of appropriate subscribers as needed.

The second variant shifts the responsibility of topic subscriptions and updates to the smart contract component
on-chain. When a topic, such as a patient their provider wishes to be notified of any health-related activities,
experiences a new event or has a value update, the smart contract logic that notifies the subscribers pushes the
updated topic to an Oracle service, which executes some task related to the topic (e.g., sending a secure message
to the subscriber regarding the updated event) and sends the result back to the smart contract caller upon task
completion.

Figure 11 shows the two variants of PUBLISHER-SUBSCRIBER to provide the notification service.

Fig. 11. Two Variants of the PUBLISHER-SUBSCRIBER Pattern for Providing Clinical Notifications of Relevant Healthcare Activities at Scale

Implementing a notification service in a blockchain-based healthcare app is useful when a state change in the
shared environment must be reported to interested parties without unmanaged many-to-many communications.
The disadvantage to the "poll" approach is the complexity in actual implementation of the messenger component
that regularly monitors smart contract events, but it is much more efficient to unload the on-chain burden of topic
filtering to off-chain services. The drawbacks to the "push-to-oracle" approach are on-chain computation overhead
and potential costs of Oracle services despite this approach being relatively easier to implement.

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 19

6. CONCLUSION

Blockchain and programmable smart contracts provide an ecosystem for creating DApps that have the potential
to improve healthcare interoperability on the technical level. However, due to the decentralization, immutability,
and transparency properties of these technologies, a number of key concerns that especially arise in healthcare
systems design must be addressed. These concerns include—but are not limited to—the evolvability of the system,
balancing on-chain storage requirements and their overhead, the protection of patient data privacy, the scalability
of the system across a large number of healthcare users, and information and system security protection. This
chapter described these concerns and presented a key pattern sequence–LAYERED RING, GUARDED UPDATE,
CONTRACT MANAGER, DATABASE CONNECTOR, DATABASE PROXY, ENTITY REGISTRY, TOKENIZED EXCHANGE,
and PUBLISHER-SUBSCRIBER–that together addresses these challenges.

Based on our experience developing the key pattern sequence, we learned the following lessons:

—The public, immutable, and verifiable properties of the blockchain enable a more interoperable environment that
is not easily achieved using traditional approaches that heavily rely on centralized systems.

—The modification of a smart contract is expensive both in terms of cost (if deployed on a public blockchain) and
effort (that may require changes to be propagated to other system components). Important design decisions
must therefore be made in advance to avoid the cost and storage overhead from changing the contract interface.

—To best leverage key properties of blockchain and related technologies in the healthcare context, concerns
regarding system evolvability, storage costs, sensitive information privacy, application scalability, and security
protection must be taken into account.

—Combining time-proven design practices with domain-knowledge that focus on better leveraging properties of
blockchain technology enables the creation of systems that are more modular, easier to scale, less expensive to
integrate and maintain, and less susceptible to change.

REFERENCES

Sima Ajami and Tayyebe Bagheri-Tadi. 2013. Barriers for adopting electronic health records (EHRs) by physicians. Acta Informatica Medica
21, 2 (2013), 129.

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks on ethereum smart contracts (sok). In Principles of Security
and Trust. Springer, 164–186.

Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. 2016. Medrec: Using blockchain for medical data access and permission
management. In Open and Big Data (OBD), International Conference on. IEEE, 25–30.

Massimo Bartoletti and Livio Pompianu. 2017. An empirical analysis of smart contracts: platforms, applications, and design patterns. arXiv
preprint arXiv:1703.06322 (2017).

Adrian Blundell-Wignall. 2014. The Bitcoin question: Currency versus trust-less transfer technology. OECD Working Papers on Finance,
Insurance and Private Pensions 37 (2014), 1.

C Broderson, B Kalis, C Leong, E Mitchell, E Pupo, and A Truscott. 2016. Blockchain: Securing a New Health Interoperability Experience.
(2016).

Frank Buschmann, Kelvin Henney, and Douglas Schimdt. 2007. Pattern-oriented Software Architecture: on patterns and pattern language.
Vol. 5. John wiley & sons.

Vitalik Buterin and others. 2013. Ethereum white paper. (2013).
Coin Market Cap. n.d. Cryptocurrency Market Capitalizations. (n.d.).
CDC. 2003. HIPAA privacy rule and public health. Guidance from CDC and the US Department of Health and Human Services. MMWR:

Morbidity and mortality weekly report 52, Suppl. 1 (2003), 1–17.
ConsenSys. 2018. Recommendations for Smart Contract Security in Solidity. Web. Recommendations for Smart Contract Security in Solidity

(2018).
James Coplien, Daniel Hoffman, and David Weiss. 1998. Commonality and variability in software engineering. IEEE software 15, 6 (1998),

37–45.
CryptoKitties n.d. CryptoKitties. (n.d.).
Reenita Das. 2017. Does Blockchain Have A Place In Healthcare. (2017).

