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1. INTRODUCTION

For decades, the concept of a bit has been the fundamental unit for information encoding in computer science.
Recent advances in quantum computing have led to the first commercial quantum computers which operate on
quantum bits (qubits) instead of bits [Leymann et al. 2020]. Similar to a bit that can be either zero or one, a qubit
can also take one of two states: |0〉 and |1〉. But in addition, due to quantum mechanics, it can also be in both of
these two states at once - a superposition of states. Empowered by superposition and other fundamental properties
of quantum mechanics, quantum computers have the potential to solve certain problems faster than conventional
computers [Horodecki et al. 2009]. In fact, various algorithms for quantum computers exist for which a theoretical
speed-up of linear or exponential time was demonstrated, e.g. for the factorization of prime numbers [Shor 1999].

As the number of available qubits increases, more companies start to explore quantum computing. However, it
is expected that near-term devices will only contain up to a few hundred qubits [Preskill 2018]. Another restricting
factor is that these qubits are not perfect: Their states are only stable for a short amount of time. Because of
their rapid decay, only a certain number of operations can be executed on them. Thus, successfully programming
quantum computers today is limited by the available hardware.
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Besides, the sheer fact that quantum computers obey the law of quantum mechanics results in - from the point of
a software developer - unusual effects. To illustrate how different quantum computing is, we describe implications
for two basic programming tasks: reading, and loading data. For the first task of reading a qubit, its quantum state
must be accessed. This can only be done by measuring it. Unfortunately, measurement causes a qubit to collapse
to either |0〉 and |1〉. Thus, the state of a qubit that is in superposition can not be accessed for reading.

The second task consists of loading data into a quantum computer. This task is at the beginning of almost every
algorithm that processes input data. After the initial loading process, the data is represented by qubits via a specific
encoding. Each algorithm expects that a certain data encoding is used, and then processes the data by performing
calculations. Unfortunately, loading data can not always be done efficiently. In the worst case, loading requires
exponential time. This slows down algorithms with an otherwise logarithmic or linear runtime: With an exponential
loading time, their overall runtime is also exponential. This ruins a theoretical linear or exponential speedup of an
algorithm - which was one of the reasons why we wanted to use a quantum computer in the first place. In general,
the time for loading depends (i) on the routine that loads the data in a specific encoding and (ii) on the data itself.
Thus, loading data is not a trivial task that influences the runtime complexity of a quantum algorithm.

To help software developers understand the implications of using a specific encoding to load data, we formulate
three common data encodings as patterns. A pattern in the spirit of Alexander et al. [1977] describes a proven
solution to a re-occurring problem. For the development of software, documenting patterns is commonly used to
capture knowledge about a specific domain [Coplien 1996; Buschmann et al. 1996]. Especially in an interdisciplinary
and complex domain like quantum computing, patterns can be used to make proven solutions explicit, explain
’how’ they work, and ’why’ a solution (e.g. an encoding) should be used [Meszaros and Doble 1997].

The remainder of this paper is structured as follows: Section 2 describes fundamentals of quantum computing.
Section 3 starts with an overview of patterns for quantum algorithms and then presents the new encoding patterns.
Related work is discussed in Section 4. Finally, Section 5 concludes the paper and describes future work.

2. FUNDAMENTALS OF QUANTUM COMPUTING

The core concept of quantum computing is the qubit. In this section, we will briefly define qubits and their basic
properties that can be used to encode data. A qubit can be in one of two basis states, that are denoted as |0〉
or |1〉. Besides that, it can be in a combination of these two states at the same time: a superposition of states.
Mathematically, the state |ψ〉 of a qubit is defined as follows:

|ψ〉 = α |0〉+ β |1〉 where α, β ∈ C and |α|2 + |β|2 = 1 (1)

The complex numbers α and β are called amplitudes: With a probability of |α|2, the qubit can be measured as
|0〉, and it can be measured as |1〉 with a probability of |β|2. As these are the only two possible outcomes of the
measurement, their probabilities must sum up to 1.

