Half-Proactor/Half-Async Architecture for Real Time Device
Management1

DENYs POLTORAK, Keenetic Limited.

Traditionally, embedded and soft real time systems are built with the asynchronous Actors approach. However, as system complexities
and amount of business logic increase, asynchronous code becomes forbiddingly hard to handle. The present article proposes a
non-blocking semisynchronous architecture featuring fast event response times, deterministic behavior, straightforward coding and
better support for debugging. An overview of an embedded telephony gateway application is provided as an example of
Half-Proactor/Half-Async, a specialization of Half-Async/Half-Async architecture.

Categories and Subject Descriptors: eSoftware and its engineering~Software organization and properties~Software system
structures~Real-time systems softwareeSoftware and its engineering~Software organization and properties~Software system
structures~Software architectures~Publish-subscribe / event-based architecturese Software and its engineering~Software organization
and properties~Software system structures~Embedded softwareeSoftware and its engineering~Software organization and
properties~Software system structures~Software architectures~Layered systemseSoftware and its engineering~Software organization
and properties~Software system structures~Software architectures~Object oriented architectures

General Terms: Architectural patterns
Additional Key Words and Phrases: Actor model, non-blocking programming
ACM Reference Format:

Poltorak, D. 2020. Half-Proactor/Half-Async Architecture for Real Time Device Management. HILLSIDE Proc. of Conf. on Pattern Lang.
of Prog. 27 (October 2020), 10 pages.

1. INTENT

Real time systems are traditionally implemented with the Actors approach. However, the inherent
asynchrony of the Actors is both a blessing and a curse: a blessing when it comes to fast and
non-blocking event processing, and a curse as soon as use cases require complex cooperation
from several actors. Below is described a paradigm shift from the Actors’ asynchronous business
logic halfway towards the Half-Sync/Half-Async’s convenient programming. It removes most of the
Actors’ code complexity without sacrificing non-blocking event processing or performance and
even gains several useful properties, including abstraction layers and determinism, on the way.

2. INTRODUCTION

Embedded software is a wide and diverse area of engineering that covers everything from 8-bit [oT
controllers with 1KB RAM on board to high-end multicore systems for the automotive and
aerospace industry. On the other hand, the number of developers in this field is relatively low,
which results in the lack of proven ready-to-use approaches when compared to more popular
specializations like web or mobile programming. One of the consequences is mouth-to-mouth
knowledge transfer, with company traditions lasting for generations of developers; another one is
that a “craft”, not “scientific” approach is used (POSA5).

One of the challenging areas in embedded programming is real time systems, where something
bad happens if incoming events are not responded to quickly enough. By definition, real time
programming is event-based, with the software usually modelling its target real-world system to be
able to react to signals fast (with remote queries not being an option due to the timing

'Author's email: descri@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary
version of this paper was presented in a writers' workshop at the 27th Conference on Pattern Languages of Programs (PLoP). PLoP'20,
OCTOBER XX-YY, Allerton, Illinois, USA. Copyright 2020 is held by the author(s). HILLSIDE 978-1-XXXXXX-XX-X.

restrictions). Traditionally, soft real time systems are built according to the Actors paradigm (see
Lohstroh at al. 2019 for review), with every modelled entity living in a dedicated thread or fiber, all
data being private. However, as time goes on, users expect more complex behavior, thus the
amount of business logic and number of participating components increases, making
asynchronous code prohibitively complex and often unstable. The present article reviews the
polar approaches of Actors and Half-Sync/Half-Async and establishes a middle ground with the
advantages of both.

2.1 Sample System

A telephony gateway makes a good case to compare the architectures: it is relatively simple and
conforms to standards while serving events from multiple independent sources. Real-time
constraints are weak, but there is a heavy dependency of control flow on components’ states. Let
out sample system contain a (minimal) set of:

- 2 SIP accounts (lines), registered with IP telephony servers

- 3 DECT handsets, registered with a local USB DECT base

- Calls, created as needed or taken from an object pool

- Phonebook, in RAM, backed up to flash

- Calls history, in RAM, backed up to flash

We will consider the next example event sequence:

(1) SIP INVITE - an incoming call that should result in a {CC-SETUP} message sent to each
handset and “100 Trying” sent back to the server. The application should also match the caller
number in the phonebook and in case of success send contact name to all the handsets in a
later {CC-INFO} message.

