Patterns for text classification (Part 1)

MICHAEL WEISS, Carleton University
SWARUPINI BATHULA, Carleton University
STEVEN MUEGGE, Carleton University
ALI NAZARI, Carleton University

This paper describes patterns for text classification. The patterns address problems related to creating machine learning models for a corpus
of documents and describe common solutions to solve those problems. The target audience for these patterns includes developers who are
familiar with basic machine learning algorithms, but do not have much experience with applying machine learning to text classification.

Categories and Subject Descriptors: D.2.11 [Software Architectures] Patterns; 1.5.1 [Pattern Recognition] Models
General Terms: Design
Additional Key Words and Phrases: text classification, labeling data

ACM Reference Format:
Weiss, M. et al., 2019. Patterns for text classification (Part 1). HILLSIDE Proc. of Conf. on Pattern Lang. of Prog. 1 (October 2019), 9 pages.

1. INTRODUCTION

This paper is the first part of a pattern language for text classification. The patterns will address problems related
to creating machine learning models for a corpus (see glossary at the end) of documents and describe common
solution to solve those problems. The focus of the patterns in this paper is on feature extraction. Unlike numerical
or categorical features often used in machine learning models, we need to preprocess textual data before we
can use them as features. For example, we can extract features from a document by determining the frequency of
the words in the document, or by looking for certain key phrases and words associated with sentiments.

Fig.|1| shows a map of the patterns that focus on feature extraction from textual data[] Arrows between the
patterns indicate the order in which the patterns are typically applied.

Before we can extract features from a corpus of documents, we need to Clean the Data. For example, text may
contain HTML tags, special characters, or URLs. In most cases, we want to remove those (HTML tags or URLSs) or
replace them (special characters). The next step is to separate each document into tokens (for example, words or
phrases) using Tokenization. Using Bag of Words, we can then count the frequency of the tokens and obtain a set
of potential features. Often, there will be too many features, and we need to reduce their number using a technique
like Rank. We can also improve the output of Tokenization by Normalizing the tokens, removing Stopwords that
are not relevant for the analysis, or by combining groups of consecutive tokens into N-grams.

1The patterns Clean the Data, Normalization, Stopwords, and N-grams will be described in a future paper.

Author’s address: M. Weiss, Technology Innovation Management, Carleton University, SP 308, 1125 Colonel By Dr, Ottawa, ON K1S 5B6,
Canada; email: michael_weiss@carleton.ca

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A prelimi-
nary version of this paper was presented in a writers’ workshop at the 26th Conference on Pattern Languages of Programs (PLoP).
PLoP’19, OCTOBER 7-10, Ottawa, Ontario, Canada. Copyright 2019 is held by the author(s). HILLSIDE 978-1-941652-14-5

Clean the Data

|

Tokenization

AN

Bag of words Normalization Stopwords N-grams

|

Rank

Fig. 1. Pattern map

The target audience for these patterns includes developers who are familiar with basic machine learning
algorithms, but do not have much experience with applying machine learning to text classification. The “you” in the
pattern description refers to those developers. The description follows the Alexandrian format: this means they
consist of a context, followed by problem and forces, solution, consequences, known uses, and related patterns
(visually separated by x x x's).

2. EXAMPLE

To explain the use of the patterns, we will use a running example of creating a model that classifies issues in the
bug tracker of an open source project by their type. Each entry in the bug tracker contains information about an
issue, such as its title, its status, the date when the issue was created/modified, the developer assigned to it, a
description of the problem, and a description of the solution, if the issue has already been resolved.

Many projects do not categorize issues. In order to be able to determine the likely type of an issue for such a
project, we want to train a model on a set of issues from a project that does organize its issues by type. Fortunately,
several large open source projects are quite diligent about labeling issues. As an example, we will be using the
bug tracker of the Chromium project (bugs . chromium. org) to create our model.