In this work, we focus on gate-based quantum computers for which operations on qubits can be done by applying
quantum gates. Quantum gates are operations on qubits that change their state. For example, if we apply an
X gate to a qubit that is in state |0〉, this changes its state to |1〉. Applying a quantum gate can also result in
superposition: Applying the so-called Hadamard gate to a qubit in state |0〉, leads to an equal superposition of
both |0〉 and |1〉: |ψ〉 = 1√

2
|0〉+ 1√

2
|1〉. The qubit is measured as |0〉 and |1〉 with a probability of ( 1√

2
)2 = 0.5.

Multiple qubits in a quantum computer can form a qubit register. For example, two qubits |ψ1〉 and |ψ2〉 can be
combined to a 2-qubit quantum register. If both qubits are in state |0〉, then the state of the register can be written
as |00〉. As each qubit can be |0〉, |1〉, or in a superposition, the 2-qubit register can be in the states |00〉, |01〉, |10〉
or |11〉, or in a superposition of them [Gruska 1999]: α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉, where

∑3
i=0 |αi|2 = 1.

Sometimes the bit strings are transformed into decimal representations resulting in natural numbers, thus, the
state vectors are written even more compact as |0〉, |1〉, |2〉 and |3〉.
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3. PATTERNS FOR QUANTUM ALGORITHMS

In this section, we first introduce quantum algorithms and give an overview of patterns for quantum computing.
This includes existing patterns for quantum algorithms that were introduced by [Leymann 2019] as well as the new
encoding patterns. We then describe our pattern format and introduce the new encoding patterns. An excerpt from
the encoding patterns can also be found on our website1.

3.1 Overview of Patterns for Quantum Algorithms

Fig. 1 presents an overview of patterns for quantum algorithms [Leymann 2019] and the new encoding patterns (in
bold). Due to space limitations, QRAM and ANGLE ENCODING are not described further in this paper. The figure
also illustrates the typical steps of a hybrid quantum algorithm [Leymann et al. 2020]: Some steps are executed on
a classical computer (light background), others on a quantum computer (dark background).

First, data is pre-processed on a classical computer. This step is required for some data encodings or algorithms.
In the next step, data is loaded into a quantum computer: All qubits are initialized as |0〉, so the overall quantum

state can be denoted as |00 . . . 0〉. A state preparation routine operates on a register of qubits and thus, changes
their state. As a result, a quantum state is prepared that represents the data via a specific data encoding. This
state can have certain characteristics of quantum states that are described by patterns of the quantum states
category. For example, in a UNIFORM SUPERPOSITION, all possible outcomes of the quantum register are equally
likely. After the state is prepared, the data is loaded. This overall process of preparing the state is summarized in
the INITIALIZATION pattern [Leymann 2019] - another alias for it is State Preparation.

After state preparation, the quantum computer performs computations on the quantum register. These com-
putations are unitary transformations and are represented as quantum gates. Patterns of the category Unitary
Transformations describe best practices to construct computations that happen in this step. For example, UNCOM-
PUTE can be used to reset the state of a quantum register to the ground state |00 . . . 0〉.

In the last step that is executed on the quantum computer, one or multiple qubits are measured. The measure-
ment results are analyzed in an optional post-processing step. Depending on the results or overall goals of the
algorithm, the algorithm terminates or proceeds with the next iteration in the pre-processing step. Program flow
patterns capture higher-level strategies to solve a problem on a quantum computer.
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Fig. 1. Overview of pattern for quantum computing. In the center, the steps of a quantum algorithm are shown (based on [Leymann et al.
2020]). The new encoding patterns (highlighted in bold) are part of the first step that is executed on a quantum computer (State Preparation).