(2) Handset 2 starts ringing and sends back {CC-ALERTING} which should be translated into “180
Ringing” towards the SIP server. If the caller’'s number was found in the phonebook, now it’'s
time to send it in a {CC-INFO} message.

(3) At the same time SIP CANCEL is received from the server. The application should send a
{CC-RELEASE} message to each of the handsets, “487 Terminated” to the server, and store the
call’s data (caller’s name, number and call start time) in the calls history.

2.2 Actors Approach

Legend: | Linel | 1 Manager ” Phonebok ‘ | Call1 ‘ | History | HS1 HS2 HS3
ﬁ INVITE
Active —
W object *12345" }
call 2
Object Linel]"12345" ATCH
ﬁ @ < INCOMINE. GALL {CG-SETUR}
Line 2 "12345" 1
Handset 3
1 HC\SE:&H:?y Phonebook [e E——
i A Message F 2 L
i g ; ehannl | MATCHED 12345 123457
: Voice Channel i CANCEL "Alice” -4
‘ g : : — ' & 3 RELEASE i LERTING g ICCPLERTING),
SIP stack FS USB stack <ALERIINGL] RELEASE L {CC-RELEASE}
Blocking ! LI 1
o cal 0-— >
= — CALL_RELHASED (m >
SAVE.
“Terminated” GET_NAME
Non- 1
blocking " SAVED
Byl call ¢ FREEICALL <]
-
-]
(a) (b)

Fig. 1. Actors. (a) structural diagram for the sample system. (b) sequence of messages for the example use case, outdated messages are
marked with !

Half-Proactor/Half-Async Architecture for Real Time Device Management: Page - 2

Actors (Figure 1a) is a completely asynchronous architecture where domain entities are mapped
to Active Objects (POSAZ) which interact via messaging. Each Actor lives in its own thread or
fiber and acts as a stateful proxy (GoF) for its real-world counterpart. This results in good system
responsiveness, but any non-trivial business logic is hard to implement (async messages don’t
have return types, are not supported by common IDE code analysis tools, and each async step
needs to make precondition checks for the actor’s state as some unrelated event may have
changed it) and debug (a simple use case turns into scores of independent message handlers in
different threads; moreover, multithreading brings in non-determinism, making event replay
impossible), see Figure 1b. Also, by default the Actors approach doesn’t bring in any abstraction
layers, so changing HW or SW vendor of system components may be painful. Thus, the Actor
model is very good for simple systems, but any tightly coupled business logic does not scale. It is
somewhat similar to the Microservices approach (Fowler 2015).

2.3 Half-Sync/Half-Async Approach

Reactor

M
M_’ call Cal2 | Linel I l Manager Jl Phcnebokl History | | HS1 | | HS2Z | | HS3
Line2 Histor Phonebook| Handset3 INVITE
ry — | creaecal el
12345 "12345"
K— — —
100 Calll
[SiP] [Files] [DECT] < Dial
ry "Trying" o
Voice Channel
A y Yy o IncomingCall cc SETUP‘L
"Alice™ e i
SIP stack ‘ ‘ FS ‘ ‘ USB stack "12345" B "12345"
os CANCEL) s {CC-ALERTING}
[‘ | P
AL -4
-8 -1 @ ®

Fig. 2. Half-Sync/Half-Async. (a) structural diagram for the sample system. (b) method call sequence for the example use case, next
critical issues are marked with ?: inability to multicast, cancel scenario request, intermediate message not obeying request/confirm
paradigm.