Suppose, we want to be able to separate security-related from non-security-related issues. To identify security
bugs, we can search for bugs within All issues that have the tag label=security. To obtain a list of non-security
bugs, we can simply search for bugs that are not tagged as security bugs by using the search term -label=security.
By scraping the issue tracker site, we can obtain a sample of security-related and non-security-related issues,
which gives us labeled data to train our model. We could also limit our search to a time range and bug status.

Table [l shows examples of security-related issues from the Chromium project. Table[l, by comparison, shows
examples of non-security-related issues.

Table I. Examples of security-related issues (just ID and summary are shown)

ID Summary

798173 Use-of-uninitialized-value in SkMatrix::postConcat

798163 Security: privileged XSS in chrome-devtools://devtools/remote with old frontend (insuffi-
cient validation of remoteFrontendUrl)

798150 Crash in v8::internal::Invoke

Patterns for text classification (Part 1) — Page 2

bugs.chromium.org

Table Il. Examples of non-security-related issues (just ID and summary are shown)

ID Summary

798174 GLSL bug: s=vec2(1) , m=mat2(s,s) give wrong result

798172 Google Cloud Print should select the correct Google Drive account depending on the
Gmail account

798169 Extension APIs should be also exposed under ‘browser.* to match the WebExtensions
spec

We want the model to be able to classify a new issue into either one of those two categories based on just the
summary of the issue. Of course, it is possible to include other features, for example, the name of the developer
associated with the issue may be a good indicator of whether or not the issue is security-related, given the different
level of security expertise developers have. However, we also want to create a model that we can apply to a
different corpus of issues from another project. Thus, we do not want to use features that are project-specific.

We will also provide a working example of each pattern using the open source machine learning and data
visualization platform Orange [Demsar et al. 2013], which has gained popularity among educators and practitionersﬂ
However, this is just for illustration. The patterns do not in any way depend on the use of Orange. They could be
just as easily created using Python and a machine learning library like Scikit-lear

3. TOKENIZATION
You are creating a machine learning model for a corpus of documents. You have already cleaned the data.

* % X%

Before you can create a model from a corpus of documents you need to divide each document into
smaller units called tokens. How to extract these tokens depends on the language and your goals.

Usually, tokens are separated by spaces or punctuation. This is true for languages like English. In other
languages (such as Japanese), you need to use a pre-trained language model to detect token boundaries.

However, sometimes it can be difficult to define what a token is, for example, the “words” in source code may
contain numbers or capitalized letters.

* % %

Separate the documents into tokens based on delimiters, patterns, or language models.

In many natural languages like English or German, words are separated by spaces. In this case, we can use a
space as a delimiter to split the text into tokens. Sometimes, more complex heuristics are required, for example, to
extract numbers from a document or split variable names in a source code document into their components. In this
case, a token can be defined by a pattern or regular expression. For example, the regular expression \d+ matches
whole numbers in the text As noted above, for languages like Japanese that do not have word boundaries, you
may also need to use a pre-trained language model to tokenize the text.

As a straightforward example, consider the following document:

Google Cloud Print should select the correct Google Drive account
Splitting the text on the spaces produces this list of tokens:
Google, Cloud, Print, should, select, the, correct, Google, Drive, account
*https://orange.biolab.si
Shttps://scikit-learn.org

470 learn more about regular expressions or to experiment with specific regular expressions, there are various online resources like regular
expressions 101 (https://regex101. com) with tutorials and editors for regular expressions.

Patterns for text classification (Part 1) — Page 3

https://orange.biolab.si
https://scikit-learn.org
https://regex101.com

A more complex example is a document that contains text, numbers and special symbols:
GLSL bug: s=vec2(1) , m=mat2(s,s) give wrong result

In this case, we want to use a pattern that extracts all text, but discards numbers and special symbols. The
regular expression [a-zA-Z]+ produces:

GLSL, bug, s, vec, m, mat, s, s, give, wrong, result

Sometimes, though, you want to retain special symbols. For example, for analyzing source code, symbols like +
or = may carry special significance and you want to represent them by a token.

X % X

Subsequent steps of analysis have access to the significant components of the text (tokens).
Some information is lost when converting the text into tokens (for example, punctuation or whitespace could be
significant to some types of analyses).

