
Patterns in Activity Models for Process Oriented
Guided Inquiry Learning (POGIL)

1

CLIFTON KUSSMAUL, ​Green Mango Associates, LLC

Process Oriented Guided Inquiry Learning (POGIL) is an evidence based strategy for learning in which teams of students worked on
classroom activities that guide them to develop understand and practice skills. A POGIL activity consists of a set of models, each
followed by a series of questions to guide student thinking. This paper presents a set of patterns for models that are often used in
POGIL activities, in order to help POGIL authors create better activities more efficiently.

Categories and Subject Descriptors: ​K.3.1 [Computers and Education]: ​Computer Uses in Education—Collaborative learning;

D.3.3 [Programming Languages]: ​Language Constructs and Features—Patterns

General Terms: Design, Human Factors

Additional Key Words and Phrases: Active Learning, Patterns, POGIL, Process Oriented Guided Inquiry Learning,

ACM Reference Format:

Kussmaul, C. 2020. Patterns in Activity Models for Process Oriented Guided Inquiry Learning (POGIL). HILLSIDE Proc. of Conf. on
Pattern Lang. of Prog. (October 2020), 19 pages.

1. INTRODUCTION

Process Oriented Guided Inquiry Learning (POGIL) ​is an evidence-based strategy for learning in which
teams of students work on classroom activities that guide them to understand concepts and practice skills.
Each POGIL activity consists of a set of ​models​, each followed by a series of questions to guide student
thinking. This paper presents four patterns for models that are often used in POGIL activities. This should
help POGIL authors to create better activities more efficiently, and help teachers to understand how POGIL
activities work and how to use POGIL practices to better support student learning.

This paper continues and extends earlier work (Kussmaul, 2016; Kussmaul, 2017) and is organized as
follows. The rest of Section 1 briefly describes pedagogical patterns, POGIL, and the potential benefits of
patterns in POGIL. Section 2 describes the four patterns for models in POGIL activities. Section 3 describes
conclusions and some future directions.

1.1 Patterns for Pedagogy

There are many instructional strategies and materials. Thus, it is useful to describe them and their
components with a rich vocabulary that is not tied to one academic discipline. One effective approach is to
use ​patterns​, which are detailed descriptions of effective practices. Typically, a pattern includes an
evocative ​name​, a ​problem ​statement with ​forces ​that influence it, the ​context ​in which the problem occurs,
a ​solution ​statement with ​consequences​, discussion, and examples. For example, the pattern L​IGHT ON ​T​WO

S​IDES OF ​E​VERY ​R​OOM (Alexander, Ishikawa, and Silverstein, 1977) is specific enough to be useful, but can be
adapted to many contexts. Patterns were introduced for architecture (ibid.), and have been adapted in other
areas, particularly software development (e.g., Fowler, 2002; Gamma, Helm, Johnson, and Vlissides, 1995).
Pedagogical patterns have been described and used for over 20 years (e.g., Anthony, 1996; Bergin, 2000); for
more details, see prior work (Kussmaul, 2016; Kussmaul, 2017).

1This work is supported by the US National Science Foundation (NSF) Grant #1626765.
Author's address: C. Kussmaul, 730 Prospect Ave, Bethlehem, PA 18018 USA; email: clif@kussmaul.org..

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary
version of this paper was presented in a writers' workshop at the Conference on Pattern Languages of Programs (PLoP). PLoP'20,
OCTOBER. Copyright 2020 is held by the author(s). HILLSIDE ​XXX-X-XXXXXX-XX-X

For many teachers, when the problem is “Students need to learn X”, the default solutions are “Lecture on
X”, “Assign reading on X”, “Assign homework or a project that involves X”, or “Test students on X”.
However, these can be ​anti-patterns​, defined as “a common response to a recurring problem that is usually
ineffective and risks being highly counterproductive” (Wikipedia). A lecture focuses on teacher actions, not
student outcomes, and is rarely effective for the higher levels (e.g., ​analyze​, ​evaluate​, and ​create​) of Bloom’s
taxonomy (Bloom, Engelhart, et al, 1956; Anderson & Krathwohl, 2001). Students usually do readings,
homework, projects, and tests without direct support from the teacher. Students overestimate their learning
from lectures (Carpenter, Wilford, Kornell, and Mullaney, 2013), while student outcomes improve through
social constructivism​, when they interact to construct their own understanding (Chi and Wylie, 2014).

Thus, when “Students need to learn X”, a better solution is often “Use an evidence-based, social
constructivist activity about X” where students construct their own understanding and practice key skills,
with a teacher available to guide and support. From a pattern perspective, each evidence-based strategy is a
high-level pattern, composed of sub-patterns that might be shared with other strategies. For example, Peer
Instruction (Mazur, 1996), Peer Led Team Learning, Problem-Based Learning, and Process Oriented Guided
Inquiry Learning (Eberlein, et al, 2008) are evidence-based strategies that use student discussions, for which
a variety of patterns have been described (see list in Kussmaul, 2016).

1.2 Process Oriented Guided Inquiry Learning (POGIL)

In ​Process Oriented Guided Inquiry Learning​, teams of three to five students work during class time on
specifically designed activities that guide them to discover and understand core concepts. At the same time,
teams develop important higher-order skills, such as communication, teamwork, critical thinking, and
problem solving (the ​process oriented​). These are sometimes called “professional skills” or “soft skills”; the
POGIL community calls them “process skills”, and considers their development to be at least as important
as the course content. The teacher’s role shifts from disseminator (“sage on the stage”) to ​facilitator ​of
learning (“guide on the side”), who continually assesses when and how to guide teams as they work (Moog,
Creegan, Hanson, et al, 2006; Moog and Spencer, 2008; Simonson, 2019). Thus, a POGIL activity usually
takes more time than a lecture or reading on the same topic, but leads to much deeper understanding and
helps students to develop important skills. Prior work (Kussmaul, 2016) provides more details on the history
of POGIL, evidence of effectiveness, and describes a POGIL activity.

POGIL activities contain ​models ​(e.g., diagrams, graphs, tables, definitions, code excerpts) and a series
of ​critical thinking questions about the models. Each question is categorized as ​directed ​(easy to answer
based on prior knowledge), ​convergent ​(requiring effort and usually leading to one answer), or ​divergent
(open-ended, and thus likely to generate discussion and disagreement). These questions guide students
through ​explore-invent-apply learning cycles ​(the ​guided inquiry​) to ​explore ​the model and notice key
features, then ​invent ​their own understanding of a key idea, and finally ​apply ​that understanding, often in
another context. DCV Q​UESTIONS and EIA L​EARNING C​YCLES are described elsewhere (Kussmaul, 2016); note
that DCV describes a question’s effort and difficulty, while EIA describes its role in a learning cycle.

1.3 Patterns and POGIL

A pattern language for POGIL articulates the tactic knowledge of experienced POGIL practitioners into
explicit knowledge which can help others to write activities and facilitate classroom learning. This should
help us to better identify and understand the elements and factors in classroom activities, and provide a
vocabulary for higher-level discussions among POGIL authors and practitioners. This should also help other
educators to understand and adopt practices that are effective, widespread, and well understood in the
POGIL community.

For example, writing a POGIL activity is like writing a paper (or a pattern); the author must carefully
plan, draft, and revise it to effectively guide student learning. A pattern language can help authors, coaches,
and reviewers identify and solve problems, leading to better activities with less effort. Figure 1 illustrates
how patterns could be used at multiple levels, using flowcharts as an example. First, choose or define high
level objectives for a course, unit, and class session, and then choose or create learning activities to help
students reach those objectives. For a POGIL activity, choose the models and EIA L​EARNING ​C​YCLE ​questions
to guide student learning. The patterns described in this paper are at the lower level; in a POGIL activity,
how do we create models and use them effectively?

