
Creating and Growing Healthy
Community Open Source Projects
A short best practices handbook

Dirk Riehle, dirk@riehle.org, https://dirkriehle.com

Abstract
This is a short (succinct and minimal) handbook of best practices to create, grow, and mature
community open source projects. We start with the assumption that you have a minimal but useful
piece of software at hand that you want to open source and build a community around.

1. Introduction
The overall topic is healthy community open source projects and how to create, grow, and mature
them. This topic is broken down into four distinct parts, which build on each other. This article
presents the first two of the four parts: Getting users and contributions.

This article linearly leads the reader through the activities of finding users and getting contributions. A
later article will lead the reader through the activities of growing the community, and governing the
community. To reduce friction by industry adoption, we talk about best practices rather than patterns,
but they are essentially the same.

2. Related Work
The base for this work is mostly Karl Fogel’s book on Producing Open Source Software [1],
combined with my own practical observations. This is work in progress and I expect it to improve
over time. If you want some of the theory behind the handbook, this 2014 article on The Five Stages
of Open Source Volunteering [3] provides more background analysis.

1 / 15

mailto:dirk@riehle.org
https://dirkriehle.com/
https://producingoss.com/
https://wp.me/Pe4V6-Yn
https://wp.me/Pe4V6-Yn

There are three types and two domains of related work relevant for this article. The types are:

● Practitioner literature
● Academic literature
● Patterns literature

The two domains of relevance are:

● Community management
● Open source communities

In the practitioner literature category, Jono Bacon’s book on the art of the community [9] as well as
his recent expansion on the topic [10] are relevant. As is appropriate for a patterns article, we draw on
this work where appropriate to fulfil the “rule of three” known occurrences. This rule, if fulfilled,
heuristically validates the relevance of a pattern. This use of literature applies not only to practitioner
literature, but to the academic literature section as well.

Also of relevance to this article is the general community building literature. Amy Jo Kim presents
experiences with community building on the web [11].

The academic literature on community building and management is vast and deep. We therefore
restrict our review to selected articles on open source community management. Two examples are:

● West and Gallagher present patterns of open innovation in open source software [6].
● Tamburri et al. present YOSHI, a tool to identify community structures in open source [8]

The patterns literature itself also provides some related work. Two examples are:

● Nakakoji et al. present evolution patterns of open source communities [5].
● Sauermann and Franzoni present user contribution patterns in crowd sourced projects [7].

None of these are as specific and focus on getting users and contributions, as presented in this article.

3. Get Used! (Setting-up Shop)
In the beginning, there are no users. To get users, you need to get found, so that you have visitors.
Visitors come out of curiosity or to solve a problem, often called “scratching an itch”. The following
mindmap provides an overview of the core best practices for getting visitors and turning them into
users.

2 / 15

3.1 Get found
Before anything good can happen to your project, you need to be found. For this, in a first step, you
have to →Have a good name, you need to have →Have one defined place or location to send people
to, you need →Have a good project page to concisely convey to search engines and humans alike
what you are about, and you have to →Register in all relevant places to cover all major paths to your
doorstep.

3.1.1 Have good name

A good name serves many purposes: (a) As an identifier, humans and machines can name and find
you precisely and distinguish you from other projects, and (b) with a human-readable name, people
will better remember you and more reliably infer what your project is about.

Therefore, to penetrate both search engines and human brains, have a good name. The name should be
established as early as possible, and it should last. Properties of good names are [2]:

● Easy to remember in all relevant languages (short, easy to say, etc.)
● Not offensive or otherwise objectionable (no cursing, no politics, etc.)
● Will not get you in legal trouble over IP rights (no trademark infringement)
● Cannot be diluted by other people’s actions (domains are available, etc.)

Examples of great names that match these criteria are Linux and Ubuntu. Not so great names are Go
and Android, because they are too generic and even within the context of software are hard to
distinguish from other similarly named projects.