X % X%

Tokenization is a well-documented technique [Weiss et al. 2015]. A simple tokenizer can be created by using
the split function provided by many string processing libraries to break the text on whitespaces. Yet, the tokens
created in this simple manner will include punctuation marks.

The StandardTokenizer in Apache Solr splits text into its component words using punctuation symbols [Ingersoll
et al. 2013]. OpenNLP’s english.Tokenizer will also account for the grammatical roles words play [Ingersoll et al
2013]. For example, it will split can’t into can and n’t.

In Orange (see note above), text documents can be pre-processed by applying regular expressions and various
transformations (for example, changing the text to lower-case), as shown in Fig.[2]

Transformation ©)
Lowercase Remove accents Parse html Remove urls
Tokenization 4’L;)/\

Word & Punctuation
Whitespace

Sentence

© Regexp Pattern: [\w+

Tweet
Fig. 2. Defining a tokenization pattern and transformations in Orange

X Xk X%

Generally, tokenization is combined with Normalization to remove arbitrary differences between the tokens. For
example, you usually want tokens to be lower-case.

Common words like “the” are often not relevant for further analysis. Use Stopwords to exclude such tokens, as
well as other uninformative tokens from the documents.

Bag of Words is typically used next to convert a set of tokens into features.

To identify what should be included in a token (for example, is punctuation significant), validate the tokenization
pattern by Testing it on a Subse of the corpus.

5 Test on a Subset will be described in the future as one of several general patterns for developing machine learning models.

Patterns for text classification (Part 1) — Page 4

4. BAG OF WORDS

You are creating a machine learning model for a corpus of documents. You already used Tokenization to extract
the tokens from each document in the corpus.

X % X%

To create features from the tokens in each document, you need to convert each document into a nu-
merical format (a vector of numbers) that can be used as input to your model.

You cannot train a machine learning model on raw text.

Features should represent salient aspects of the document.

Features should allow the model to distinguish between documents.

Each token can appear multiple times in a document.

X % X%

Measure how often (or, alternatively, just whether) each token appears in the text of each document in
the corpus, and represent each document as a vector of word frequencies or occurrences.

The outcome is a table of the frequencies or, as a special case, occurrences (present or absent) of the tokens in
the document. This is also referred to as a “bag” of wordsﬁa collection in which each tokens can occur multiple
times. Each token becomes a potential feature in the machine learning model. Its frequency is the value of the
feature. Formally, the table of frequencies can be represented as a vector.

Consider the following example document:

This site is insecure and is harmful to visit error
The bag-of-words representation for this document is shown in Table [Tl
Table 111

Bag-of-words
representation

Word Frequency

this 1
site 1
is 2
insecure 1
and 1
harmful 1
to 1
visit 1
error 1

The basic bag-of-words approach equates the importance of each token with the frequency with which it occurs
in a document. However, this only measures the local importance of a token. A more sophisticated approach
would be to also account for the frequency of each token across the corpus of documents. We can also just record
whether or not a token appears in the document, assigning a binary value (0/1) as its frequency.

Tokens that appear in most of the documents should not be given as much weight as tokens that are used
only in only some of the documents. Such “rare” tokens are better for distinguishing documents from each other.
Therefore, the frequency of the token is typically weighted with the inverse document frequency, which measures
how relatively unique each token is in the corpus.

SWhile the bag can contain any kind of token, historically, the name “bag of words” has become common usage.

Patterns for text classification (Part 1) — Page 5

X Xk X%

A bag of words can be considered a summary of the contents of the document.
However, neither word order nor grammar is preserved by the features.

X X X%

The representation of a document as a bag of words was first used in the area of information retrieval [Weiss
et al. 2015]. In this representation, each token or word is associated with its frequency in the document. The
CountVectorizer in Scikit-learr{’| converts a collection of documents into a matrix of token frequencies. Each
document is represented by a row in this matrix.

Fig. [3] shows how a bag-of-words model can be defined in Orange. Here, we count the term frequency in a
document and weigh it with the inverse document frequency.

