
Building a Pattern Language for Serverless Architectures
LEANDRO RODRIGUES DA SILVA, Universidade de São Paulo
JOÃO DANIEL, Universidade de São Paulo
ALFREDO GOLDMAN, Universidade de São Paulo

Serverless computing is a powerful paradigm that is becoming popular in the software engineering community. However, there is still a lack
of knowledge in how to design and implement robust architectures using serverless services. To assist practitioners to take better informed
decisions regarding serverless, we intend to create a useful tool for reasoning about serverless architecture. In this work, we present a
novel serverless pattern language, as a means to such goal. The pattern language comprehends 28 patterns, classified among 5 groups:
availability, orchestration and aggregation, communication, event management and authorization.

Categories and Subject Descriptors: D.2.11 [Software Engineering] Software Architectures

General Terms: Design

Additional Key Words and Phrases: Architectural patterns, serverless, pattern language

ACM Reference Format:

da Silva, L., Daniel, J., Goldman, A. 2022. Building a Pattern Language for Serverless Architectures. HILLSIDE Proc. of Conf. on Pattern Lang.
of Prog. 29 (October 2022), 12 pages.

1. INTRODUCTION

Over the years, the way we architect software has been changing. Since the problems to be solved have become
more and more complex, different approaches have been adopted to design complex systems, one of them being
the service-oriented architecture (SOA) [Sbarski et al. 2022].

SOA is an architectural approach in which developers create autonomous services that each have their own
well-defined responsibilities and communicate between them to perform tasks. The modern applications based in
SOA are often referred to as microservice architecture. These applications are composed of services that are
small, standalone, fully independent built around a particular business purpose [Sbarski et al. 2022]. This model
emerged as an alternative to solve the problems of monolithic architectures, aiming to make it easier to maintain
or rewrite software [Newman 2015].

The conventional way of building microservices is based on a server approach, where developers create servers
that will be running in a data center or in the cloud. With this approach, engineers will need to be responsible for
managing, patching and maintaining these servers. Also, this leads to a possible high-cost hosting strategy, where
you pay for each second the application is running, no matter if it’s doing a job or just waiting for requests.

Serverless services can be defined as a specific type of service where the server infrastructure is hidden from
the developer and incurs costs only by usage [Sbarski et al. 2022]. In this model, a cloud platform is responsible

L. da Silva, rodriguesleandro@usp.br, Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matão, 1010, São
Paulo; A. Goldman, gold@ime.usp.br, Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matão, 1010, São Paulo;
J. Daniel, jotaf.daniel@gmail.com, Faculty of Engineering, Free University of Bozen-Bolzano, via Cassa di Risparmio, 21, 39100, Bozen-Bolzano.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary version of this paper was
presented in a writers’ workshop at the 29th Conference on Pattern Languages of Programs (PLoP). PLoP’22, October 17-24, Virtual Online.
Copyright 2022 is held by the author(s). HILLSIDE 978-1-941652-18-3



for dealing with provisioning, managing and maintaining the infrastructure on behalf of the server, so that the
developers are responsible for plugging the business code into this structure. However, there is still a gap in the
area of understanding and formalizing serverless architectures. A useful way to structure architectural decisions is
to adopt a set of patterns and build a pattern language.

In order to help developers identify the most appropriate patterns to use, we aim to identify and characterize
these patterns and its relationships in a pattern language. To analyze these patterns, we selected a set of them
from different literature and analyzed its relationships using the approach suggested by Chris Richardson’s
pattern language for microservices [Richardson 2018]. The relationships proposed by Chris Richardson are:
motivating/solution patterns, patterns that are solutions to the same problem, and generic/specific patterns.

2. BACKGROUND

Before the emergence of cloud computing, the most common way of building and deploying software was the
on-premises model, meaning that the owners of the software were responsible for buying, setting, managing and
maintaining the hardware that would host the application. After that, a new model arrived: cloud computing.

Cloud computing is the on-demand delivery of IT resources over the internet [Sbarski et al. 2022]. A service
provider manages the infrastructure and offers access to resources on top of it over the Internet. The developers
can access it through an Application Programming Interface (API). All the complexity of managing hardware and
space is abstracted by the providers, such as AWS, Azure and Google Cloud. Cloud computing has several
classifications, being the most popular:

—Infrastructure as a Software (IaaS): Offers fundamental resources to build software, like computing, storage,
network and virtual servers [Wittig and Wittig 2015].