Half-Sync/Half-Async (POSAZ2) is a synchronous Reactor-based multithreaded architecture mostly
used for web servers. Application logic is very easy to implement and debug, thanks to
synchronous request handling, when there is no shared state at the business logic level. As an
extra bonus, it encapsulates application logic in a separate layer, providing good vendor
abstraction (Figure 2a). It also does scale well. However, as Figure 2b shows, it does not work
under multiple event sources and shared resources conditions, as scenarios started by one event
may need to be cancelled midway and rolled back by another event. Implementing such a
roll-back capability requires a complicated scenario/thread reflection, if possible at all. Use of
shared resources would also require thread synchronization, which moves us further away from
good code (Ignatchenko 2015) and fast response times. Moreover, whenever events from different
sources spread over the system in opposite directions, deadlocks are very likely. Another
complication is that request/confirm interface is required for all the devices (to wake up the
request processing thread that waits for the confirm) while many real-world systems send
indications which don’t directly map onto the request/confirm paradigm.

Here should be mentioned a coroutines-based approach with application logic residing in a
single thread (Ignatchenko 2018), which makes the transition from Half-Sync/Half-Async to
Half-Async/Half-Async (POSA2). With the coroutines the Reactor layer that contains the entire
application logic is split into the upper half, built of request handling use cases, each running in a

Half-Proactor/Half-Async Architecture for Real Time Device Management: Page - 3

dedicated coroutine, and the lower half, where low-level business logic (services, device state
machines, protocol implementation) and coroutines engine (subscription for events, resuming the
correct coroutine(s) if any is subscribed, exception generation if supported) reside. This way the
entire logic runs in a single thread, so no mutexes are needed, no deadlocks possible, and all the
state is synchronously accessible. However, the Half-Async/Half-Async architecture is still
impractical for most embedded/telecom projects because both the request/confirm API restriction
applies, and supporting multiple event sources, shared resources and event multicast blurs the
original vision of coroutines to such an extent that the code may become very complex.

3. HALF-PROACTOR/HALF-ASYNC

As we have seen above, application logic in the Actors model is hard to scale because of its
inherent asynchrony, while easily scalable Half-Sync/Half-Async does not fit several of the
domain’s requirements. Is there any venerable pattern between the Active Object (Actor) and the
Half-Sync/Half-Async’s upper Reactor (POSA2)? Surely, it is Proactor (POSA2) featuring
single-threaded (no synchronization) processing of events from multiple sources. Below are the
steps taken to transform an Actors architecture into Half-Proactor/Half-Async (Figure 3):

Mediatorl Mediator2

ModelA Services ModelB

Proactor

Mediatorl

@ /

Mediator2 Proxghal ' ‘ Browops

Medr upp ProxyAl Servicel Service2 upp{ ProxyB2
upper upper upper upper

ProxyA2 ﬂ ﬁ ProxyBL H H H ﬁ
o - N , Pri 2 ProxypL Adapters

A | ProxyAl } [PerviceL] {SEMCEZJ A FIoayB2 J low{ ProxyAl Servicel Service2 lowd ProxyB2 AdapterA ServiceAdapter
Y . lower lower Tower lower Adapter1

Prox A1| Servicel ‘ Prox: Bl|

ProxyA2 Service2

¥ T¥ 7

ProxyB2

Direct e Direct e Adapter82
v L i Channel Channel Direct

it : i A— > Channel i

DriverA : £ DriverA 5 DriverA [R g |

Y Y Y] | vy

os ‘ os ‘ o0s ‘

DeviceA DeviceA DeviceA
SubDevAl SubDevAl SubDevAL

(a) (b) (©)

Fig. 3. Transformation from Actors to Half-Proactor/Half-Async. () initial Actors system. (b) actors split into upper and lower halves.
(c) merged Half-Proactor/Half-Async.

(1) Split each actor that works with the outer world (network, hardware, FS) into the upper (logic
and state) and lower (vendor-specific) halves using Half-Object Plus Protocol pattern
(POSA4), Figure 3a-b.

(2) Merge all the upper halves of the splitted actors and the remaining internal actors into a huge
single actor responsible for the entire application’s logic. This creates the upper layer of
Half-Proactor/Half-Async, Figure 3c.

(3) Remove most of the state from and merge the lower halves of same-type actors, creating the
lower (vendor abstraction) layer of Half-Proactor/Half-Async, Figure 3c.

(4) Provide a message dispatch engine, see below.