1http://quantumcomputingpatterns.org
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3.2 Pattern Format and Method

Pattern authors make use of different pattern formats [Coplien 1996] that define the sections of their pattern
documents. We use an existing format by Fehling et al. [2014] and add an optional section for aliases. Their
format was inspired by Hohpe and Woolf [2004]. Each pattern is introduced by a descriptive Name that is followed
by a graphical Icon. Next to the icon, we denoted the Intent of the pattern: a short sentence that summarizes
the pattern. Afterward, we list other names under which a pattern may be known in the Alias section. This is a
common property of patterns [Coplien 1996] and present in pattern formats of e.g., Gamma et al. [1994] or Reinfurt
et al. [2017]. In the Context section, we describe the circumstances that lead to the problem and preconditions for
applying the pattern. The Solution is a high-level description of how to solve this problem and is further illustrated
in the Solution Sketch. The Result of the solution discusses the consequences of using this pattern, e.g. the new
context that results. If aspects of this pattern can be varied, this is covered in Variants. Relations to other quantum
computing patterns are described in the Related Patterns. Finally, Known Uses of the pattern are listed, which is
either a concrete implementation of the pattern or a published quantum algorithm that uses this pattern.

In Section 3.1, we explained that a state preparation routine is used to realize the encoding of data. Therefore,
the solution section of our patterns describes (i) how the data is represented, and (ii) the process of encoding data
via a suitable state preparation routine. If various state preparation routines can be used to realize one particular
encoding, they are referred to in the Known Uses section. In this section, we also name concrete examples of
algorithms that require this particular data encoding. As the forces of the new patterns are very similar, we describe
difficulties for loading data into a quantum computer in the section that motivates encoding patterns (Section 3.3),
instead of including a forces section.

Patterns are not invented but abstracted from real-world solutions [Kohls 2010]. In quantum computing, algo-
rithms for quantum computers have been published for decades before the first quantum computer was realized.
Concrete software implementations therefore often refer to a quantum algorithm that is described in a scientific
publication. These publications also contain the underlying idea of the algorithm - the abstract solution that
we want to capture in a pattern. In contrast to that, typical software patterns are abstracted only from existing
implementations [Fehling et al. 2014; Fehling et al. 2015]. For our pattern research, we followed the method
described by [Fehling et al. 2014]. To identify patterns in the domain of quantum algorithms, we analyzed research
papers, books, and technical documentation. During this phase, we collected reoccurring solutions and pattern
ideas. If we identified at least three references per pattern idea (Coplien’s Rule of Three [Coplien 1996]), we
abstracted the underlying solution from the references and authored a pattern.

3.3 Data Encoding Patterns

In this section, we present data encoding patterns for quantum algorithms. We start with a short motivation for
data encoding patterns. Each pattern describes how input data is can be loaded in a specific encoding. Historically,
solving quantum physical problems was in the foreground of quantum computing, thus, input data for quantum
algorithms is often numeric. Therefore, we assume in the context of each pattern that the input data X is numeric.
We start with the simplest encoding, BASIS ENCODING, and then introduce QUAM (QUANTUM ASSOCIATIVE

MEMORY), and AMPLITUDE ENCODING.

Motivation and Forces. Encoding data in qubits is not trivial. Current devices contain a limited amount of qubits
that are stable for a short amount of time. In order to make use of current devices, the representation must be
compact and use only a few qubits and few quantum gates. Because qubits decay fast and quantum gates are
error-prone too, the number of operations to prepare the quantum state must be small. To encode even a large
number of data values efficiently, a logarithmic or linear runtime is ideal. Each encoding is essentially a trade-off
between two major forces: (i) the number of required qubits and (ii) the runtime complexity for the loading process.
Besides that, an additional force requires that data must be represented in a suitable format for further operations.
For arithmetic operations like addition or multiplication often the exact values of the data need to be represented.
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For other operations it may be sufficient to represent their relative values (e.g., as relatively small or large amplitude
of a quantum state with AMPLITUDE ENCODING). To capture abstract knowledge about the different encodings and
the consequences of using a particular data encoding, we describe them as patterns.

BASIS ENCODING

Represent data elements in a quantum computer in order to perform calculations

Context. A quantum algorithm requires numerical input data X for further calculations.