—Platform as a Service (PaaS): Provides a platform to deploy software, with hardware, software and infrastruc-
ture, without the cost and complexity with dealing with these resources [Wittig and Wittig 2015].

—Software as a Service (SaaS): Combines the two previous classifications. Offers software and applications
through the cloud. The clients do not need to deal with installing, managing or upgrading these applications
[Wittig and Wittig 2015].

Serverless is a cloud-native execution model for building and running applications without server management.
In this model, the cloud platform is responsible for dealing with provisioning, managing and maintaining the
infrastructure on behalf of the server, so that the developers are responsible for plugging the business code into
this structure.

In this execution model, a concept commonly used is Function as a Service (FaaS). FaaS is a type of cloud
service that allows developers to deploy small applications (or parts of a bigger one). The cloud platform receives
a package containing the code and wraps it into a stateless container, abstracting the logic of allocating resources,
scheduling tasks, setting up protocols and mainly, setting up a server. In services like this - such as done by AWS
Lambda - the cost of maintaining an application is tied to how many executions a function receives. In this work,
we’ll refer to structures that run in FaaS services simply by functions. Also, other built-in solutions are offered as
serverless solutions, such as databases, API gateways, data lakes, queues, etc.

3. MATERIALS AND METHODS

Given the novelty aspect of Serverless and its patterns, in this work we aim to provide to practitioners a useful
tool to better understanding patterns of serverless architecture. With that, there might be an improvement in the
decision-making for the adoption of serverless solutions in an application’s architecture.

To achieve such goal, in this work, we present a pattern language for the serverless architectural style. To craft
the pattern language, first we conducted an exploration to come up with a list of serverless patterns. Such list was
material for the grouping and relating that lead to a novel pattern language for serverless.

Building a Pattern Language for Serverless Architectures — Page 2



Initially, we explored either gray and white literature to create a list of patterns documented for serverless
architecture. The complete list of patterns with their descriptions can be found in Appendix A. The main source of
knowledge was Davide Taibi and Niederkofler [2020], which presented a collection of 32 serverless patterns along
with a classification for them: "availability", "orchestration and aggregation", "event management", "communication",
and "authorization". There were other interesting gray literature resources, such as Daly [2018]. Nonetheless, the
gray literature presents patterns and practices considerably more coupled with cloud providers.

Once we gathered a comprehensive list of serverless patterns, with a few classifications, we searched for
relationships between different patterns. Richardson [2018] played a major role as inspiration for it, with "Motivating
pattern/Solution pattern", "Solution A / Solution B", and "General / Specific". We explore further details about
our adoption of these relationships in Subsec. 4.1. The classification and the relationships were the base for the
creation of the proposed serverless pattern language, described in Subsec. 4.1.

The patterns were reviewed and filtered using the following criteria to disregard:

—Out-of-date: patterns that were tied to a limitation of a cloud platform that is no more a reality.
—Out-of-scope: patterns that were specified to be used by cloud platforms’ back-end.
—Platform-specific: patterns that are tied to a specific cloud platform.

Using these criteria, we disregarded 1 pattern for being out-of-date, 1 for being platform-specific and 2 for being
out-of-scope.

4. SERVERLESS PATTERN LANGUAGE

4.1 Language

In this section, we propose our pattern language for serverless architectures. To do so, we’re going to analyze the
relationships between patterns illustrated in Figure 1. The patterns are divided using the categories proposed by
[Davide Taibi and Niederkofler 2020].

The main goal of this analysis is to relate patterns in a way that a practitioner that will apply these patterns
can: a) Observe the trade-offs: Analyze the trade-offs regarding each decision. And b) Combine patterns: use
both patterns in a combined way to produce a more powerful and reusable solution. Also, we categorized these
patterns in subsets as the ones proposed by Davide Taibi and Niederkofler [2020].

We’ll relate the patterns in our language using the relationship types proposed by Richardson [2018]:

—Motivating and solution patterns: relates a pattern X to a pattern Y, where the solution of X motivates a new
problem solved by Y.

—Solutions to the same problem: relates a pattern X to a pattern Y, where both patterns share a context and
propose different solutions to the same problem.

—Generic and specific patterns: relates a pattern X to a pattern Y, where X is a specification of Y for a given
context.