Patterns in Activity Models for POGIL: Page - 2

Figure 1: Using patterns at multiple levels to plan learning activities.

Table 1 summarizes previously described patterns for POGIL activities. The first two patterns

(referenced in this paper) describe ways to categorize questions in a POGIL activity. The other three
patterns describe POGIL activity models (Kussmaul, 2016). A longer list of previously documented patterns
relevant for POGIL is available (Kussmaul, 2017).

Table 1: Previously described patterns for models and related concepts (Kussmaul 2016), in alphabetical order.

Pattern Patlet
DCV Q​UESTIONS ​(D​IRECTED​,
C​ONVERGENT​, D​IVERGENT​)

Use a variety of question types, including ​directed​, which are based on prior knowledge or
given information; ​convergent​, which require student effort and one (or a few) correct answer;
and ​divergent​, which also require effort and may have varied answers.

EIA L​EARNING​ C​YCLES

(E​XPLORE​-I​NVENT​-A​PPLY​)
Use learning activities that include EIA L​EARNING​ C​YCLES​ where students answer questions
that guide them to ​explore ​a model, ​invent ​their own understanding of a key concept,
and then ​apply ​that understanding in another context.

M​ODEL​: C​HART OR ​G​RAPH Use EIA L​EARNING​ C​YCLES​ where the model is a chart or graph to help students understand
concepts based on data, and to help students develop skills in information processing.

M​ODEL​: G​AME OR ​P​UZZLE Use EIA L​EARNING​ C​YCLES​ where the model is a game or puzzle that captures the essence
of the problem in a C​OLORFUL ​A​NALOGY​ that avoids extraneous details.

M​ODEL​: T​ERMS ​& D​EFINITIONS Use EIA L​EARNING​ C​YCLES​ where the model is a set of terms and definitions that
are not conceptually difficult and that students may need to refer to in the future.
(This is not recommended for difficult concepts.)

Patterns in Activity Models for POGIL: Page - 3

2. PATTERNS FOR POGIL MODELS

Models play a central role in an effective POGIL activity, and creating effective, robust models is difficult.
When creating models, POGIL activity authors should consider the following questions:

● How relevant is this model to the topic, course, and discipline? ​Devote more time to more relevant
models, since students will likely encounter them again.

● How much experience do students have with models like this? ​Devote more time (and use more
scaffolded questions) on less familiar or more difficult models, or split them into simpler models.

● What other models might be simpler, or better support student learning?

The relationships between POGIL models and learning objectives (what students should be able to do)

are not always obvious, as shown in Figure 2. Often, an activity about a topic will use an example of that
topic as a POGIL model (top left quadrant); for example, an activity about flowcharts would likely use
flowcharts as some of the POGIL models. However, an activity could also use other models (top right
quadrant); for example, a flowchart activity might have models that are pseudocode or narrative
descriptions of processes, and a flowchart activity might have no flowchart models, if it guided students to
create their own flowchart without an example. Similarly, flowchart models could be used in activities on
other topics (bottom left); for example, an activity about algorithms. Furthermore, most POGIL activities
have multiple learning objectives for content topics and process skills, so an activity might be designed to
help students learn about algorithms, flowcharts, and teamwork or time management.

 POGIL model: X POGIL model: Z (not X)

Objective:
Learn about X

Learn about X using X as model
(e.g., learn about flowcharts
using flowcharts as models).

Learn about X using Z as model
(e.g., learn about flowcharts
without using flowcharts as models).

Objective:
Learn about Y
(not X)

Learn about Y using X as model
(e.g., learn about algorithms
using flowcharts as models).

Learn about Y using Z as model
(e.g., learn about algorithms
without using flowcharts as models).

Figure 2: Relationships between learning objectives and POGIL models, shown in a 2x2 matrix.

After picking a particular type of model, an activity author must work out the details of the model and its
EIA L​EARNING ​C​YCLE ​questions. The patterns described below are intended to help authors choose models
and make appropriate decisions about them.

Table 2 summarizes four patterns for POGIL activity models, which are described in the following
subsections. Some of these patterns could be specialized further; for example, a pattern for a specific type
of diagram (e.g. flowchart, Venn diagram), or a pattern for a set of examples of a specific type (e.g., pictures,
graphs, personas). Each of these model patterns are probably specializations of a higher level POGIL
A​CTIVITY ​M​ODEL ​(not yet documented). For example, a higher level pattern could note that a model is often
more engaging when it seems relevant to students’ lives and interests, although this is not always possible;
models that engage some students might be off-putting to others.

Table 2: Model patterns described in this paper, in alphabetical order.

Pattern Sec Patlet
M​ODEL​: D​IAGRAM 2.1 Use EIA L​EARNING​ C​YCLES​ where the model is a diagram (e.g. a flowchart or UML)

to help students understand abstract concepts and develop skills in information processing.
M​ODEL​: S​ET OF ​E​XAMPLES 2.2 Use EIA L​EARNING​ C​YCLES​ where the model is a set of examples to help students

develop concepts based on examples, and develop skills in critical thinking.
M​ODEL​: S​OURCE​ C​ODE 2.3 Use EIA L​EARNING​ C​YCLES​ where the model is computer source code to help students understand

software concepts and develop skills in information processing.
M​ODEL​: T​ABLE OF ​D​ATA 2.4 Use EIA L​EARNING​ C​YCLES​ where the model is a chart or graph to help students

understand concepts based on data, and develop skills in information processing.

Note to reviewers & shepherds: For readability in this draft, each model starts on a new page.

Patterns in Activity Models for POGIL: Page - 4

2.1 Model: Diagram

Context​: You teach subjects and concepts in which students need to analyze, interpret, modify, and create
abstract information or diagrams, such as circuits, flowcharts, mind maps, or Venn diagrams. Diagrams can
efficiently present complex information and relationships, and in forms that students are likely to encounter
in labs, assignments, other courses, and their later careers. Most disciplines have frequently used diagrams.
For example, chemistry uses chemical structure, Lewis electron dot structures, and structural formulas;
computing uses UML diagrams; physics uses free body, Feynman particle interaction, ticker tape, and vector
diagrams; and project management uses Gantt and Pert charts and work breakdown structures.

φφφ
Problem & Forces​: ​Students must be able to analyze, interpret, modify and create diagrams of a specific

type. ​However, students often lack the skills, experience, or time, and instead skip, skim, or misuse
diagrams. Students who lack facility with a diagram type might avoid it, and then at some point the diagrams
become necessary but too complex, presenting a significant barrier to student progress. For example, a
simple flowchart might seem obvious and intuitive, but students who don’t understand the details (e.g., the
meaning of different symbols, labels, and line styles) might be unable to follow or create a complex
flowchart or convert it into source code.

Teachers often assume that students are already familiar with a diagram type, can figure it out on their
own, or that a lecture is sufficient. Teachers might feel they can’t spend enough time on a diagram because
they need to cover other content. If students lack facility with a diagram, teachers might avoid examples,
activities, or assignments where students must work with complex diagrams in non-trivial ways. This can
give students even less experience when they need more.

φφφ
Solution & Consequences​: ​Therefore, use a diagram as the POGIL model for EIA L​EARNING C​YCLES​.