Solution. The main idea for this encoding is to use the computational basis {|0...00〉 , |0...01〉 , . . . , |1...11〉} to
encode the input data: An input number x is approximated by a binary format x := bn−1 . . . b1b0 which is then turned
into the corresponding basis vector |x〉 := |bn−1 . . . b1b0〉. For example, the number "2" is represented as 10 which
is then encoded by |10〉 (Fig. 2). In general, this leads to the following encoding: X ≈

∑m
i=−k bi2

i 7→ |bm . . . b−k〉
where X is first approximated with a precision of k decimal places and then represented by a basis vector.

𝑞1 𝑞0𝑏1 𝑏0

Fig. 2. Basis encoding. A number is approximated by a binary bit string (first step) and encoded by a computational basis state (second step) .

Result. This encoding can be categorized as digital encoding because it is suitable for arithmetic computa-
tions [Leymann and Barzen 2020a]. For input numbers which are approximated by l digits, l qubits are needed for
its representation. To realize this encoding, the initial |0〉 state of qubits that represent a ’1’ digit must be flipped into
|1〉. For one qubit, this can be done by a single operation, and thus, this encoding can be prepared in linear time.

Related Pattern. This pattern is a refinement of INITIALIZATION. If an algorithm requires several numbers as
input, each can be encoded in BASIC ENCODING which can be processed by the QUAM pattern.

Known Uses. Vedral et al. [1996] give multiple examples for algorithms that perform arithmetic operations on
numbers in BASIC ENCODING. A formal description of the solution above is also given in [Leymann and Barzen
2020a] and [Cortese and Braje 2018]. As only one quantum gate is needed to obtain this encoding, this state
preparation routine can be implemented straightforwardly.

QUAM (QUANTUM ASSOCIATIVE MEMORY)

+ Represent a collection of data elements in a quantum computer in order to perform calculations

Context. A quantum algorithm requires multiple numerical values X as input for further calculations.

Solution. Use a quantum associative memory (QuAM) to prepare a superposition of basis encoded values in
the same qubit register [Leymann and Barzen 2020a]. In Fig. 3 the encoding is illustrated for three values in binary
format. Note that the quantum register is an equally weighted superposition of the basis encoded values.
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Fig. 3. Resulting Encoding. Each data value represented by a row on the left is encoded in BASIS ENCODING and an amplitude of 1√
n

.

Both branches have a load and a storage part (Fig. 4). An additional element is first prepared into the load
part of both branches. Next, the processing branch is split in such a manner, that the new element gets a proper
amplitude such that it can be brought into superposition with the already added elements. Finally, an UNCOMPUTE

cleans the processing branch to be ready for the next iteration (see [Ventura and Martinez 2000] for details).

Memory Branch
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𝑞0 𝑞1 𝑞2

Processing Branch

𝑥2
1

3

+

split2

fold3

UNCOMPUTE4

UNCOMPUTE4

Fig. 4. Illustration of the state preparation routine of [Ventura and Martinez 2000]. In each iteration, an element is loaded and brought into
superposition with the already stored elements.

Result. The resulting encoding is a digital encoding and therefore suitable for arithmetic computations [Ley-
mann and Barzen 2020a]. For input n numbers that are approximated by l digits, l qubits are needed for this
representation. Each of the n encoded input values is represented by a basis vector with an amplitude of 1√

n
.

All other 2l − n amplitudes of the register are zero - in our example, |000〉 , |001〉 , |100〉 , |101〉, and |111〉. The
amplitude vector is therefore often sparse for this encoding [Schuld and Petruccione 2018].

Related Pattern. This pattern refines INITIALIZATION and makes use of UNCOMPUTE. UNIFORM SUPERPO-
SITION creates a superposition of all computational basis states. Each of the computational basis states also
represents a value in BASIS ENCODING.

Known Uses. The presented state preparation routine based on Ventura and Martinez [2000] can be used
whenever multiple data values need to be represented in BASIS ENCODING. Shor’s algorithm [Shor 1999] for the
factorization of prime numbers, a quantum version of the Fourier transform [Coppersmith 2002], and Grover’s
algorithm [Grover 1996] for unstructured search rely on this encoding. Various algorithms extend or use Grover’s
algorithm and therefore also make use of this encoding.
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AMPLITUDE ENCODING

𝑥 𝑥 Encode data in a compact manner that do not require calculations

Alias. This encoding has also been referred to as Wavefunction Encoding by LaRose and Coyle [2020].
Every quantum system is described by its wavefunction ψ which also defines the measurement probabilities. By
expressing that the wavefunction is used to encode data, it is therefore implied that amplitudes of the quantum
system are used to represent data values.