3.1.2 Have one defined place

Your project needs an identifiable home location that won’t change soon or ever, and it needs to be in
one place, rather than many. This lets machines and people reliably tie the →Good name to that place
and send you there (search engines) or allow you to go there (links, bookmarks). This is the place
where you put the →Good project page.

Therefore, define that one place with a stable reference that you can point people to.

The best places are dedicated domains like https://postgresql.org or https://nodejs.org. Long-lived
services like Github may also provide good places.

3.1.3 Have good project page

Search engines lack understanding, and humans are impatient. To get found, you need to explain the
project precisely to search engines and concisely to humans, or else they won’t come or leave too
quickly.

Therefore, at the →One defined place, have a home or landing page that provides all relevant
information in both human readable and machine processable form.

The specific content varies by project, but in general you’ll need

● A one paragraph summary of what the project is about
● All relevant meta-information like license, project status, etc.
● Something to →Inspire trust, for example, testimonials or user numbers

3 / 15

https://postgresql.org/
https://nodejs.org/

The following screenshots show the range of possible project pages, commensurate with the relevance
of the project. The more customized a page, the more dominant is the visitor information and the less
prominent is the code.

Landing page for PostgreSQL Landing page for GnuCash Generic Github project page

Search engines pick-up well on a no-nonsense project page, but may need additional search engine
optimization (SEO) content, which is beyond the scope of this handbook.

3.1.4 Register in relevant places

To lead potential users to your project, you need to find all other places where users might be looking
for a project like yours. There, by registering and providing information, you should be signposting
the way to your project. This will not only lead humans to your project, but also strengthen search
engine pick-up of your →One defined place.

Therefore, put signposts (links) to your one defined place in all places that potential users might
frequent in search of projects of interest to them.

The list of relevant places keeps changing, but you should get a matching domain and register on
Github or Gitlab and OpenHub at a minimum.

3.2 Inspire trust
Most people searching for an open source project have a purpose and limited time. Having found your
project, they need to decide whether it is the right project for their needs. Not only do you need to
→Have a good project page that explains what you are about to the busy visitor, you also need to
inspire trust that digging into your project won’t waste the visitor’s time.

You inspire trust by being open and transparent about all important issues.

4 / 15

https://posgresql.org/
https://gnucash.org/

3.2.1 Provide all relevant information

A good project page convinces a visitor to stay and keep looking. However, the project page is only a
summary, and you now need to provide all relevant information that the visitor needs to decide
whether to become a user. By demonstrating that you understand your users’ information needs and
are actively working to fulfill them, you →Inspire trust.

Therefore, provide all relevant information in an easily accessible way. This includes, but is not
limited to the following:

● The project license(s)
● The project’s status (in beta, mature, etc.)
● A more detailed project description (than the summary on the landing page)
● The main dependencies, platforms the software requires
● A roadmap to show where the project is headed

Some information is specific to a project’s target audience. For example, corporate users will
appreciate a clean bill-of-materials based on current industry standards.

3.2.2 Practice open communication

People looking to find some open source software that helps them reach their goals understand that
they are creating a dependency on that open source software, and they consequently want to
understand properties of that dependency. The more transparent the inner workings of your project
and its community, the more likely it is to →Inspire trust. This is the domain of open communication
[3].

Therefore, make your project open and transparent by communicating

● Publicly. If all communication is public, visitors are assured that no shadowy cabal is playing
games on the side and that decisions are the result of inclusive deliberations.

● In written form. Written communication (emails, forums) is asynchronous, which makes it
easier for non-native speakers and to work around the world.

● Completely. If all public communication is also complete, it strengthens the perception of
inclusiveness, in which all topics of relevance are open for discussion.

● And archiving it. If whatever you write “is on the record”, it not only disciplines your
writing, it also creates trust because you can be held to your promises.

Open communication means no surprises, and if you are an outsider, no surprises are good.

As the volume of communication in a project grows, you need to learn to →Communicate effectively
and to have multiple → Public discussion channels.