3.1 Message Dispatch Options

There are 2 ways to deal with the messages from the lower layer to the Proactor (Figure 4a and b).
In the first approach, each of the upper side Actor halves is left with its own message queue, so
that the structural changes on moving from Actors to Half-Proactor/Half-Async are minimal
(Figure 4a). As all the message channels are handled by the same thread, no synchronization is

Half-Proactor/Half-Async Architecture for Real Time Device Management: Page - 4

needed. The advantage of this separate message channels approach is its extreme simplicity and
very low system requirements. The disadvantage is its lack of hierarchical structure and
determinism.

The second approach is creating in parallel a composition hierarchy for the application
modules (Figure 4c) and the corresponding inheritance hierarchy for the messages (Figure 4d).
The message dispatch is done via recursive Visitor (GoF). This way messages from a single event
queue can reach any of the app modules (Figure 4b). It is better structured (thus more scalable)
and deterministic (the messages are always processed in the order they are put to the Proactor’s
event queue) but requires language support (C++ for Visitor). If the system is built from scratch,
this approach is recommended. It should be noted that if there exist multiple objects (models,
proxies, adapters) of the same kind, the simple Visitor dispatch would not work, and the
dispatched message should contain id of or pointer to its destination.

Proactor
Mediator1 }» Mediator2

‘ModelA Senyices ModelB

Proactor

Mediatorl Mediator2

ModelA Services ModelB

ProxyAl | ProxyA2| |Servicel ProxyAZ | |Servicel|Servicez| |ProxyBl

T /

15 3 R
[AdapterA] LServxceAdapter] Adapter | Adapter [AdapterA ServiceAdapter Adapter | Adapter

B1 B2 B1 B2
J

Service2| |ProxyB1|ProxyB2 ProxyAl ProxyB2

AdapterB AdapterB
#‘ Direct % #l Direct \ﬁg
Drivera shanne! Drivera shanng! ;
| Li v | 3 vy
os ‘ 0s |

DeviceB

SubDevB1

DeviceA

SubDevA2

DeviceB

SubDevB1

DeviceA

SubDevA2

SubDevB2 SubDevB2

@) (b)

Message Message
Application ‘ -
Handler
* & -
‘ | ‘ | |TxSerwcel\/lsg‘ l RxMsg ‘ ‘ TxAMsg |
Service A AN
‘ Adapter ‘ Proactor AdapterA AdapterB |
Q ? | MediatorMsg ‘ I ServicesMsg ‘ ‘ ModelAMsg | | ModelBMsg l ‘ TxSubBMsg ‘
M i M 1A ModelB SubAdapterB
ediaror services ode ode Y AR | ServicelMsg ‘ l Service2Msg ‘ [ProxyAMsg | I ProxyBMsg l
’ Servicel ’ ‘ Service2 ProxyA ‘ | ProxyB ‘ ﬁ ’meyAMelhodY| |ProxyAMel.ho(JZ|
() (d)

Fig. 4. Message Dispatch for Half-Proactor/Half-Async. (a) multiple message channels. (b) Visitor-based dispatch. (¢) application
structure. (d) message hierarchy, most leaf classes omitted. One message dispatch is shown in color.

3.2 Use Case Revisited

After describing the system we may consider how it handles our sample use case (Figure 5). The
entire scenario is processed by the logic layer in 3 synchronous steps (which equals the number of
handled events) compared to 10+ steps with Actors. State checks on entering the event handlers

Half-Proactor/Half-Async Architecture for Real Time Device Management: Page - 5

are

simpler than for Actors because the entire system’s state is guaranteed to be consistent (any

previous event has been fully processed and all the involved proxies were notified). Moreover, the

enti

re set of design patterns becomes available to the application developer, unlike with Actors

where the modules communicate with asynchronous messages.