Context. A numerical input data vector (x0, . . . , xn−1)T must be encoded for an algorithm.

Solution. Use amplitudes to encode the data. As the squared moduli of the amplitudes of a quantum state must
sum up to 1, the input vector needs to be normalized to length 1. This is illustrated in Fig. 5 for a 2-dimensional
input vector that contains 2 data points. To associate each amplitude with a component of the input vector, the
dimension of the vector must be equal to a power of two because the vector space of an n qubit register has
dimension 2n. If this is not the case, the input vector can be padded with additional zeros to increase the dimension
of it. Using a suitable state preparation routine (see Known Uses), the input vector is encoded in the amplitudes of
the quantum state as follows: |ψ〉 =

∑n−1
i=0 xi |i〉. As the amplitudes depend on the data, the process of encoding

the data (but not the encoding itself) is often referred to as arbitrary state preparation.

00𝑥0 01𝑥1+

𝑋

𝑋

𝑋

1

1
𝑥1

𝑥0

Fig. 5. Amplitude Encoding for 3 data points. The input vector (left) is normalized and represented by the amplitudes in the resulting encoding.
.

Result. A data input vector of length l can be represented by dlog2(l)e qubits - this is indeed a very compact
representation. For an arbitrary state represented by n qubits (which represents 2n data values), it is known that
at least 1

n2
n parallel operations are needed [Schuld and Petruccione 2018]. Current state preparation routines

perform slightly better than 2n operations [Schuld and Petruccione 2018]. However, depending on the data it may
still be possible to realize an encoding in a logarithmic runtime. For example, a UNIFORM SUPERPOSITION can be
created by applying a Hadamard gate to each of the n qubits - which can be done in parallel and thus in a single
step. This represents a 2n-dimensional vector in which all data entries are 1√

n
. Similarly, sparse data vectors can

also be prepared more efficiently [Schuld and Petruccione 2018].
It must be noted that if the output is also encoded in the amplitude, multiple measurements must be taken to

obtain a good estimate of the output result. The number of measurements scales with the number of amplitudes -
as n qubits contain 2n amplitudes, this is costly [Schuld and Petruccione 2018].

Related Patterns. This pattern refines INITIALIZATION. The encoding is more compact (in terms of qubits) than
BASIC, ANGLE or QRAM ENCODING.
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Known Uses. AMPLITUDE ENCODING is required by many quantum machine learning algorithms [LaRose and
Coyle 2020]. Another example is the algorithm of Harrow, Hassidim and Lloyd [Harrow et al. 2009] (often referred
to as HHL algorithm) for solving linear equations. The pre-condition that the data values can be normalized is a
common assumption in machine learning [Schuld et al. 2017], e.g. in support vector machine.

There are various ways to construct a state preparation routine for this encoding. For example, Plesch and
Brukner [2011] and Iten et al. [2016] use the Schmidt Decomposition. For the latter, an implementation in
Mathematica was presented [Iten et al. 2019]. Shende et al. [2006] presented an alternative way to construct
an arbitrary quantum state which was implemented by Qiskit [Qis 2020]. PennyLane offers a loading routine for
AMPLITUDE ENCODING [Pen 2020]. The library also includes an arbitrary state preparation routine that uses the
algorithm proposed by Möttönen and Vartiainen [2005]. The state preparation routine by Möttönen and Vartiainen
[2005] requires an exponential number of operations to encode 2n data values. Q# provides functionality to
compute a state preparation routine that approximates the desired amplitude encoding [QSh 2020].