3.2.3 Explain sensitive topics

Sometimes, there are sensitive issues, and you need to get ahead of the story and →Inspire trust by
explicitly explaining any decisions you made on these issues.

Therefore, have an FAQ on relevant topics. This deepens the perception of your project’s openness
and transparency and further inspires trust.

Example sensitive topics are why you forked from an original project or why you require a contributor
license agreement or why you are using proprietary technology for video conferencing.

5 / 15

3.2.4 Be matter-of-fact

People are different and so does their perception of what is trustworthy behavior. In general, your
audience will include or even be exclusively software developers, who tend to be down to earth and
shun hyperbole.

Therefore, to →Inspire trust, be matter-of-fact in your →Open communication and avoid going
overboard with promises and emotions.

There are other relevant qualities of communication, for example, you should →Assume good faith,
but they are more relevant in later contexts, like →Getting contributions and will be discussed there.

3.3 Make use easy
Visitors, looking to solve a problem, have limited time to spend on your project before they decide
whether it works for them or not. Therefore, helping them make the right decision includes making it
easy for them to use your project to understand what they are getting into. You don’t want them to
stumble and fall over random technical problems and abandon your project even if it was the right fit.

3.3.1 Define use cases

You need to guide visitors along usage examples culled from use cases, both for the →Demo system
and the →Readily usable binary, to improve chances that they understand what your project is about.
Without such guidance, they might easily get the wrong idea, and leave even if the project was a good
fit for their needs.

Therefore, define your main use cases and break them down into usage examples. Document use
cases and usage examples for visitors and make it possible to experience them in the →Demo system
or the →Readily usable binary.

Understanding your use cases is not easy and covered outside this handbook under product
management. Once you have your use cases, you should document them on the project’s website,
including usage examples within those use cases.

3.3.2 Provide live demo system

Text is just letters on a page. A live demo system speaks much louder!

Therefore, provide a demo instance of the software that visitors can play with to explore how good a
fit your project is for their needs. Make it easy to try the demo and structure it by use cases and usage
examples for different target audiences, next to a generic case. Use the →Usage examples that you
previously defined.

3.3.3 Provide readily usable binary

Most users of your project just want to use your software. Few will want to build the software from
sources. When just trying out the project, nobody wants to go through a build cycle.

Therefore, provide a readily usable binary that people can download or point their system to. Make
the needed information easy to find on your project’s website. If you can provide it, a live demo
version of the software would be even better.

6 / 15

3.3.4 Follow established practices

Visitors and users of your project need to understand your practices to be effective at understanding
and using your project. This is easiest, if they already know these practices.

Therefore, follow commonly established and known practices whenever possible. Document any
deviation from expected practices to minimize surprises and friction. If you are unsure as to what the
default practice is, choose a common one and document the choice.

There are many different common practices in open source; for getting and engaging contributors,
→Practicing code review is the primary one.

3.3.5 Provide user documentation

Even though a →Demo system provides a better impression of your project than text, users still need
documentation to help them understand the project and how to use it. Both →Use cases and their
usage examples may need explanation, and so does system configuration and user functionality or
programming interfaces, respectively.

Therefore, provide user documentation on the project website and allow for questions and comments.

3.4 Stay in touch
Every visitor will eventually leave your project website, whether they tried your project and became
users or not. Since they had a reason to come, you should try to stay in touch and learn more about
them. Since visitors are usually anonymous and prefer to stay like this, you can only offer to them to
declare their interest so that you can get back to them. Once you created that connection, you have a
way to stay in touch and can even try to make them return.

3.4.1 Provide announcements channel

The main way of offering visitors the opportunity to stay in touch is by letting them register to receive
announcements. Such an announcements channel may be a Twitter account that people can subscribe
to or a Facebook page or the traditional “announce” mailing list. Not knowing about your users’
preferences, it is probably best to provide all options, but to feed them consistently from one source.