Questions will guide students to ​explore the diagram(s) and notice things that a subject matter expert would
see, and then to ​invent their own understanding of the diagram(s) or related concepts, which they then
apply​. The POGIL activity will likely take more class time than a lecture on the same content, so teachers
will need to adjust their plans. The EIA L​EARNING ​C​YCLES ​lead to deeper understanding, which will benefit
students when they encounter similar diagrams in the future; this might reduce the need to “review” content.
Authentic practice with diagrams will improve skills that will benefit students in the future.

Discussion​: Students can learn about a diagram type in various ways, including: read a textbook or
webpage; watch a lecture or video; participate in a classroom activity (e.g., POGIL), complete a homework
assignment or project. In a learning activity, a diagram could be the focus (e.g., “what is a flowchart?”),
central to the focus (e.g., “what is binary search?” with a flowchart of the algorithm), or peripherally related.
In a POGIL activity, the model could be a diagram, or the model could be something that leads students to
the diagram. For example, the model could be a flowchart, or a block of code used to guide students to
understand what flowcharts are and why they can be useful.

In a given discipline or course, a few diagram types will likely be central, giving repeated opportunities
for learning with diagrams that get more complex. A teacher might decide to focus attention on the key
types, and omit or briefly mention lesser types. There are likely separate patterns associated with many such
diagram types, and with using these types as POGIL models.

For example, a course on software design patterns would use UML heavily. Use case diagrams might be
clear to students from a brief description or example. However, activity, sequence, and class diagrams are
more complex and use symbols and styles that are not obvious, so it might help students to have a POGIL
activity where each diagram is the focus.

Patterns in Activity Models for POGIL: Page - 5

As POGIL models, diagrams could be used in varied ways (which might be future patterns), including:
● Explore the diagram and describe the structure or process it represents.
● Explore a series of diagrams (several models) that gradually add features and complexity.
● Compare several diagrams and summarize what is similar or different about them,

or decide which one best matches a given structure or process (see M​ODEL​: S​ET OF ​E​XAMPLES​).
● Complete or correct a diagram in which some elements are unlabeled, missing, or wrong.
● Expand or create a new diagram to include specific features or extensions, or to address another

example or scenario.
● Recapitulate the development of a diagram type, so students understand how it was developed. This

can be time-consuming, but lead to deeper understanding of the diagram and how experts think.
● Combine the above approaches. For instance, explore diagram A to develop understanding.

Complete diagram B to expand A, and then expand B with new features. Finally, create a new
diagram to describe or implement a new example.

Formatting diagrams requires time and attention. Ensure that the font style and size are appropriate to

the context and activity. Be cautious with color and subtle differences in line styles and fill patterns, which
might not work well with all printers and copiers, and which can be difficult for people with vision
problems. Avoid unnecessary information and ornamentation, which Tufte (1983) calls “chartjunk”. Note
that deliberately poor formatting and chartjunk can help students recognize and correct such problems, but
this increases cognitive load, and should be done carefully, perhaps after students have some experience.

Typical DCV Q​UESTIONS​ ​(D=Directed, C=Convergent, V=Divergent) and potential impacts on students.
● D: ​How many <​OBJECTS​> are shown?​ (e.g., squares, circles, diamonds)

Look at the overall diagram, rather than individual features.
● D: ​How many different <​STYLES​> are shown?​ (e.g., shapes, colors, patterns, line styles)

Notice key styles.
● D: ​How do <​OBJECTS​> differ? ​Notice style differences, including size, shape, and color.
● D: ​How are <​OBJECTS​> linked?​ Notice relationships and paths.
● C: ​How are <​OBJECTS​> ​(or ​<​LINKS​>) different and how is this difference indicated?
● C: ​What do <​OBJECTS​> represent?
● C: ​What does <​STYLE​> indicate?
● C: ​What is the scale (or scope) of the diagram? ​Notice the scale in space and/or time.
● C: ​What would happen if <​OBJECTS​> were removed (or added)?
● C: ​How would you modify the diagram to <​GOAL​>?
● V: ​How could the diagram be rearranged to be more clear?​ ​to more clearly show <​FEATURE​>?
● V: ​What are the biggest problems in the diagram? How could one or more be fixed?
● V: ​What else could be added to the diagram? How could this make the model more or less useful?

Examples​: Figures 3-6 show examples of M​ODEL​: D​IAGRAM​, with some EIA L​EARNING C​YCLE questions.

Figure 3 is adapted from “Models of Disease & Vaccines”, an activity designed for a first-year computer
programming course. It shows three compartmental models for disease. Each box is a stage (compartment)
in the disease, each arrow is a transition between stages, some transitions are labeled with probabilities
such as “p(infected)”, and some stages are labeled with duration variables such as “days sick”. The first two
models are simpler and develop student confidence and understanding before the third model, which is
more complex. All three models use simple terms (e.g., “healthy” vs. “susceptible” and “sick” vs. “infected”).

Patterns in Activity Models for POGIL: Page - 6

Figure 3 also shows two sets of questions. In questions 1 and 2, students ​explore ​the compartmental
models. Questions 1a, 1b, 2a, and 2b are ​directed​, since students just count objects in the models. Questions
1c, 1d, 1e, 2c, and 2d become ​convergent​, since students need to match labels to new terms (e.g., “infected”,
“susceptible”, “recovered”) and interpret the models. In questions 3 and 7, students ​invent ​their own
definitions for SIS, SIR, SEIS, and SEIR models. In questions 4 and 8, students ​apply ​their new
understanding by creating a new model, and considering other uses for such models.

The compartmental models in Figure 3 look simple (a few stages, connected by a few arrows), but are
quite complex in some ways, since they can be seen as a simple flowchart for an individual, or as a dynamic
set of containers for individuals in a population. Depending on the discipline and course, this activity might
lead to a study of historical diseases and prevention efforts, mathematical models for the spread of disease,
or software design (see Figure 10) and a programming assignment.

 d
1. (Explore) Disease models often have a set of ​stages ​(also called ​states ​or ​compartments​) and

track the number (or fraction) of people in each stage over time. Two models are shown above.
Use the compartmental model on the ​left ​to answer these questions:

a. How many ​stages ​are shown?
b. How many ​transitions ​(arrows) are shown?
c. Which stage has people who are ​infected​?
d. Which stage has people who could get infected? (This is called ​susceptible​.)
e. Can a person get sick more than once?

2. (Explore) Use the compartmental model on the ​right ​to answer these questions:
a. How many ​stages ​are shown?
b. How many ​transitions ​(arrows) are shown?
c. Which stage has people who got better? (This is called ​recovered​.)
d. Can a person get sick more than once?

3. (Invent) Explain why the left and right models are called ​SIS ​and ​SIR ​models.
4. (Apply) Draw or describe a disease model where everyone who gets sick will die.

5. (Explore) Use the compartmental model above to answer these questions:

a. How many ​stages ​are shown?
b. How many ​transitions ​(arrows) are shown?
c. In this model, can a person get sick more than once?

6. (Explore) Which stage(s) are for people who:
a. Do not yet show any symptoms, but can infect others?
b. Have been ​exposed ​but cannot yet infect others?
c. Are no longer sick?

7. (Invent) Describe or sketch the ​SEIS ​model and ​SEIR ​model.
8. (Apply) Describe other (non-disease) situations in which compartmental models could be used.