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 20

K DeSalvo and E Galvez. 2015. Connecting health and care for the nation: a shared nationwide interoperability roadmapâĂŤversion 1.0.
Health IT Buzz (2015).

Jules Dourlens. 2017. Ethereum smart contracts lifecycle. (2017).
Alevtina Dubovitskaya, Zhigang Xu, Samuel Ryu, Michael Schumacher, and Fusheng Wang. 2017. Secure and Trustable Electronic Medical

Records Sharing using Blockchain. arXiv preprint arXiv:1709.06528 (2017).
Andreas Ellervee, Raimundas Matulevicius, and Nicolas Mayer. 2017. A Comprehensive Reference Model for Blockchain-based Distributed

Ledger Technology.. In ER Forum/Demos. 306–319.
Etherescan n.d. Etherescan - The Ethereum Blockchain Explorer. (n.d.).
Ethereum.io. 2017. Contracts. Web. http: // solidity. readthedocs. io/ en/ develop/ contracts. html (2017).
Eduardo B. Fernandez. 2013. Security patterns in practice: designing secure architectures using software patterns. John Wiley & Sons.
FOMO3D n.d. FOMO3D. (n.d.).
Ethereum Foundation. 2015a. ORACLIZE LIMITED. Web. http: // www. oraclize. it/ (2015).
Ethereum Foundation. 2015b. Solidity. Web. https: // solidity. readthedocs. io/ en/ develop/ (2015).
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1993. Design patterns: Abstraction and reuse of object-oriented design. In

European Conference on Object-Oriented Programming. Springer, 406–431.
Erich Gamma, John Vlissides, Ralph Johnson, and Helm. Richard. 1995. Design Patterns: Elements of Reusable Object-Oriented Software.

Pearson Education.
Anne Geraci, Freny Katki, Louise McMonegal, Bennett Meyer, John Lane, Paul Wilson, Jane Radatz, Mary Yee, Hugh Porteous, and Fredrick

Springsteel. 1991. IEEE standard computer dictionary: Compilation of IEEE standard computer glossaries. IEEE Press.
Blockchain Hub. 2017. Blockchain Oracles. Web. https://insights.sei.cmu.edu/sei_blog/2017/07/
what-is-bitcoin-what-is-blockchain.html. (2017).

IDEX - Decentralized Ethereum Asset Exchange 2018. IDEX - Decentralized Ethereum Asset Exchange. (2018).
David Johnston, Sam Onat Yilmaz, Jeremy Kandah, Nikos Bentenitis, Farzad Hashemi, Ron Gross, Shawn Wilkinson, and Steven Mason.

2014. The General Theory of Decentralized Applications, DApps. GitHub, June 9 (2014).
Kathy Lesh, Sandy Weininger, Julian M Goldman, Bob Wilson, and Glenn Himes. 2007. Medical device interoperability-assessing the

environment. In 2007 Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play
Interoperability (HCMDSS-MDPnP 2007). IEEE, 3–12.

Julio Moreno, Eduardo B. Fernandez, Eduardo Fernandez-Medina, and Manuel Serrano. 2019. A Security Pattern to Incorporate Blockchain in
Big Data Ecosystems. In EuroPLoP-24th European Conference on Pattern Languages of Programs.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
ONC. 2014. Connecting Health and Care for the Nation: A 10-Year Vision to Achieve an Interoperable Health IT Infrastructure. (2014).
Santiago Palladino. 2017. The Parity Wallet Hack Explained. Web. https: // blog. zeppelin. solutions/
on-the-parity-wallet-multisig-hack-405a8c12e8f7 (2017).

Jeff Brandt Peter B. Nichol. 2016. Co-Creation of Trust for Healthcare: The Cryptocitizen. Framework for Interoperability with Blockchain.
(2016).

Kevin Peterson, Rammohan Deeduvanu, Pradip Kanjamala, and Kelly Boles. 2016. A Blockchain-Based Approach to Health Information
Exchange Networks. (2016).

Simone Porru, Andrea Pinna, Michele Marchesi, and Roberto Tonelli. 2017. Blockchain-oriented software engineering: challenges and new
directions. In Proceedings of the 39th International Conference on Software Engineering Companion. IEEE Press, 169–171.

Steven Rich and Barton Gellman. 2014. NSA seeks to build quantum computer that could crack most types of encryption. The Washington
Post 2 (2014).