Therefore, define such announcement channels and make it easy for visitors to subscribe to them.

Announcements should be done consistently, and not too often. You should complement the offer to
register for announcements with a declaration of update frequency and possibly a link to an
announcement archive that proves this frequency. Similarly, you should make it easy to unsubscribe
from the announcement channel.

For conversations, there should be other communication venues than the announcement channel.

4. Get Contributions!
Every open source project wants to be used, but not every project wants to get contributions. If you do
want contributions, however, you need to →Say welcome! and →Make it easy to contribute. Getting
contributions and managing them well is the first step towards growing a community of users and

7 / 15

contributors, and a community is the root of many good things that can come to your project.

4.1 Say welcome!
If you are open for business, you need to say so. If you would like to get contributions, you need to
say so as well.

Therefore, invite people to contribute, and make this information available in a prominent place, for
example, on your →Landing page for your →One defined place.

4.2 Make contributing easy
Stepping out of the shadows and making a first contribution can be a technically and socially complex
challenge.

Therefore, make it as easy and as enjoyable as possible for people to contribute.

For newbies, providing a →Good first issue is a well-worn strategy to get them started. You should
also →Provide tasks for everyone, enticing more experienced people to join. Newbies and experts
benefit from a →Contribution guide that tells them how to contribute, and a →Developer manual
helps everyone better understand what they are doing.

4.2.1 Provide good first issue

Some people contribute to an open source project to learn something new and have fun while doing it.
Some also contribute to demonstrate their skills to the job market. In any of these cases, these people
are not necessarily users of your project, and hence have no particular experience with it. Yet, they
found your project and are considering a contribution.

Therefore, to engage these people, provide simple tasks that are easy to understand and carry out.
Mark them as the so-called “good first issue” to indicate that these are useful but not complicated
tasks. These tasks help get people over the initial contribution hurdle.

Examples of good first issues are help with translations and documentation, fixing up visuals in a user
interface, and even an (apparently) simple bug in an infrequently used component.

4.2.2 Provide contribution guide

Other people contribute to an open source project to fix a bug that got in their way of using the
software. They do so, because “it is the right thing to do”, and because they don’t want to have to
reapply the bug fix in every future project version again, over and over.

8 / 15

Therefore, to invite such contributions and make it easy for yourself, provide a contribution guide that
explains to anyone interested how to contribute to the project and what it means.

In the most common process, people declare their interest to make a non-trivial contribution, discuss
their design and its implications on a developer mailing list, and incrementally program and submit
their contribution. Such incremental build-out makes it easy for reviewers to accept contributions and
to close the feedback loop with the contributor.

4.2.3 Provide tasks for everyone

Yet other people simply like your project and would like to help.

Therefore, to engage these people, provide tasks for every level of competence (e.g. novice,
intermediate, expert) and for every role (e.g. programming, documentation, design) and possibly on
other dimensions as well.

You can use these tags (novice, etc.) on issues to identify the level of competence required for
resolving the tagged issue.

4.2.4 Provide developer manual

It is one thing to want to contribute, it is another thing to do so. It is easy to fail at contributing
because of a project’s complexity.

Therefore, provide a developer manual to make it easy to contribute, to increase the quality of
contributions, and to reduce your own workload. Without such a manual, contributions would be less
consistent and you would have to correct the same mistakes over and over again.

Providing a developer manual is complementary to →Providing a contribution guide.

The developer manual focuses on the technical and tooling side of the project so that any development
that a contributor performs matches the project’s expectations.

On the tooling side, typical content includes how the system is built, how to run automated tests and,
if necessary, manually test the system. If the set-up is complex, providing a pre-configured virtual
machine might be helpful.

On the architecture and code side, typical content includes how the project’s architecture looks like
and how to extend it as well as how the code structure (respositories, directories) is organized.