Figure 3: Sample M​ODEL​: D​IAGRAM​ with EIA L​EARNING​ C​YCLE​ Questions for Compartmental Diagrams

Patterns in Activity Models for POGIL: Page - 7

Figure 4 is adapted from “Code Representations I - Architecture”, an activity designed for a computer
organization course. The POGIL model is a diagram that shows the internal hardware architecture of a
typical computer. The shaded arrows are buses, the solid boxes are components, and the dashed boxes are
subcomponents. In questions 1 to 4, students ​explore ​the diagram; these questions are a mix of ​directed ​and
convergent​. In question 5, students ​invent a basic understanding by completing sentences that describe the
architecture. In question 6, students ​apply ​this understanding to describe a possible change to the diagram.
In contrast to Figure 3, Figure 4 looks more complicated, with more elements and labels, but might be easier
for students to understand since it corresponds to the a physical system. However, it also assumes students
have some knowledge of computer systems and vocabulary.

1. (Explore) Computers can be very different in their ​external ​appearance and organization, but their

internal ​organization is often quite similar, as shown in the diagram above. Expand each acronym:
a. CPU b. ROM c. RAM

2. (Explore) In computer architecture, a ​bus ​is a system to transfer data within or between computers.
A bus usually transfers one word at a time, so a 32-bit computer will have 32-bit buses,
which may be visible as 32 pins on a chip, 32 lines on a circuit board, or 32 wires in a cable.

a. Which bus accesses memory?
b. Which bus accesses the disk controller?
c. Which bus accesses the network adapter?

3. (Explore) The CPU contains a set of storage locations called the ​register file​.
Some common registers are shown in the model above. Which register has:

a. The status of the most recent instruction?
b. The current program instruction?
c. The address of the current program instruction, which increases one instruction at a time?
d. The result of arithmetic or logical instructions?

4. (Explore) The CPU also contains ​sub-units ​for specific functions. Which sub-unit:
a. Does arithmetic and bitwise logical operations?
b. Controls and interprets instructions?

5. (Invent) Fill in the blanks below to describe the basic components of a CPU:
a. The CPU has a __?__ to select and interpret instructions, and an __?__ for integer arithmetic.

Some CPUs also have a __?__ for floating point arithmetic.
b. The CPU stores local data in __?__ , and uses the __?__ to access data in __?__ and __?__.
c. The CPU uses the __?__ to access other devices, including the __?__ for the display,

the __?__ for other computers, and the __?__ for storage devices.
6. (Apply) A ​Floating Point Unit (FPU)​ can be outside or inside the CPU. For example, the

original Intel 8086 CPU used the 8087 FPU, but more recent Intel x86 CPUs contained FPUs.
Describe or sketch the above diagram with an external FPU.

Figure 4: Sample M​ODEL​: D​IAGRAM​ with EIA L​EARNING​ C​YCLE​ Questions for Computer Architecture Diagram

Patterns in Activity Models for POGIL: Page - 8

Figure 5 is adapted from “Development Workflows”, an activity designed for a second year software
development course. The POGIL models are two flowcharts for ​Test Driven Development (TDD) (Beck,
2002), where each rectangle is a step, each diamond is a decision, and the rounded rectangle is the start
step. The first flowchart is a simplified version of the second. Question 1 is ​directed ​and guides students to
explore ​the flowchart. Questions 2 and 3 are ​convergent ​and help students to ​invent ​understanding of unit
testing. Questions 5 and 6 continue to invent understanding of refactoring and TDD. Questions 4 and 7
prompt students to identify non-programming contexts where these workflows might be useful, to ​apply
their new understanding.

Teachers might assume that most second-year students are familiar with flowcharts and can interpret
them with little effort. The activity might need to be modified for other contexts; thus, for a non-majors
course, the activity might start with a simpler flowchart and explain more details, while for a graduate
course the activity might skip the first flowchart and focus more on variations and implications.

1. (Explore) To check that a procedure works correctly, developers write test procedures (called ​unit tests​)

that call the first procedure in different ways. The figure above shows a workflow for unit tests.
a. How many ​decisions ​(diamonds) are shown?
b. How many ​steps ​are shown?
c. Which step comes first in the workflow?
d. Which step comes second?
e. Should new tests pass or fail when they are first run?

2. (Invent) A unit test is usually short and simple; often, it just passes specific argument values to a procedure,
and checks that it returns the correct result.

a. Will unit tests help you know when the procedure works correctly?
b. Will unit tests help you think about how the procedure should work?
c. If you write more code than needed to pass the tests, will all of the new code be tested?

3. (Invent) Why does this workflow help ensure that code is well tested?
4. (Apply) Describe a non-programming context where a similar workflow could apply.

5. (Invent) Good developers rewrite code to make it easier to understand, reuse, and modify.

This rewriting is called ​refactoring​. and is shown in the expanded workflow above.
a. How do unit tests make it easier to refactor?
b. Why is it easier to refactor just after you write the code, not weeks or months later?

6. (Invent) This workflow is called ​Test Driven Development (TDD)​. Explain this name and why it makes sense.
7. (Apply) Describe a non-programming context where a TDD-like workflow could apply.

Figure 5: Sample M​ODEL​: D​IAGRAM​ with EIA L​EARNING​ C​YCLE​ Questions for Flowcharts

Patterns in Activity Models for POGIL: Page - 9

Figure 6 is adapted from a draft activity on “Chain of Responsibility”, a well-known pattern for
object-oriented design (Gamma, Helm, Johnson, and Vlissides, 1995). It shows three Unified Modeling
Language (UML) diagrams used as POGIL models: first, a class diagram; second, an object diagram with
references between objects; and third, a sequence diagram showing how the same objects call each other.
The UML diagrams include formatting and naming conventions to scaffold student learning. For instance,
that object and sequence diagrams use the same name and column positions for the sender and three
handlers, and that the object names prepend an “a” to the corresponding class name. The figure also shows
some exploration questions; in this case, the activity expects students to have prior experience with UML
diagrams. Earlier sections of the activity use a scenario (text), a flowchart, and pseudocode to motivate a
sample problem and the general solution. Later sections use longer blocks of source code.

Figure 6 is much more complex that the earlier examples. It assumes that students are already familiar
with three types of UML diagrams, can correctly interpret the diagrams and their interrelationships, and can
consider the implications for system design and development.

1. (Explore) The UML class diagram above shows a general approach. Use it to answer these questions.

a. How many code snippets (dotted boxes) are shown?
b. How many classes or interfaces are shown?
c. Which classes are subclasses?
d. What 2 fields are shown for Sender?
e. What 2 functions (methods) are shown for Handler?

2. (Explore) Use the UML object and sequence diagrams above to answers these questions.

a. What object is the request?
b. What object references the request?
c. What object is ​last ​in the chain of handlers?
d. What object is ​first ​in the chain of handlers?
e. What object references the first object in the chain?

Figure 6: Sample M​ODEL​: D​IAGRAM​ with EIA L​EARNING​ C​YCLE​ Questions for UML Diagrams

Patterns in Activity Models for POGIL: Page - 10

2.2 Model: Set of Examples

Context​: You teach subjects where students should learn to notice similarities and differences, identify
patterns, or apply inductive reasoning. Students will master these skills more quickly through guided
practice, and will understand and remember key concepts better if they develop their own understanding.

φφφ
Problem & Forces​: ​Students must be able to find patterns and induce ideas​, although the nature and

importance of such work varies by discipline and topic. However, in many cases these skills are needed in
later courses and professional work. For example, software developers must be able to create code that
correctly handles a variety of data values, structures, use cases, or user personas. Students who create their
own understanding of a key concept are likely to understand and remember it better, and be more able to
extend the concept to other situations, than if they read a summary or try to memorize the concept.