Rachel L Richesson and Prakash Nadkarni. 2011. Data standards for clinical research data collection forms: current status and challenges.
Journal of the American Medical Informatics Association 18, 3 (2011), 341–346.

Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. 1996. Role-based access control models. Computer 29, 2 (1996),
38–47.

Ravi S Sandhu and Pierangela Samarati. 1994. Access control: principle and practice. IEEE communications magazine 32, 9 (1994), 40–48.
Alexander Shvets. 2015. Design Patterns Explained Simply. sourcemaking. com (2015), 80–84.
David Siegel. 2016. Understanding the DAO attack. Web. http: // www. coindesk. com/ understanding-dao-hack-journalists

(2016).
Xiwei Xu, Cesare Pautasso, Liming Zhu, Vincent Gramoli, Alexander Ponomarev, An Binh Tran, and Shiping Chen. 2016. The blockchain as a

software connector. In 2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, 182–191.
Uwe Zdun, Carsten Hentrich, and Wil MP Van Der Aalst. 2006. A survey of patterns for service-oriented architectures. International journal of

Internet protocol technology 1, 3 (2006), 132–143.

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 21

http://solidity.readthedocs.io/en/develop/contracts.html
http://www.oraclize.it/
https://solidity.readthedocs.io/en/develop/
https://insights.sei.cmu.edu/sei_blog/2017/07/what-is-bitcoin-what-is-blockchain.html
https://insights.sei.cmu.edu/sei_blog/2017/07/what-is-bitcoin-what-is-blockchain.html
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
http://www.coindesk.com/understanding-dao-hack-journalists

Peng Zhang, Douglas C. Schmidt, Jules White, and Gunther Lenz. 2018. Blockchain Technology Use Cases in Healthcare. In Blockchain Tech-
nology: Platforms, Tools, and Use Cases. Elsevier. DOI:http://dx.doi.org/https://doi.org/10.1016/bs.adcom.2018.03.006

P. Zhang, M. A. Walker, J. White, D. C. Schmidt, and G. Lenz. 2017a. Metrics for assessing blockchain-based healthcare decen-
tralized apps. In 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom). 1–4.
DOI:http://dx.doi.org/10.1109/HealthCom.2017.8210842

Peng Zhang, Jules White, Douglas C Schmidt, and Gunther Lenz. 2017b. Applying software patterns to address interoperability in blockchain-
based healthcare apps. arXiv preprint arXiv:1706.03700 (2017).

Peng Zhang, Jules White, Douglas C. Schmidt, Gunther Lenz, and S. Trent Rosenbloom. 2018. FHIRChain: Applying Blockchain
to Securely and Scalably Share Clinical Data. Computational and Structural Biotechnology Journal 16 (2018), 267 – 278.
DOI:http://dx.doi.org/https://doi.org/10.1016/j.csbj.2018.07.004

A Pattern Sequence for Designing Blockchain-Based Healthcare Information Technology Systems — Page 22

http://dx.doi.org/https://doi.org/10.1016/bs.adcom.2018.03.006
http://dx.doi.org/10.1109/HealthCom.2017.8210842
http://dx.doi.org/https://doi.org/10.1016/j.csbj.2018.07.004

	Introduction
	Key Concepts of Blockchain Technology
	Blockchain Concepts
	Overview of Solidity

	Related Work
	Overview
	Challenges of healthcare blockchain and proposed solutions.
	Prior efforts focused on software design practice for developing blockchain apps.

	Gaps in Existing Research

	Healthcare Interoperability Challenges Faced by Blockchain-Based Apps
	Evolvability Challenge: Maintaining Evolvability While Minimizing Integration Complexity
	On-Chain Storage Challenge: Minimizing Data Storage Requirements on the Blockchain
	On-Chain Privacy Challenge: Balancing Data Storage with Privacy Concerns
	Scalable Communication Challenge: Tracking Relevant Health Changes Scalably Across Large Patient Populations
	Security Challenge: Preventing Unintended Software Loopholes and Safeguarding On-Chain Data

	A Key Pattern Sequence for Designing Blockchain-Based Health Apps
	A Blockchain-Based Architecture for Health Data Sharing Systems
	Preventing Reentrancy Attack in the Blockchain
	Separating Data from Logic to Ensure Data Availability via a Manager Contract
	Standardized On-Chain Interfaces to Off-Chain Storage Access
	Security Checking before Accessing Off-Chain Storage
	Managing Healthcare Entities and Other Types of Common Data on-Chain at Scale
	Securing and Recording Data Access
	Providing Notifications of Relevant Healthcare Activities at Scale

	Conclusion