4. RELATED WORK

Our patterns are based on the concept of patterns by Alexander et al. [1977] who introduced patterns for
documenting best practices in the domain of buildings. Since then, the concept has been adapted by various other
areas and is especially popular for the domain of software [Coplien 1996]. Leymann [2019] already presented
patterns for quantum algorithms that we reviewed in Section 3. In this work, we extend the brief pattern format that
was used by Leymann [2019] and present three patterns for the encoding of data. To our knowledge, no other
patterns for the domain of quantum computing exist.

Perdrix [2007] introduces quantum patterns and types that are part of a formal quantum programming language.
But these are not patterns in the sense of Alexander et al. [1977] as they only reflect technical details instead of
describing a problem or context.

Several authors discussed the process of loading data into a quantum computer and the implications on runtime.
Biamonte et al. [2017] refer to it as input problem as data can not always be loaded efficiently. Aaronson [2015]
examines loading data for the HHL algorithm for solving linear equations. He points out that the logarithmic runtime
for this algorithm can only be achieved if the AMPLITUDE ENCODING of the data can be prepared in logarithmic
time. He concludes that this is a general drawback for algorithms that use this encoding, which we also emphasize
in our pattern for this encoding.

Salm et al. [2020] consider given input data to support the selection of concrete quantum algorithm implementa-
tions and suitable quantum computers for execution. Thereby, they are estimating the required number of qubits
and sequentially executable gates of an implementation depending on the size of the input data.

Yan et al. [2016] review different quantum representations for quantum image processing. In particular, BASIS

ENCODING and ANGLE ENCODING are used in various representations. They outline similarities, applications, and
drawbacks of the representations but do not draw general conclusions for data encodings.

Schuld and Petruccione [2018] as well as LaRose and Coyle [2020] define various data encodings for quantum
computing. We refer to these definitions in our data encoding patterns and visualize them in greater detail. LaRose
and Coyle [2020] also compare data encodings in the context of classification with quantum computers. They show
that in a noiseless setting, different data encodings lead to different decision boundaries that can be learned by a
quantum classifier. While they discuss the findings for quantum classifier, they do not consider implications for
data encodings in general. In particular, LaRose and Coyle [2020] do not consider BASIS ENCODING as these are
not common for quantum classifiers.

Schuld and Killoran [2019] point out how data encodings and kernels in machine learning are related. They show
that an input encoding (that maps a numerical input value into the high dimensional vector space of a quantum
system) defines a quantum kernel. They refer to a specific encoding as a quantum feature map φ and point out that
different encodings lead to different values of the inner product between the encoded data values. Very recently,
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there is active research about learning suitable data encodings for quantum machine learning [LaRose and Coyle
2020; Lloyd et al. 2020]. Here, we depict a more general view on encodings and do not focus on machine learning.

5. CONCLUSION AND FUTURE WORK

In this paper, we formulated three common data encoding as patterns. In order to explain ’how’ the encoding is
realized, we described and visualized it with a sketch. In the result section, we outlined consequences (required
qubits, runtime of the encoding process, etc.) and thus elaborate ’why’ a particular encoding should be chosen. We
conclude that there is not ’the’ best encoding for quantum computation addressing different problems on current
devices. If arithmetic computations shall be performed, a digital encoding (e.g., BASIS ENCODING or QUAM) may
be preferred. To store as much data as possible in a small number of qubits, a compact encoding like AMPLITUDE

ENCODING may be the best choice. However, it must also be taken into account that the state preparation for
AMPLITUDE ENCODING is costly in terms of operations. Other encodings (e.g. ANGLE ENCODING) exists for which
state preparation can be done by only few operations, but which are not optimal in the number of required qubits.

We plan to collect more patterns for quantum computing. We will investigate other encodings mentioned in the
literature [Leymann and Barzen 2020a; LaRose and Coyle 2020; Schuld and Petruccione 2018]. In addition, we are
extending our pattern repository [Leymann and Barzen 2020b; Weigold et al. 2020] to support quantum computing
patterns by including mathematical formulas and quantum gates. The presented patterns will contribute to improve
the estimation of required quantum resources for quantum algorithm implementations [Salm et al. 2020].
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