4.3 Communicate effectively
Effective communication is key to successful coordination and collaboration. Many books have been
written on the subject, but in the context of getting contributions, it boils down to a few key practices:
You should →Assume good faith, ensure that you →Speak to the issue, not the person, →Praise
plentifully, criticize specifically, and →Be matter-of-fact, as previously noted.

4.3.1 Assume good faith

It is easy to worry about things going wrong. Then, any potential contributor who suggests something
that is unusual or does not agree with your ideas, may seem like a problem. Often, they are not.

Therefore, assume good faith [4] about people’s intentions, take what they write literally, and don’t
interpret into it what isn’t there.

9 / 15

As you respond, →Speak to the issue, not the person, and →Be matter-of-fact.

4.3.2 Speak to the issue, not the person

As you engage with people, it becomes easy to equate an issue with the person bringing it up. You
might confuse the two and attribute the issue at hand to the person raising it. Consequently, you might
be attacking the person rather than the technical matter. This is no good, as it might make you lose a
valuable contributor.

Therefore, in your response, make sure that you specifically talk about the issue and not the person.
Avoid equating the two so that you don’t involuntarily attack and offend the person. Don’t
finger-point.

For example, don’t say “you don’t know what you are doing, because [...]” but rather say “this needs
to be done differently, because [...]”.

4.3.3 Praise plentifully, critique specifically

You want any contributors to feel valued so they keep contributing. Yet, not all they do or contribute
can be accepted as is and hence you need to critique it. As a rule of thumb, ten times praise weighs as
much as one time criticism.

Therefore, praise plentifully, yet critique if you have to with high specificity, avoiding any broader
interpretation of your critique. This way it remains clear that you value the contribution, yet, as you
critique such a contribution, you have a good and specific reason.

4.4 Practice code review
As a lead developer (a.k.a. committer or maintainer) of the project you hold primary responsibility for
ensuring fit-for-purpose quality of the project. As a consequence, you can’t just accept any
contribution unseen, rather, you have to make sure that it fits the project and does not introduce bugs.

Therefore, review any contributed code, before you accept it into the project. If necessary, →Turn the
contribution into a conversation with the contributor to guide them to making the changes you deem
necessary before you can accept the contribution into the project.

This practice is at the core of quality assurance of open source projects. Since code review is an
engineering practice and not a community management practice, we leave it to other articles.

4.5 Engage contributors
As you receive contributions, you need to make sure they don’t appear to be falling into a black hole.
Nothing would be more discouraging than getting no response to something you spent valuable time
on. Hence, →React speedily to any contribution, try to →Turn contributions into conversations, and
keep contributors interested by →Understanding contributor needs.

Such engagement can consume a lot of time and energy, hence look ahead to →View recruiting as
investment from the →Grow community! section. Over time, you can build up contributors to help
with engaging newbies. Eventually, you will need full-time community management.

4.5.1 React speedily

10 / 15

Few things are more frustrating than trying to make a contribution and getting ignored. This is
particularly bad, if it is a user’s first contribution.

Therefore, react speedily to any incoming contribution. If necessary, prioritize your handling of
contributions by how new the contributor is to the community. At a minimum, acknowledge receipt, if
you can’t get to the contribution any time soon.

4.5.2 Turn contributions into conversations

People come for the transaction, and stay for the relationship.

Therefore, turn a contribution into a conversation to build that relationship. Do not quietly accept
contributions, but rather view them as the beginning of a conversation.

Usually, this happens naturally, because it is the rare contribution that can be accepted as submitted.
Rather, you have to request changes before you can accept the contribution. In the ensuing
conversation, you can assess how competent the contributor is and whether you should try to reel
them in for further contributions. Don’t ask for more right away, though, but rather first try to
→Understand the contributor’s need and whether it fits the project.

4.5.3 Have public discussion channels

Open communication implies that you conduct your business in the open, for everyone to see.

Therefore, have public discussion channels that allow everyone to participate.

This is the place where people can ask their questions, including about making a contribution, receive
guidance, and can report about progress. Publicly conducting your business →Inspires and →Builds
trust. It also documents your project, making everyone's life easier.