Options
Term Frequency: Count

Document Frequency: @ IDF

(2L S AL

Regularization: (None)

Fig. 3. Defining a bag-of-words model in Orange

* kX%

A bag of words creates a feature per unique token in the document. This can results in a large number of
features. To reduce the number of features consider Rank.

Token position is lost in a bag of words. Sometimes you want to maintain it. To capture more of the context in
which each token appears in the document consider N-grams.

N-grams is also useful when groups of tokens are semantically meaningful. For example, the words buffer and
overflow often co-occur and combined form the concept buffer overflow.

5. RANK

You are creating a machine learning model for a corpus of documents. You used Bag of Words to extract features
from the documents, but are left with a large number of features.

* % Xk

Simpler models are easier to understand and less likely to lead to overfitting the training data, so you
want to reduce the number of features.

The more features there are, the more documents are needed to train the model.

Not all features are equally suitable for distinguishing documents from one another.

However, too few features will make the model unspecific.

% 3k sk
Rank the features by their significance and focus on the top-ranked ones.
A common method for ranking features is to rank them by information gain. The greater the information gain
of a feature, the better suited it is to distinguish between different classes of documents. You, therefore, want

to choose the features with the greatest information gains. Other methods to rank features include statistical
measures such as the Gini coefficient and chi-squared statistic.

7https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

Patterns for text classification (Part 1) — Page 6

X Xk X%

Focusing on the top-ranked features reduces the number of documents needed in your training set and reduces
the computational effort it takes to train the model.

Excluding less significant features will make the model easier to understand.

To determine the right number of features, you need to experiment with different numbers of features to include

and assess their impact on the quality of the model.

* % %

Ranking features according to their ability to predict the class of a document is a common technique for feature
selection [Weiss et al. 2015]. The SelectKBesﬂ class in Scikit-learn selects the k best features given a scoring
function. Scikit-learn implements a range of scoring functions.

Fig. [4] shows how a ranking of features can be defined in Orange. Here, we rank the features by information
gain and chi-squared. We can compare the impact of each scoring function and select which one we want to apply
to the list of features, then choose the features we want to include in the model. Both of these measures seem to
agree in this particular example, however, this is not always the case.

Scoring Methods # Info. gain ¥

X
v Information Gain [secur
Information Gain Ratio M vuiner
e v 14
Gini Decrease
ANOVA [regress R -1
Mb'e [0 heap — —
Relieff [vuiner report — -9
FCBF
M cve P —
Select Attributes [report kernel
MNone M butfer overflow — —
All [kernel — —
Manual [cve vulner — —
® Best ranked: 100 < 0 use
v Send Automatically @ report — —

M heap buffer

Fig. 4. Defining a ranking of features in Orange

k ok >k

Eliminating features by ranking assumes that features are not interdependent: interdependent features may rank
low individually, but could be significant when used in combination.

6. EXAMPLE RESOLVED

Let’s apply the patterns to the example of classifying issue into security-related and non-security-related issues.
The solution involves two stages (this paper focuses on the first stage):

—Identify features for training the machine learning model.

—Select a machine learning algorithm that best fits the initial corpus of issues (training data) and evaluate its
performance on a corpus of issues from another project (test data).

8https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectkBest.html

Patterns for text classification (Part 1) — Page 7

The corpus of issues contains both security-related and non-security-related issues scraped from the Chromium
project website. Assume there you have collected 1,000 issues of each type and that the training data contains

three fields for each issue: ID, summary, and type of issue.
The first step in identifying the features for the machine learning model is to import the corpus and Tokenize

each issue summary. This is accomplished by the first three steps (from the left) in the Orange workflow in Fig.
Orange is a visual language for defining machine learning models. The nodes in an Orange workflow (such as
Corpus) indicate input, output, and processing steps. Corpus loads the issues, Select Columns defines the type
as the target variable to be predicted, and Preprocess Text separates the summaries into tokens.