φφφ
Solution & Consequences​: ​Therefore, use a set of examples as the POGIL model for EIA L​EARNING

C​YCLES​. Questions will guide students to ​explore the examples(s) and notice things that a subject matter
expert would see, and then to ​invent their own understanding of the examples and related concepts, which
they then ​apply​. The learning cycle leads to deeper understanding, and authentic practice using sets of
examples leads to improved skills. This approach can be particularly compelling when the examples and/or
process are like those used in the original discovery. However, this recapitulation approach often takes
more time than a lecture or other more direct approaches with active learning.

Discussion​: As a POGIL model, a set of examples can be used in a variety of ways, including:
● Find similarities and differences within the set.
● Develop a general principle that matches the examples.
● Develop a principle that distinguishes between two sets of examples.
● Validate a principle by testing with examples, and then use the results to refine the principle.
● Combine the above approaches. For instance, use model A with a few examples to develop a basic

principle, model B with more examples to test the principle and identify boundaries, and model C to
extend the B.

Choose the examples with great care. With too many, students will need more time to study them, and

might get frustrated. With too few, students might struggle to see what are individual variations and what
are general principles. It often helps to include counter-examples and examples with varying degrees of
difference. It also helps to consider the narrowest and broadest interpretations that fit the examples; if these
are quite different, more or different examples are needed. If the concept requires many examples, it might
help use a sequence of simpler models for subconcepts.

Typical DCV Q​UESTIONS​ ​(D=Directed, C=Convergent, V=Divergent) and potential impacts on students.
● D: ​How many examples are shown? ​Look briefly at each example.
● D: ​How many examples have <​FEATURE​>?​ Notice differences.
● C: ​What is similar (or different) about <​SUBSET​>?​ Notice similarities and differences.
● C: ​Which example(s) seem most different from the others, and why?
● V: ​Sketch or describe different examples that fit the same pattern(s).

Examples​: Figures 7 and 8 each show a M​ODEL​: S​ET OF ​E​XAMPLES with EIA L​EARNING C​YCLE questions.

Figure 7 is adapted from a draft activity to help future yoga teachers understand the pose Downward-Facing
Dog (or just Down Dog). It shows four photos of the pose - two versions with two different people. Question
1 is ​directed ​and guides students to ​explore ​the examples and note similarities and differences. Question 2 is
convergent and highlights aspects of the pose that vary. Question 3 is ​convergent ​and prompts students to
invent ​their own definition of the pose. In Question 4, students ​apply ​what they have learned. If the model
was a single photo, students could not tell what features were required and which were not. Later questions
explore differences between the top and bottom version for each person. Later models in the activity use
poor versions of the pose (e.g., curved back, bent head, arms too low) to highlight the differences, and to
prompt students to consider what advice they might give.

Patterns in Activity Models for POGIL: Page - 11

1. (Explore) The pictures at right show four versions
of the pose ​Downward-Facing Dog​, or simply ​Down Dog
(​Adho Mukha Svanasana ​in Sanskrit). Use all four to decide:

a. Which of the following do ​not ​touch the ground?
toes, head, wrists, palms, fingers

b. Are the ​hips bent or straight?
c. Is the ​back curved or straight?
d. Is the ​neck bent or straight?
e. Are the ​elbows bent or straight?

2. (Invent) In a good version of Adho Mukha Svanasana:
a. The ​heels ​can be down or up. Which seems harder?
b. The ​knees ​can be bent or straight. Which seems harder?

3. (Invent) In complete sentences, describe the key elements of Adho Mukha Svanasana.
4. (Apply) In Adho Mukha Svanasana, decide what will happen when the body position changes.

a. If the feet are closer to the hands, is it easier or harder for the heels to touch the ground?
b. If the feet are closer to the hands, is it easier or harder for the knees to be straight?
c. If the knees are bent, is it easier or harder to straighten the back?
d. If the ears are between the upper arms, is it easier or harder to straighten the back?

Figure 7: Sample M​ODEL​: S​ET OF​ E​XAMPLES​ with EIA L​EARNING​ C​YCLE​ Questions for Yoga Poses

Figure 8 is adapted from a workshop designed to help teachers understand how POGIL activities work

and how to write them. It shows a set of four line drawings of faces. In this workshop, participants first
complete a “mini-activity” (questions 1-8) and then a “meta-activity” (questions 9-12) about the mini-activity.
The mini-activity has four short EIA L​EARNING C​YCLES​. Questions 1, 3, 5, and 7 ask participants to use
different subsets of the faces to describe a “good” face, and questions 2, 4, 6, and 8 ask them to apply their
description to identify or draw other faces. The meta-activity has one learning cycle, which prompts
participants to explore their experience in the mini-activity, invent guidelines for choosing examples, and
then apply those guidelines in another situation. In fact, one draft of the workshop used a set of yoga poses,
but faces seemed much easier for teachers unfamiliar with yoga.

1. (Exp/Inv) Assume that the ​top left ​face is “good”. Describe how to draw a “good” face.
2. (Apply) Based on your description, which other faces are “good”?
3. (Exp/Inv) Assume that ​all four ​faces are “good”. Revise your description of a “good” face.
4. (Apply) Draw a face that is “good” and one that is not.
5. (Exp/Inv) Assume that the ​top left ​face is “good” and ​the rest ​are “bad”.

Revise your description of a “good” face.
6. (Apply) Draw a “good” face and a “bad” face that differ from those above.
7. (Exp/Inv) Assume that the ​left two ​faces are “good” and the others are “bad”.

Revise your description of a “good” face.
8. (Apply) Draw a “good” face and a “bad” face that are different from those above.
9. (Exp/Inv) How did having ​multiple ​“good” faces help you write a description?
10. (Exp/Inv) How did having ​mixed ​“good” and “bad” faces help you write a description?
11. (Invent) List advice to help activity authors choose a set of examples.
12. (Apply) Use your advice to draft a set of examples of scalene, isosceles, and quadrilateral triangles.

Figure 8: Sample M​ODEL​: S​ET OF​ E​XAMPLES​ with EIA L​EARNING​ C​YCLE​ Questions for Line Drawings

In some situations, students or teams might create their own examples, and then perhaps pool them with

other teams. Thus, student-generated examples might increase student interest and motivation, but might
also be less effective than examples carefully designed by the activity author. In Figure 7, instead of photos,
a teacher might have some students hold a pose for other students to study. In Figure 8, questions 4, 6, and 8
prompt students to draw or describe faces, which could then be shared with other students as an expanded
set of examples.

Patterns in Activity Models for POGIL: Page - 12

2.3 Model:​ ​Source Code

Context​: You teach computer science, software engineering, or related subjects in which students need to
develop skills in programming and in the analysis and design of algorithms and data structures.

φφφ
Problem & Forces​: ​Students must be able to read, review, write, and debug computer source code​. These

tasks can take a significant amount of time and effort. Teachers often present students with short code
examples (in introductory courses) or focus on concepts (in more advanced students), so students might
not be exposed to larger, more complex examples, or learn to read code that others wrote. In later courses,
source code can also be a precise and efficient way to describe algorithms and data structures (compared to
natural languages). In computing courses, students mostly write short programs, but in the workplace they
are more likely to work with large programs involving many other developers. Teachers might find it
difficult to create larger examples, and Free & Open Source Software (FOSS) projects can be difficult to
navigate.

φφφ
Solution & Consequences​: ​Therefore, use source code as the POGIL model for EIA L​EARNING C​YCLES​.