Mailing lists and discussion boards, including threaded discussions like Github’s issues are good
channels, because they usually archive all content and hence can be searched and serve as
documentation. Twitter discussions don’t and hence are inferior discussion channels.

Depending on the volume of communication, you may have to structure communication into different
topics and create channels for each of these.

4.5.4 Understand contributor needs

To keep getting contributions, you need to make people return, repeatedly, until they become regular
(habitual) contributors. You got started by →Turning contributions into conversations, now you need
to prepare them for requests to contribute more.

Therefore, understand what made a person come and contribute. Use the initial conversation as well
as the →Discussion channels to build this understanding, both in general and with respect to
promising individuals.

Typical contributor needs are:

● Having a technical need fulfilled, for example:

○ Having a particular feature added to the project
○ Making the project work on a new operating system
○ Integrating the project with another component

11 / 15

● Having a personal need fulfilled, for example:

○ Enjoying themselves by doing good
○ Having fun with others, enjoying the camaraderie
○ Learning something of professional relevance

If you understand and track needs, you can more successfully ask people to help out later on. If this
feels manipulative, it is not. Know your users, and you will have a useful project that people will want
to contribute to.

4.6 Build trust
Contributing to a project is significantly more time-consuming than just using it. Users only become
contributors, if they trust you to be valued for their contributions and to be treated fairly. Therefore,
do just that: →Practice open collaboration, →Manage all work publicly, and →Track and give
credit.

4.6.1 Practice open collaboration

By practicing open communication, you are talking the talk of openness and transparency. You also
need to be walking the walk, that is, in your actual work, collaborate like you communicate.

Therefore, practice open collaboration.

In open collaboration,

● You welcome everyone (and don’t exclude anyone without good reason),
● You make decisions based on the merits of the argument, not based on status, and
● You let people self-organize and manage themselves.

Open collaboration does not mean anarchy. The project’s well-being remains the driving concern and
informs decisions as to what should be done, for example, to possibly exclude a troll or how to
organize software development. However, these decisions are driven by community consensus and
not dictated top-down.

4.6.2 Manage all work publicly

All work, including intermediate and final work results, should be public and appropriately licensed.
This is obvious for the open source code of the project, but is sometimes forgotten when it comes to
processes and artifacts.

Therefore, manage all work publicly.

Work comprises both processes and resulting artifacts. For example, you should hold meetings
publicly and provide the meeting minutes publicly as well. By managing all work publicly, you build
trust and avoid conspiracy theories.

4.6.3 Track and give credit

As discussed, you should →Praise plentifully. To be fair to all involved people, praise should roughly
correspond to the contributions. Praise can be informal, for example, a simple thank you in an email,
and formal, for example, in a contributions list maintained by the project.

12 / 15

Therefore, track and give credit.

In terms of code contributions, a version control system lets you track who did what. For other work,
you may have to track it by hand, and if only by memory. In particular, if people add their copyright,
you need to track this for the project’s legal notices.

4.6.4 Celebrate small successes

Engaging with contributors and building trust with them is important. However, to take first steps
towards a community, you need to make people come together.

Therefore, celebrate small successes in a commensurate form.

An example small success is a major feature concluded or a feature release. A commensurate
celebration would be an email or blog post celebrating the involved people and their teamwork.
Another example of a small success would be a project presentation at a relevant conference. A
commensurate celebration would be again, an email or a blog post or a video or stars or requests to
applaud, then hopefully met by the community.

More on community building will be discussed in a follow-on article.

4.7 Protect intellectual property
Every open source project has its enemies. These could be the vendors whose products the project is
commoditizing. These could also be competing open source projects, though those generally ignore
each other and rather compete fairly.

The worst that can happen to an open source project is that its license gets diluted by intellectual
property owned by someone who didn’t contribute it. Then, users might get sued over intellectual
property infringement, usually copyright violation or patent infringement.