(1) Bulkhead as alternative to Circuit-Breaker: These two patterns propose solutions to the problem of having a
component that is a single point of failure in a system. Bulkhead does this with a replication approach, having
multiple instances of the component in separate pools. Circuit-breaker uses another way to deal with that:
isolating the broken component while it recovers, without replication.
Use case: Say you’re building an e-commerce back-end service that fetches and returns offers from a database.
To do so, it provides endpoints to serverless functions to clients to retrieve this data. Since this component can be
a single point of failure for this e-commerce website, you wish it to be as much available as possible. You could
choose to provide these functions using the Bulkhead pattern, meaning that you would provide different pools
of functions to different clients, replicating them in different and isolated pools, so that a failed pool would not
impact all the clients. On the other hand, you could implement a Circuit Breaker using a state-machine manager

Building a Pattern Language for Serverless Architectures — Page 3



Fig. 1. Diagram containing a pattern language for serverless architectures

Building a Pattern Language for Serverless Architectures — Page 4



(e.g., AWS Step Functions, Azure Functions), so that you could prevent failing functions to be called when
it’s recovering from a catastrophic event. Both solutions would fit for the purpose, and could be implemented
together to achieve best results. See Figure 2.
Trade-off Analysis: Bulkhead is a simpler solution to implement but leads to an increased cost, since it provides
replicated functions to offer availability. Circuit-Breaker, by the other side, provides a non-trivial solution, but the
cost will be only an extra function that will manage the state of the circuit.

Fig. 2. Bulkhead and Circuit-Breaker patterns

(2) Read-heavy Report Engine as motivation to Responsibility Segregation: Read-heavy Report Engine
depends on Responsibility Segregation in its essence. The first one needs the read operations to be fully
separated of write operations, so that it can scale each one properly to provide a powerful read engine for heavy
workloads.
Use case: Imagine you’re building a social network back-end service that deals with storing and providing the
posts of the feed to a user. To do so, you created serverless functions that will read and write the data to a
database. By following the Pareto’s principle, you could implement the Read-heavy Report Engine pattern and
properly scale each of the functions to execute each type of task, for example, giving more resources to read
functions that to write functions. To do so, you need that this logic to be precisely separated, as proposed by
Responsibility Segregation pattern, by having separated functions for read and write operations. See Figure 3.

(3) Eventually Consistent as motivation to Data Streaming: Eventually Consistent can make usage of Data
Streaming solutions as the core method to replicate data across the multiple databases, specially when dealing
with large volumes of data.
Use case: Suppose you’re building a social network back-end service that stores the user data, such as name
and photo. This data can be used to different services, such as by the one that returns the user profile to a web
client or by the message chat service. To have this data available to all the services, you could have distributed
databases, one per service and replicate the data it all over this databases, applying the Eventually Consistent
pattern. To do so, a smart way would be to use a streaming service (e.g., AWS DynamoDB streams) that triggers

Building a Pattern Language for Serverless Architectures — Page 5



Fig. 3. Read-heavy Report engine and Responsibility Segregation patterns

an event whenever a row of the table is updated, and then send it to a function that replicates this data across
the other databases. See Figure 4.

(4) Externalized State as motivation to Data Streaming: Using Data Streaming is a powerful way to keep the
state of Lambdas up to date in order to guarantee no inconsistent states.
Use case: Say you’re building a game in which the user score needs to be shared by both, the game match and
the global rank, and you have each of these components separated in two services. You probably want that the
global to be updated with the current score of the game, so you can use Data Streaming services (e.g., AWS
Kinesis) to have an Externalized State of the game match execution. See Figure 5.

Fig. 4. Eventually Consistent and Data Streaming patterns

Building a Pattern Language for Serverless Architectures — Page 6



Fig. 5. Externalized state and Data Streaming patterns

(5) Thick Client as alternative to Gateway These two patterns solve the same problem: providing access to
external clients to back-end services. Although, they are antagonists in the sense that Thick Client removes the
abstraction that Gateway imposes with the top-layer functions that hides the endpoints of internal services.
Use Case: Imagine you’re building an API to a web front-end music app. This API will have a serverless function
that will fetch and return songs titles from a database. To access this API, the client can do this by calling an API
Gateway endpoint or by directly invoking the function (Thick Client). In the first way, the clients will just need to
know a single endpoint and the gateway will be responsible for routing the requests. In the second one, the
clients will need to know how to properly invoke the function. See Figure 6.
Trade-off Analysis: Thick Client provides both lower latency and costs than Gateway, since it removes all
intermediary layers between the client and the services, with the cost of increasing the complexity in client’s
code and potential security issues.