| Linel I | Manager H Phonebok History. HS1 HS2 HS3
INVITE i
CreateCal " o
‘create
"12345" W’[r —— =
Proactor [~ —
Manager _>Ea \ Calll Dial
-
DECT
SIP
it :
IncomingCall - {CC-SETUP)\
Line2 Handse(3 2
T T T
e B *12345] T
= " < "dialing" ["12345"
SIP Adapter Files Adapter DECT Adapter Trying (CE-ALERTING}
Y 1 CANCEL GetCallprName
Voice Channel 2 T e —>| (CC-INFO}
T i Alerting Alerting ‘Alice’
Y v Y vy L
SIP stack FS ‘ ‘ USB stack Release
Linel » Reledeo : {cCIRELEASE}
0s Ll
o S ——
& DeleteCall ﬂ.m
[| ‘ this
- - I .
— —| — o '—E‘EI—E‘IE’X
“Terminated"
() (b)

Fig. 5. Half-Proactor/Half-Async. (a) structural diagram for the sample system. (b) method call sequence for the example use case,

4.

debuggable sequences shown in colors.

FORMAL PATTERN DESCRIPTION

Half-Proactor/Half-Async is a specialization of the Half-Async/Half-Async architectural pattern for

use

in soft real time systems with multiple event sources. For the context and alternative

architectures see section 2.
These are the relevant forces:

The software manages a set of different physical or logical self-contained devices and new
device types may be added. Thus, abstraction layers and hierarchies are welcome.

Events from the devices trigger application logic scenarios, which spread over the entire
system of the devices in different directions. Easy access to all parts of the system’s state is
necessary.

Multiple scenarios may run simultaneously and change states of shared objects, thus breaking
each other’s control flow. This prohibits explicit active scenarios (represented by threads or
coroutines) in favor of implicit reactive scenarios.

Both single device management (driver-like) logic and multi-device (request-like) use cases
may grow arbitrarily complex and coupled, with their control flows depending on states of
multiple components. Thus, coding and debugging application logic should be kept as simple
and uniform as possible.

The devices are limited, thus high resource competition is expected.

Event response times should be kept low, so device states should be available in RAM and no
blocking calls or long critical sections are allowed.

System resources and compiler support may be very limited, so an implementation in C should
be possible.

Half-Proactor/Half-Async Architecture for Real Time Device Management: Page - 6

4.1 Applicability

The pattern should be used when:

An existing Actors system grows out of control by getting coupled logic.
Designing a new device management system in a tightly coupled domain for development
speed, code scalability and maintainability.

The pattern should not be used when:

Events spread over the system in uniform direction and control flow is predictable - in that
case Pipes and Filters (POSA1) should be used as it gives more control over the system
structure and threading model. An example is PX4 autopilot®.

There is a single request source, the requests are not cancellable, and the device interfaces
comply with the request/confirm paradigm. Half-(A)Sync/Half-Async (POSA2) applies with its
better structured code.

The amount of application logic in use cases (Mediators) is much greater than in the device
support (Models, Proxies, Services) layer. Aim for coroutines with Half-Async/Half-Async
which simplifies code for use cases at the cost of very complex framework and device
management (with workarounds for the request/confirm, cancel and multicast issues).

Use cases are simple and don’t involve steps relying on states of multiple remote devices (low
coupling). The supported hardware interface is known to never change. Use Actors as a
simpler alternative.

The business logic may hit the single CPU core performance limit, even while data is passed
via Direct Channels. If there are highly loaded use cases which don’t rely on most of the
system’s state, they may be separated into Direct Channels, each served with a dedicated CPU
core. Otherwise, try sharding. As the last resort, return to Actors or Pipes and Filters that may
utilize multiple cores or distributed computing for business logic processing.

Feasible domains include: telecom, high-level 10T, robotics.

4.2 Structure and Interactions

The pattern describes an application managing external physical or logical devices. The
application, as shown in Figure 4b, consists of:

Proactor that contains all the business logic, runs non-blocking in a dedicated thread and
exchanges messages with the lower layer modules, namely Adapters.

Adapters between the Proactor and underlying OS or vendor-specific libraries and protocols.
The Adapters provide messaging interface towards Proactor and may use blocking or
non-blocking calls to the underlying OS or libraries. Mutexes may be needed for multithreaded
libraries. In case of low-level device protocol (e.g. RPC for HW register access) the device’s
Adapter may serve as a device driver which turns the Adapter itself into a quite complex proxy
module.