Q

Corpus Viewer
2
<3
o
(8]
pata Data — Corpus Corpus - Corpus — Data vx
us ~ e d - .
@]) s o o =
2
Corpus Select Columns Preprocess Text Bag of Words Rank (\Q’Xb g? Confusion Matrix
oS o
&
& 8
9 S
<~ T
=3
o g
¥ [
p(ed\C\\of\S
A Learner o Data
'S -
Naive Bayes Test & Score Predictions
&
£
&
@
g
'
&a
P

Random Forest

Fig. 5. Orange workflow for the example

Subsequently, Stopwords are removed from the list of tokens that would otherwise limit the generalizability of
the model. These include common English words and words like android, chrome, and google that would only
be used frequently in describing issues for the Chromium project. Next, the tokens are Normalized by converting
them to lower case and stemming them to common roots. To identify common combinations of tokens, we also
opted to create N-grams of up to two tokens. All of this is accomplished as part of the Preprocess Text step.

The next step creates a Bag of Words from the preprocessed summaries. To emphasize distinctive tokens, we
also weight their frequencies by their inverse document frequency. The features identified in this way are then

Ranked by information gain, and we cut off after the first 100 features.
6| shows a list of the 10 top-ranked features. As one would expect, keywords like secur, and vulner,

Fig.
used in a summary are indicative of security-related issues, but so are word combinations like buffer

and cvg
overflow (a common source of vulnerabilities).
These features can then be used to train and evaluate different machine learning algorithms. Here we compare

Naive Bayes (commonly used for text classification) and Random Forest.

9The term cve refers to Common Vulnerabilities and Exposures.

Patterns for text classification (Part 1) — Page 8

Info. gain v

[secur

9 vulner

[regress

[heap

[0 vulner report
M cve

[report kernel
[buffer overflow
[kernel

[cve vulner

Fig. 6. Ranked list of features for classifying issues

ACKNOWLEDGMENTS
| would like to express my thanks to my shepherd, Cecilia Haskins, and the participants in my writers’ workshop for
their generous feedback on earlier versions of this paper.

Glossary
Categorical feature. Categorical features have discrete values, for example, a feature sex with values male
and female. They can also be created from numerical features by binning.
Corpus. In text analysis, a collection of documents is often referred to as a corpus.
Feature. A characteristic of the training data used to create a machine learning model. Features often do not
exist in the raw data, but need to be extracted from it.
Feature extraction. The process of extracting features from the training data.
Information gain. Information gain is a statistical measure of how much information a feature provides about a
class, that is, how much entropy or uncertainty it removes.
Model. In this paper, the term “model” refers to a machine learning model. A machine learning model is the
outcome of training a machine learning algorithm such as Naive Bayes.
Numerical feature. Numerical features are features like size or duration. Categorical features can be con-
verted into numerical features through one-hot encoding.
Token. A token is the unit of interest in a text document. It is typically a word, but could be a phrase, a whole
sentence, or any text that matches a specified pattern.

REFERENCES

DEMSAR, J., CURK, T., ERJAVEG, A., C GORUP, HOGEVAR, T., MILUTINOVIC, M., MOZINA, M., POLAJNAR, M., TOPLAK, M., STARIC, A.,
STAJDOHAR, M., UMEK, L., ZAGAR, L., ZBONTAR, J., ZITNIK, M., AND ZUPAN, B. 2013. Orange: Data mining toolbox in python. Journal of
Machine Learning Research 14, 2349-2353.

INGERSOLL, G. S., MORTON, T. S., AND FARRIS, A. L. 2013. Taming Text: How to Find, Organize, and Manipulate It. Manning.

WEISS, S. M., INDURKHYA, N., AND ZHANG, T. 2015. Fundamentals of Predictive Text Mining 2 Ed. Springer.

PLoP’19, OCTOBER 7-10, Ottawa, Ontario, Canada. Copyright 2019 is held by the author(s). HILLSIDE 978-1-941652-14-5

Patterns for text classification (Part 1) — Page 9

	Introduction
	Example
	Tokenization
	Bag of Words
	Rank
	Example resolved