Questions will guide students to ​explore the code and notice things that a subject matter expert would see,
and then to ​invent their own understanding of the examples and related concepts, which they then ​apply​.
The learning cycle leads to deeper understanding, and authentic practice leads to improved skills, which will
better prepare students to work with larger, more realistic source code.

Discussion​: As a POGIL model, source code can be used in a variety of ways, including:
● Trace the code and determine the output or other result that is produced.
● Find and correct defects in the code, ranging from syntax errors to semantic errors to specialized

test cases that do not pass (e.g., Richards, 2000).
● Develop a unit test suite for the code.
● Develop code that passes a provided unit test suite.
● Study several segments of code (e.g., statements) in a random (incorrect) order, and assemble them

in the correct order. This is a ​Parsons problem​ (Parsons and Haden, 2006).

Source code can be custom-written for an activity (e.g., Figures 9 and 10) or adapted from other sources
such as textbooks (e.g., Figure 11) or FOSS projects. (The author has written several activities that use code
from the Java Development Kit.)

Formatting source code can present challenges, especially for longer examples. Most IDEs can format
code, but code intended for classroom use might require additional effort. For instance:

● Edit the code in minor ways to improve readability, such as avoiding awkward page breaks.
● Add (or remove) comments from the code, or rename variables, either to improve readability, or to

illustrate potential problems.
● Provide selected excerpts, or remove segments of code that are not relevant to the activity or that

are likely to confuse students unnecessarily.
If students have classroom access to computers and an IDE, it might be easier to provide code digitally.

(Not all students own laptops, and not all computing classrooms have computers.) This can allow students
to more quickly search for specific text, access API documentation, and find other uses of specific variables,
methods, classes, etc.

Typical DCV Q​UESTIONS​ ​(D=Directed, C=Convergent, V=Divergent) and potential impacts on students.
● D: ​How many methods/fields/classes are shown?
● D: ​How many times are <SYNTAX> used?​ (e.g., conditionals, loops, arrays, exceptions)
● C: ​Which methods are called by a specific method? ​See how a method works.
● C: ​Which methods call a specific method? ​See how a method is used.
● C: ​Do names of elements (variables, methods, fields, classes) follow coding conventions?
● C: ​Do names match how the elements are actually used?
● C: ​How would you refactor this code to <PERFORM TASK>?​ (e.g., add or remove parameters,

combine or extract methods, handle specific situations, respond to specific errors)
● V: ​How could you refactor this code to be easier to read and modify?​ ​to reuse?

Patterns in Activity Models for POGIL: Page - 13

● V: ​How could you extend or expand this code to <PERFORM TASK>?
Examples​: Figures 9-11 show sample models with source code, from a range of courses. Figure 9 is

adapted from an activity on Python style, designed for a first-term programming course. It has two blocks of
code (lines 11-13 and 21-27) that do the same calculations using different variable names and steps. The
figure also shows EIA L​EARNING C​YCLE questions. Question 1 ​directs ​students to ​explore ​the code blocks. In
question 2, students compare specific example to invent their own understanding of principles for naming
variables, which they summarize in question 3 and apply in question 4. Later sections of the activity repeat
this general sequence to help students develop principles for naming functions and writing comments.

11
12
13

i1 = 10; i2 = 5;
c1 = 9.99; c2 = 4.99; d1 = 0.06; d2 = 0.99;
s1 = i1*c1+i2*c2; t1 = s1+s1*d1+i1*d2;

21
22
23
24
25
26
27

numCD = 10; numMP3 = 5;
costCD = 9.99; costMP3 = 4.99; shipCD = 0.99;
rateTax = 0.06;
subCost = (numCD * costCD) + (numMP3 * costMP3);
subShip = numCD * shipCD;
subTax = subCost * rateTax;
total = subCost + subTax + subShip;

1. (Explore) Which code block above (11-13 or 21-27):

a. Is shorter and would take less time to type?
b. Uses more variables?
c. Would be easier to edit or debug?

2. (Invent) For each item below, choose the better option: X, Y, or ? (can’t decide).

 Option X Option Y X/Y/?

a. i1 = 3; i2 = 7; numClosed = 3; numOpen = 7;

b. numCat = 2; numDog = 5; numCat = 2; dogNum = 5;

c. numson = 3; isdone = True; numSon = 3; isDone = True;

d. costCoffee = 2; costTea = 1;
soldCoffee = 4; soldTea = 6;

costCoffee = 2; costTea = 1;
soldTea = 6; soldCoffee = 4;

3. (Invent) Based on your answers above, summarize advice for naming variables.
4. (Apply) Use your advice above to rewrite the code shown below.

calculate trip cost from 2-way flights, nights in hotels, & meals
fc=500; ch=150; mc=30; nn=5 # costs & number nights
c = 2*fc+ch*n+n*3*cm

Figure 9: Sample M​ODEL​: S​OURCE​ C​ODE​ with EIA L​EARNING​ C​YCLE​ Questions for Python (in an introductory course)

01
02
03
04
05
06
07
08

make population (one individual at a time)
 make individual
run simulation (one day at a time)
 update population (one individual at a time)
 update individual
 check for new infections
 summarize results (for day)
summarize results (for simulation)

1. (Explore/Invent) You will develop Python code to simulate a compartmental model, and then explore

how changes affect the outcomes. Use the pseudocode above to answer these questions:
a. There are 3 main phases. Which is first?
b. Which phase has the most subphases?
c. Which phase(s) loop through time? Which loop through the population?

2. (Invent/Apply) Which phase seems easiest to develop? Which seems most difficult?
Justify your answer (or answers, if your team can’t agree).

Patterns in Activity Models for POGIL: Page - 14

Figure 10: Sample M​ODEL​: S​OURCE​ C​ODE​ with EIA L​EARNING​ C​YCLE​ Questions for Pseudocode (in an intermediate course)

Figure 10 is adapted from the same POGIL-style activity on “Models of Disease & Vaccines” as Figure 1. It
shows a block of pseudocode for a program to simulate a compartmental model of disease, and two EIA
L​EARNING C​YCLE questions. Later sections of the activity focus on sample data and starter code, to help guide
students to implement the program. Note that Figure 10 is shorter but more abstract than Figure 9, and
assumes that students can convert this high-level description into source code.

Figure 11 is adapted from an activity on starter code for a larger program (in Scheme) to implement a
simple language interpreter (adapted from Friedman, Wand, and Haynes, 2001) for an advanced course on
programming language design and implementation. Thus, unlike Figures 9 and 10, this activity expects that
students have significant programming experience, are familiar with Scheme, and have some knowledge of
interpreters. The figure shows a block of code that defines five Scheme procedures. EIA L​EARNING C​YCLE
questions guide students to ​explore ​the code, ​invent ​an understanding of how it works, and ​apply ​that
understanding to describe a minor change. The same activity has other sections that use similar approaches
to help students understand other parts of the interpreter, including the scanner and parser specifications,
and the environment (symbol table).

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

(define ​eval-program​ (lambda (pgm)
 (cases program pgm
 (a-program (body) (eval-expression body (init-env))))))

(define ​eval-expression​ (lambda (exp env)
 (cases expression exp
 ; literals, variables, primitive applications
 (lit-expr (datum) datum)
 (var-expr (id) (apply-env env id))
 (primapp-expr (prim rands)
 (let ((args (eval-rands rands env)))
 (apply-primitive prim args))))))

(define ​eval-rands​ (lambda (rands env)
 (map (lambda (x) (eval-rand x env)) rands)))
(define ​eval-rand​ (lambda (rand env)
 (eval-expression rand env)))

(define ​apply-primitive​ (lambda (prim args)
 (cases primitive prim
 (add-prim () (+ (car args) (cadr args)))
 (sub-prim () (- (car args) (cadr args)))
 (incr-prim () (+ (car args) 1))
 (decr-prim () (- (car args) 1)))))

1. (Explore) An ​interpreter ​uses abstract syntax trees and environments to evaluate expressions

and execute a program. Refer to the evaluator procedures above to answer these questions.
a. How many evaluator procedures are defined?
b. Which primitive operators take exactly one argument?