Direct Channels that provide for highly efficient data transfer between the managed devices by
making shortcut paths at device support stack or even OS drivers level.

Proactor is built of the following parts:

Proxies that store the last known state of corresponding devices, receive notifications from
the devices via device type adapters and send back commands. For domains featuring
polymorphic device behavior (like telephony) it may be convenient to split a proxy into the
lower half dealing with the device type (or standard) protocol and polymorphic upper half
with most of the business logic for the proxied device.

2 https://dev.px4.io/master/en/concept/architecture.html

Half-Proactor/Half-Async Architecture for Real Time Device Management: Page - 7

https://dev.px4.io/master/en/concept/architecture.html

- Services that provide non-blocking access to resources (file system, remote database, etc.).

- Models that describe for the application and manage a group of similar devices or resources.

- Mediators that contain the highest level application logic (serving request-like use cases) for
connecting and managing the Proxies and Services.

4.3 Consequences

Half-Proactor/Half-Async has the next benefits compared to Actors:

- Application logic scales well, even when it is tightly coupled and involves multiple objects.

- Application logic is platform-agnostic and can be debugged on a desktop PC.

- Application logic is deterministic, event recording and replay are easy to implement.

- Protection from vendor or OS lock-in.

- Several levels of polymorphism are provided for device management, reducing the amount of
code for and simplifying the addition of new types of devices.

- Faster and much simpler processing of events that rely on state of or trigger actions for
multiple devices.

Half-Proactor/Half-Async can be used in a wider range of systems compared to

Half-Async/Half-Async because:

- The supported devices are not required to be managed with a strict request/confirm paradigm.

- Multiple request (or indication for event-driven systems) sources are supported without any
extra code (like thorough state checks and/or coroutine reflection).

- Requests are easily cancellable by any involved party at any stage (compare to coroutine
reflection and rollback with Half-Async/Half-Async).

- There are no specific compiler requirements.

The next drawbacks remain:

- Application logic is harder to debug than in a fully synchronous implementation
(Half-Sync/Half-Async), inherited from Actors.

- Infrastructure code is complex (compared to Actors), inherited from Half-Async/Half-Async.

As we see, Half-Proactor/Half-Async clearly wins over Actors in development speed as soon as

business logic becomes non-trivial (development cost for the logic is higher then for the

framework) or hardware tends to change often (requiring abstraction layers). The

coroutines-based Half-Async/Half-Async would have been a viable alternative were it applicable to

generic event-based systems (it was designed for a backend-style environment with a single

Adapter and multiple Services; any deviations from this model make both the coroutine support

framework and the lower-level application code much more complex).

Another interesting observation is that both recommended architectures for complex real time
or high load systems are derived from Half-Async/Half-Async, with Half-Proactor/Half-Async being
simple and flexible, while the coroutines approach is heavily inclined to optimize the code for
request handling scenarios at the cost of much extra complexity at the lower layers. It is likely that
more Half-Async/Half-Async variants exist and they will be discovered and documented for other
kinds of demanding software systems.

4.4 Known Use
SIP<->(DECTIFXS) gateway application in Keenetic routers is based on Half-Proactor/Half-Async®.

4.5 Related Patterns

Half-Proactor/Half-Async is a blend of Half-Async/Half-Async (which is itself a variation of
Half-Sync/Half-Async (POSAZ2)), Proactor (POSAZ2) and Active Object (POSA2) patterns.

3 https://dou.ua/lenta/articles/telecom-application/

Half-Proactor/Half-Async Architecture for Real Time Device Management: Page - 8

https://dou.ua/lenta/articles/telecom-application/

The patterns used by Half-Proactor/Half-Async are:

- Layers (POSALl), used recursively: first for structuring the system into the Sync layer with
application logic and Async layer with vendor-specific code, and later to divide the generic
application Mediator code from the device type - specific Proxy code.

- Caching Proxy (GoF), used to store states of the managed devices to allow for synchronous
control flow decisions.

- Half-Object Plus Protocol (POSA4), applied recursively: first to split the device Actors into
upper and lower half, and later it may be used again to split the upper half of the Proxy into a
generic interface facing the Mediator and a device type - dependent lower half facing the Async

layer.