Therefore, make sure that all contributions conform with the project’s license agreement. In addition,
you may want to make relicensing possible. For the first case, you need to →Require a developer
certificate of origin, and for the second case you need to →Require a contributor license agreement.

4.7.1 Require developer certificate of origin

To protect the project’s intellectual property, any contribution must conform to the existing license.
You should only accept contributions, if the contributor agrees to the project’s license and can
actually provide their intended contribution under that license.

Therefore, require a developer certificate of origin (DCO) for each contribution.

A DCO states that the developer making the contribution is the owner of all relevant rights needed to
make the contribution in conformance with the project’s license. Usually, it is a short text that a
contributor submits together with their contribution and their electronic signature.

A DCO only declares conformance with the current license, not future licenses. For the latter, you
need to →Require a CLA.

The default example of a DCO is provided by the Linux Foundation at https://developercertificate.org.
The Linux kernel development process is its original user.

4.7.2 Require contributor license agreement

13 / 15

https://developercertificate.org/

To protect the project’s intellectual property, like with a DCO, and also to possibly change the license
in the future, you need to acquire a relicensing right from every contributor. Without a centrally
collected relicensing right, at some point it will become unmanageable to change the license.

Therefore, require a contributor licensing agreement (CLA).

A CLA is a statement that describes which rights the legal entity representing the project would like to
receive from a contributor before they can accept their contribution. At a minimum, you should ask
for a relicensing right to the contribution. Some organizations ask for a full copyright transfer. Only
after signing this statement should you accept a contribution.

All contributor CLAs taken together allow a project to change its license. Any such change should in
most cases still be a community consensus decision.

If there is no legal entity representing the project yet, you can fill in as a natural person, but it is not
advisable to do so for a longer period of time. You should then be open and clear about your
intentions, because rights assignments are often confusing and off-putting to developers.

5. Conclusions
A future article will cover how to grow a community:

And also how to govern that community well:

These articles are in work and will hopefully be submitted to PLoP 2021.

Acknowledgments
I would like to thank Alfredo Goldman of University of São Paulo for his thoughtful comments and

14 / 15

guidance.

References
[1] Fogel, K. (2005). Producing open source software: How to run a successful free software project.
O'Reilly Media, Inc.

[2] Riehle, D. (2004). Finding a company name. Web-published.

[3] Riehle, D. (2015). The Five Stages of Open Source Volunteering. In Cloud-based Software
Crowdsourcing, pp. 25-38. Springer-Verlag.

[4] Wikipedia (n.d.) Assume_good_faith. Web-published.

[5] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., & Ye, Y. (2002, May). Evolution
patterns of open-source software systems and communities. In Proceedings of the international
workshop on Principles of software evolution (pp. 76-85).

[6] West, J., & Gallagher, S. (2006). Patterns of open innovation in open source software. Open
Innovation: researching a new paradigm, 235(11).

[7] Sauermann, H., & Franzoni, C. (2015). Crowd science user contribution patterns and their
implications. Proceedings of the national academy of sciences, 112(3), 679-684.

[8] Tamburri, D. A., Palomba, F., Serebrenik, A., & Zaidman, A. (2019). Discovering community
patterns in open-source: A systematic approach and its evaluation. Empirical Software Engineering,
24(3), 1369-1417.

[9] Bacon, J. (2012). The art of community: Building the new age of participation. " O'Reilly Media,
Inc.".

[10] Bacon, J. (2019). People Powered: How Communities Can Supercharge Your Business, Brand,
and Teams. HarperCollins Leadership.

[11] Kim, A. J. (2006). Community building on the web: Secret strategies for successful online
communities. Peachpit press.

15 / 15

https://producingoss.com/
https://riehle.org/the-serious-side/finding-a-company-name.html
https://dirkriehle.com/2015/07/24/the-five-stages-of-open-source-volunteering-abstract/
https://en.wikipedia.org/wiki/Wikipedia:Assume_good_faith