2. (Explore/Invent) Describe or trace what happens for each evaluator call below
a. (apply-primitive (add-prim) ‘(3 4))
b. (eval-expression (lit-exp 23) (empty-env))

3. (Apply) Describe how to modify this code to include an operator for multiplication.

Figure 11: Sample M​ODEL​: S​OURCE​ C​ODE​ with EIA L​EARNING​ C​YCLE​ Questions for Scheme (in an advanced course)

Patterns in Activity Models for POGIL: Page - 15

2.4 Model: Table of Data

Context​: You teach subjects and concepts based on the analysis and interpretation of experimental data, or
other structured data. Students will understand and remember concepts better if they study data and create
their own understanding.

φφφ
Problem & Forces​: ​Students must be able to analyze and interpret relationships in data generally, and

specifically in tables​. Tables can be harder to interpret than graphs, but can show more complex
relationships. However, students often lack the skills, experience, or time to do so. Thus, teachers might be
reluctant to use activities or assignments where students must work with tables of data in non-trivial ways.
Unfortunately, if teachers avoid using tables, students miss opportunities to develop skills. A table can
present data succinctly, and in a form that students are likely to encounter in labs, assignments, other
courses, and the workplace.

φφφ
Solution & Consequences​: ​Therefore, use a data table as the POGIL model for EIA L​EARNING C​YCLES​.

Questions will guide students to ​explore the table and notice things that a subject matter expert would see,
and then to ​invent their own understanding of the data and related concepts, which they then ​apply​. The
learning cycle leads to deeper understanding, and authentic practice using diagrams leads to improved
skills. This experience will also help students develop information processing skills that will help them later.

Discussion​: A table model is similar in some ways to M​ODEL​: S​ET OF ​E​XAMPLES​, and might be a
sub-pattern, since a set of examples can be less structured than a table. A table model is also similar to to a
M​ODEL​: C​HART OR ​G​RAPH​, although students often find tables harder to interpret than graphs. Like a chart or
graph, a table can use real or simulated data. M​ODELS WITH ​A​UTHENTIC ​D​ATA may appeal to students, but may
also contain complexities, noise, or outliers that can distract students. M​ODELS WITH ​S​YNTHETIC ​D​ATA give
more control to the activity author to adjust variability, construct special cases, and so forth.

As a POGIL model, a table of data can be used in a variety of ways, including:
● A table with data in all cells, for students to analyze.
● A table with partial data for students to complete as they develop ideas or identify patterns.
● A table that contains errors for students to identify and/or correct.
● An empty table for a team to fill in (e.g., with their own experimental data).
● An empty table shared by all teams, where each team provides a subset of the data.

Typical DCV Q​UESTIONS​ ​(D=Directed, C=Convergent, V=Divergent)
● D: ​What is the heading for column (row) <​X​>?
● D: ​What is the largest (smallest) value in the table? In column <​X​>?
● D: ​What general trend do you see in column (row) <X>?
● C: ​What is similar (different) about rows (columns) <X> and <Y>?
● C: ​Which rows (columns) are most similar (different)?
● C: ​How would you explain the key similarities (differences) shown in the table?
● V: ​How might you rearrange or reformat this table to be easier to understand?
● V: ​Find a similar table in a textbook or on the internet. How does it compare it to this table?

Examples​: Figures 12-13 shows two sample models with tables. Figure 12 is adapted from an activity

titled “Data Representations II - Integers” designed for a computer organization course. The figure shows a
table of integer data types in the C programming language, where each row shows the name of a type and its
minimum and maximum value. EIA L​EARNING C​YCLE questions guide students to ​explore ​values and patterns
in the table, ​invent ​understanding of the ​unsigned ​keyword, and then ​apply ​what they have learned. The
rows are in order of increasing maximum value, but others orders are possible (e.g., all unsigned before all
signed, alphabetical, random) which might affect how students explore and interpret it.

Patterns in Activity Models for POGIL: Page - 16

C data type minimum maximum

char -128 127 2​7​-1

unsigned char 0 255 2​8​-1

short -32,768 32,767 2​15​-1

unsigned short 0 65,535 2​16​-1

int -2.147x10​9 2.147x10​9 2​31​-1

unsigned 0 4.294x10​9 2​32​-1

long -9.223x10​18 9.223x10​18 2​63​-1

unsigned long 0 18.446x10​18 2​64​-1

1. (Explore) C has a set of integer data types, summarized above. Different computers and versions of C
use different numbers of bits for each type; the values above are typical for 64 bit systems.

a. What is the maximum value for an ​unsigned short​? a ​short​?
b. How many different values are possible for an ​unsigned short​? a ​short​?
c. How many bytes are needed for each ​int​? each ​unsigned int​?
d. How many bytes are needed for 1,000,000 ​short ​values? 1,000,000 ​long ​values?

2. (Invent) Explain what the ​unsigned​ keyword means, and how it changes the maximum value.
3. (Apply) Explain why it is useful for a programming language to have several integer types.

Figure 12: Sample M​ODEL​: T​ABLE OF​ D​ATA​ with EIA L​EARNING​ C​YCLE​ Questions for C Data Types.

Figure 13 is adapted from an activity titled “Software Development Activities” designed for a software
engineering course. It shows a table of developer productivity where rows show projects of different sizes
(measured in function points) and columns show different project classes (adapted from Jones, 2000). EIA
L​EARNING C​YCLE questions guide students to identify differences and patterns in the data, consider relevant
factors, and predict values for a project class not shown in the table. Unlike Figure 12, Figure 13 has two
independent variables, and thus might be more difficult for students to interpret.

Size (FP)

Productivity (FP/person-month) by project class

end

user

mgmt

info sys

comm-

ercial

system

software military Mean

 1 50.0 16.0 10.0 9.5 5.0 22.6

10 40.0 15.0 11.0 9.0 4.5 16.7

100 25.0 11.0 10.0 7.5 4.2 12.5

1,000 --- 6.5 6.0 5.5 3.5 5.7

10,000 --- 3.5 4.0 4.0 2.5 3.7

100,000 --- 2.0 2.5 2.5 1.5 2.3

1. (Explore) The table above shows average productivity (in FP/person-month) by project class and size.

a. Which class has the ​highest ​average productivity? the ​lowest ​average productivity?
b. As product size increases, does productivity increase, decrease, or stay the same?

2. (Invent) What factors might lead to
a. the productivity for the highest projects in question 1a? the lowest projects?
b. the pattern of productivity in question 1b?

3. (Apply) Based on this data, predict and explain your logic for the missing values in the lower left.

Figure 13: Sample M​ODEL​: T​ABLE OF​ D​ATA​ with EIA L​EARNING​ C​YCLE​ Questions for Programmer Productivity.

Data tables can also be created by students. For example, in ​POGIL laboratories (Lambda & Creegan,
2008), all student teams are presented with a problem or question, each team designs and runs its own
experiment, and then teams pool their data for analysis.