- Mediator (GoF), for the Sync part connecting the proxies.
- Message Passing Active Object (POSAZ) aka Actors paradigm for all the modules in the Async

layer and for the Sync layer object itself.
- Recursive Visitor (Gol") or Reactor (POSAZ) plus Message Channel (POSA4) for message

dispatch.

The patterns reviewed in the course of this article differ in which architectural entities receive
threads (or coroutines). With the Actors approach domain entities are given or subscribed to
threads. With Half-(A)Sync/Half-Async user requests and device drivers get threads. With
Half-Proactor/Half-Async user logic is single threaded (because the domain itself is so tightly
coupled that any borders inside the domain representation make lots of trouble) while each of the
device drivers gets a thread. With Pipes and Filters event or data processing steps are the entities
which may (or may not as threading here is very flexible) run in their own threads.

All these patterns exist because multithreading greatly improves response times and may often
help with throughput, but the drawback is that the communication between threads becomes
much more complicated than between entities in the same thread. And it takes both skill and
experience to find the correct abstractions and divide the system in such a way that
multithreading turns beneficial without making the code too complex to survive multiple years of
active development.

5. DISCUSSION

Table 1 Comparison of Different Architectures for a Device Management Application

Architecture Half-Sync/Half-Async | coroutines-based Half-Proactor/Half- | Actors, loosely | Actors, tightly
Half-Async/Half-Async | Async coupled logic coupled logic
Higher-level app Quite simple (but Quite simple (some Moderate (few Moderate X Hard (many
logic (request beware of mutexes) state checks) async steps) (more async async steps +
handling scenarios) steps) state caching)
Lower-level app Simple (local state X Hard (explicitly Simple (global Simple (local Simple (local
logic (device change, maybe runa | considers possible state change by a state change, state change,
support and use case thread) interactions between direct call to higher | send messages) | send messages)
protocols) the scenarios) level)
App logic scalability Moderate (mutexes) Good Good Moderate X Poor
Async steps (all o) O(NumEvents) O(NumEvents) O(NumEvents | X O(NumEvents
actors involved) * NumActors) * NumActors?)
State caching No No No No X Yes
required
State change X Mutexes State machines in State driven State driven State driven
protection lower layer and state behavior behavior behavior + cache
checks after await invalidation
Framework Complex (adapters | X Very complex Complex Simple Simple
complexity layer + RPC engine) (adapters layer + (adapters layer +
coroutines engine) message dispatch)
Vendor abstraction Yes Yes Yes X No X No

Half-Proactor/Half-Async Architecture for Real Time Device Management: Page - 9

Latency, same X Poor (mutexes) Average (messages + Good Best Best
device coroutines (messaging) (interrupt) (interrupt)
management)
Latency, device to X Poor (mutexes) Average (sequential Best (async Good (some Good (lots of
device logic) multicast) messaging) messaging)
Message replay X No (mutexes) Yes Yes if single Yes for any Yes for any
queue single actor single actor

Table 1 compares the reviewed approaches in context of soft real time systems. Actors clearly win
for small loosely coupled real-time systems (very low latency, low infrastructure cost, easy to
implement in C); Half-Proactor/Half-Async is good for complex tightly coupled real time systems
thanks to its mostly synchronous application logic and multiple abstraction layers. The
coroutines-based Half-Async/Half-Async moves complexity from the use cases to the device and
protocol support layer, making the latter very complicated when some of its prerequisites (Table
2) are not fulfilled, so it is used mainly for high-load backends (thin lower layer) and not for
complex hardware management. Half-Sync/Half-Async mirrors Actors in that it is good for simple
systems, but its use of mutexes becomes a burden when code complexity increases (Ignatchenko
2015), and it is not applicable for real time systems. Pipes and Filters approach is extremely
flexible regarding threading, but it works only if all the events are processed in the same way, and

it requires the system to be loosely coupled (next to no feedback capabilities).
Table 2 Prerequisites for the Mentioned Architectures