Patterns in Activity Models for POGIL: Page - 17

3. CONCLUSIONS & FUTURE DIRECTIONS

This paper has described several patterns for POGIL models, which might also be useful in other
settings. In the future, we will continue to identify and refine patterns for POGIL activity structure, team
organization, and classroom facilitation. Table 3 summarizes possible future patterns for POGIL models and
related concepts; other possible future patterns are listed in Kussmaul (2017). Some patterns could be at
higher levels (e.g. POGIL A​CTIVITY M​ODEL​). Others might interact with various model patterns; for example,
patterns that consider the advantages and limitations of models that use authentic vs. synthetic data. There
are likely lower-level pattern models, including patterns for specific types of diagrams, including Venn
diagrams, chemical structures, force diagrams, logic models, flowcharts, and UML diagrams. For such
diagrams, it would be easier to identify the context, problem, forces, solution, and consequences.

We hope to engage with authors and teachers across the POGIL community to assess the effectiveness of
patterns in POGIL contexts, and to expand and improve the pattern language for POGIL.

Table 3: Possible future patterns for models and related concepts.

Pattern Patlet
M​ODEL ​L​IKE ​O​BJECTIVE Use POGIL models closely related to the learning objective (use X as a model to learn about X).
M​ODEL ​U​NLIKE ​O​BJECTIVE Use POGIL models quite different from the learning objective (use X as a model to learn about Y).
M​ODEL WITH ​A​UTHENTIC​ D​ATA Use POGIL models (e.g. CHART OR GRAPH; TABLE OF DATA) with real experimental data

so that students learn concepts and process skills for critical thinking and problem solving.
M​ODEL WITH ​S​YNTHETIC​ D​ATA Use POGIL models (e.g. CHART OR GRAPH; TABLE OF DATA) with artificially generated data

to focus student attention on key concepts and avoid distractions.
POGIL A​CTIVITY ​M​ODEL Use models with characteristics that support EIA LEARNING CYCLE activities.

(Generalizations from specific models described in this and other papers.)

Figure 14 shows some of the relationships between the patterns in Tables 1, 2, and 3. Bold text indicates

patterns in this paper, solid text indicates patterns in prior work, and a dashed border indicates possible
future work. POGIL A​CTIVITY S​TRUCTURE (future work) builds on POGIL A​CTIVITY M​ODEL​, DCV Q​UESTIONS​,
and EIA L​EARNING C​YCLES​. POGIL A​CTIVITY M​ODEL includes a variety of possible models types. Models that
involve data can be either M​ODEL WITH​ A​UTHENTIC​ D​ATA​ or M​ODEL WITH ​S​YNTHETIC ​D​ATA​.

Figure 14: Patterns related to models in POGIL activities that appear in prior work (solid), this paper (bold), and future work (dashed).

Patterns in Activity Models for POGIL: Page - 18

4. ACKNOWLEDGEMENTS

This material is based upon work supported by the US National Science Foundation (NSF) under Grants
#1044679 (CS-POGIL) and #1626765 (IntroCS POGIL). Any opinions, findings and conclusions or
recommendations expressed are those of the author(s) and do not necessarily reflect the views of the NSF.
We thank The POGIL Project (http://pogil.org), the PLoP reviewers, and our shepherds, Liat Eyal and David
Kane.

REFERENCES

C. Alexander, S. Ishikawa, and M. Silverstein. 1977. ​A Pattern Language: Towns, Buildings, Construction​. Oxford Univ. Press.

L. W. Anderson and D. R. Krathwohl, Eds. 2001. ​A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's

Taxonomy of Educational Objectives​. Longman.

D. L. G. Anthony. 1996. Patterns for classroom education. In J. M. Vlissides, J. O. Coplien, and N. L. Kerth, eds., ​Pattern

Languages of Program Design 2​. Addison-Wesley Longman, pp. 391–406.

K. Beck. 2002. ​Test-Driven Development: By Example​. Addison-Wesley.

J. Bergin. 2000. Fourteen Pedagogical Patterns. In ​Proceedings of the European Conference on Pattern Languages of Programs

(EuroPLoP).

B. Bloom, M. Engelhart, E. Furst, W. Hill, and D. Krathwohl. 1956. ​Taxonomy of Educational Objectives: The Classification of

Educational Goals. Handbook I. ​Longmans.

S. Carpenter, M. Wilford, N. Kornell, and K. Mullaney. 2013. Appearances can be deceiving: Instructor fluency increases

perceptions of learning without increasing actual learning. ​Psychonomic Bulletin & Review​, 20, 6, pp. 1350–1356.

M. T. H. Chi and R. Wylie. 2014. The ICAP framework: Linking cognitive engagement to active learning outcomes. ​Educational

Psychologist​, 49, 4, 219-243.

T. Eberlein J. Kampmeier, V. Minderhout, R. S. Moog, T. Platt, P. Varma-Nelson, and H. B. White. 2008. Pedagogies of

engagement in science. ​Biochemistry and Molecular Biology Education​, 36, 4, 262-273.

M. Fowler. 2002. ​Patterns of Enterprise Application Architecture​. Addison-Wesley.

D. P. Friedman, M. Wand, and C. T. Haynes. 2001. ​Essentials of Programming Languages​. MIT Press.

E. Gamma, R. Helm, R. Johnson, J. Vlissides. 1995. ​Design Patterns: Elements of Reusable Object-Oriented Software​.

Addison-Wesley.

T. C. Jones. 2000. ​Software Assessments, Benchmarks, and Best Practices​. Addison-Wesley.

C. Kussmaul. 2016. Patterns in classroom activities for Process Oriented Guided Inquiry Learning (POGIL). In ​Proceedings of

the Conference on Patterns Languages of Programs​ (PLoP).

C. Kussmaul. 2017. Patterns in classroom facilitation for Process Oriented Guided Inquiry Learning (POGIL). In ​Proceedings of

the Nordic Conference on Patterns Languages of Programs​ (VikingPLoP).

R. S. Lambda and F. J. Creegan. 2008. The Process Oriented Guided Inquiry (Discovery) Laboratory. In R. S. Moog and J. N.

Spencer, eds. ​Process-Oriented Guided Inquiry Learning (POGIL)​. American Chemical Society.

E. Mazur. 1996. ​Peer Instruction: A User’s Manual​. Pearson.

R. S. Moog, F. J. Creegan, D. M. Hanson, J. N. Spencer, and A. R. Straumanis. 2006. Process-oriented guided inquiry learning:

POGIL and the POGIL Project. ​Metropolitan Universities Journal​. 17, 41-51.

R. S. Moog and J. N. Spencer, Eds. 2008. ​Process-Oriented Guided Inquiry Learning (POGIL)​. American Chemical Society.

D. Parsons and P. Haden. 2006. Parson's programming puzzles: A fun and effective learning tool for first programming courses.

In ​Proceedings of the Australasian Conference on Computing Education​, 157-163.

B. Richards. 2000. Bugs as features: Teaching network protocols through debugging. In ​Proceedings of the SIGCSE Technical

Symposium on Computer Science Education​. 256-259.

S. R. Simonson, Ed. 2019. ​POGIL: An Introduction to Process Oriented Guided Inquiry Learning for Those Who Wish to

Empower Learners​. Stylus Publishing.

E. Tufte. 1983. ​The Visual Display of Quantitative Information​. Graphics Press.

Received May 2019; revised July 2019; accepted October 2019, withdrawn due to travel conflicts for conference date. Received July

2020, revised August 2020, accepted September 2020.

Patterns in Activity Models for POGIL: Page - 19