Architecture Half-Sync/Half- coroutines-based Half-Proactor/Half- | Actors Pipes and Filters
Async Half-Async/Half-Async Async
Event sources X Single Multiple with Multiple Multiple Multiple
complications
Control flow X Single direction Flexible (complex code) Flexible Flexible X Single direction
Feedback Return value or Return value or Return value or Messages X Requires extra
exception exception exception pipeline
Device interface X Request/confirm | X Request/confirm Event-based Event-based Event-based
Request Explicit Explicit (coroutine) Implicit (proxies’ Implicit X Static (pipeline
representation (thread) states) (actors’ states) | structure)
Requests are X No Exceptions and Yes (global state Yes (local X No
cancellable rollbacks with complex change) state change)
code
Compiler C X C++20 or Boost Cor C++ C C
requirements
Intended use Simple backend High load backend or huge | Tightly coupled Loosely coupled | Any systems with
real time systems with complex real time | or simple real static control and
many user scenarios systems time systems data flow

REFERENCES

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stal. 1996. Pattern-Oriented Software
Architecture Volume 1: A System of Patterns. John Wiley & Sons.

Frank Buschmann, Kevlin Henney and Douglas Schmidt. 2007. Pattern-Oriented Software Architecture Volume 4: A Pattern
Language for Distributed Computing. John Wiley & Sons.

Frank Buschmann, Kelvin Henney and Douglas Schimdt. 2007. Pattern-Oriented Software Architecture Volume 5: On Patterns
and Pattern Languages. John Wiley & Sons.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.

Martin Fowler. 2015. MonolithFirst. martinFowler.com

Sergey Ignatchenko. 2015. Multi-threading at Business-logic Level is Considered Harmful. In Overload Journal #128.

Sergey Ignatchenko. 2018. “Multi-Coring” and “Non-Blocking” instead of “Multi-Threading”. ACCU 2018.

Marten Lohstroh, Martin Schoeberl, Andrés Goens, Armin Wasicek, Christo-pher Gill, Marjan Sirjani and Edward A. Lee. 2019.
Invited: Actors Revisited for Time-Critical Systems. In The 56th Annual Design Automation Conference 2019 (DAC ’19),
June 2-6, 2019, Las Vegas, NV, USA. ACM, New York, NY,USA, 4 pages. https://doi.org/10.1145/3316781.3323469

Douglas C. Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann. 2000. Pattern-Oriented Software Architecture Volume
2: Patterns for Concurrent and Networked Objects. John Wiley & Sons.

Half-Proactor/Half-Async Architecture for Real Time Device Management: Page - 10

https://martinfowler.com/bliki/MonolithFirst.html
https://accu.org/index.php/journals/2134
http://ithare.com/multi-coring-and-non-blocking-instead-of-multi-threading-with-a-script/
https://ptolemy.berkeley.edu/publications/papers/19/LohstrohEtAl_Reactors_DAC_2019.pdf

<ccs2012>

<concept>

<concept_id>10011007.10010940.10010971.10011679</concept_id>
<concept_desc>Software and its engineering~Real-time systems software</concept_desc>
<concept_significance>500</concept_significance>

</concept>

<concept>

<concept_id>10011007.10010940.10010971.10010972.10010975</concept_id>

<concept_desc>Software and its engineering~Publish-subscribe / event-based
architectures</concept_desc>

<concept_significance>500</concept_significance>

</concept>

<concept>

<concept_id>10011007.10010940.10010971.10010564</concept_id>
<concept_desc>Software and its engineering~Embedded software</concept_desc>
<concept_significance>300</concept_significance>

</concept>

<concept>
<concept_id>10011007.10010940.10010971.10010972.10010974</concept_id>
<concept_desc>Software and its engineering~Layered systems</concept_desc>
<concept_significance>300</concept_significance>

</concept>

<concept>
<concept_id>10011007.10010940.10010971.10010972.10010979</concept_id>
<concept_desc>Software and its engineering~Object oriented architectures</concept_desc>
<concept_significance>100</concept_significance>

</concept>

Half-Proactor/Half-Async Architecture for Real Time Device Management: Page - 11

</ccs2012>

Half-Proactor/Half-Async Architecture for Real Time Device Management: Page - 12