(6) Internal API as alternative to Internal Handoff: Internal API and Internal Handoff have similar solutions: a
client calls directly the function, without an API Gateway over it. They differ in the type of request they use.

Fig. 6. Thick Client and Gateway patterns

Building a Pattern Language for Serverless Architectures — Page 7



Internal API proposes the usage of a synchronous HTTP request, while Internal Handoff proposes the usage of
an asynchronous event.
Use Case: Suppose you’re building a back-end system to serve an e-commerce. One of the tasks is to
implement the payment service of the website. To do so, you can have a serverless function that receives that
user’s card digits and returns if the payment was concluded successfully. Since this is a complex operation
that needs to call external services, such as the bank service, the user cannot wait for this task to finish, so
you could call this function by using an asynchronous event, such as proposed by the Internal Handoff pattern.
With this, the request is sent, the payment task is executed, and the status will be returned at some point to the
client through a message broker (e.g., AWS SQS, AWS SNS). On the other hand, you also need to implement a
shipment price calculator. In this case, the client needs to know the price as fast as possible, so that he can
finish the checkout. In this case, the usage of Internal API would fit better, since it would call the back-end
shipment calculator function using a synchronous request and will return it to the front-end as soon as possible.
Trade-off Analysis: Calling synchronously a function is a better approach when the client needs a response
instantly, such as in a web interface, while calling it asynchronously is a good choice if long tasks are going to
be executed. Also, asynchronous calls lead to a more decoupled interaction. See Figure 7.

(7) Fan-in/Fan-out as alternative to Function Chain: Both patterns solves the problem of running long tasks in
functions, but differ in the kind of problem they can be used to solve.
Use case: Say you’re building an image processing software that improves the quality of each pixel of an image.
To do so, you could break this task by sending each row of pixels of the image to a different function, and then
aggregate the final result in a final image. This is a case where Fan-in/Fan-out pattern is useful. However, there
are some cases where breaking the tasks in parallel executions can be hard. Imagine now that you’re building
an e-commerce payment service and you have two functions to: 1) Performs the payment and 2) Send the
tracking ID via email. Breaking this task into these two executions in parallel could be tough and problematic,
since a failure in performing the payment would need to stop the execution of the second task before it finishes.
In this case, a sequential execution, such as proposed by Function Chain would be much safer.See Figure 8.
Trade-off Analysis: Fan-in/Fan-out is a good pattern to deal with tasks that can be broke in parallel subtasks,

Fig. 7. Internal API and Internal Handoff patterns

Building a Pattern Language for Serverless Architectures — Page 8



such as multiple data searched. Function Chain works for subtasks that can’t be executed in parallel, when the
result of a function depends on the previous execution.

Fig. 8. Fan-in/Fan-out and Function Chain patterns

(8) Fan-in/Fan-out and Function Chain as specification of State Machine: The three patterns acts on solving
the problem of orchestrating long tasks. The State Machine pattern can be implemented using at least one of
them, with the complexity of dealing with the state of the application, as done by AWS Step Functions.
Use case: Imagine you’re building a food delivery app. The steps to order some food can be break in some
sequential (Function Chain) and parallel (Fan-in/Fan-out) steps, using a state-machine to control the flow in
the graph. For example, you could break the sequential steps in: 1) receiving the order and 2) executing the
payment. If the payment is approved, you can break the execution in parallel steps like: 1) notifying the restaurant
about the order and 2) requesting for a deliveryman to get the order in the restaurant. If the payment is denied,
you can notify the client about the error. State-machine managers (such as AWS Step Functions) helps in the
management of workflows, allowing to define how the data flows and how exceptions are treated during an
execution. See Figure 9.

(9) Gatekeeper as alternative to Valet Key: Both patterns are similar and solves the same problem: dealing with
authorization to securely call a restricted service. Gatekeeper does this by abstracting the credentials gathering
from the client, leaving it to be a responsibility of the API Gateway. Valet Key lets to the client the responsibility
of getting the authorization headers from an authorizer function and attach them to the requests.
Use case: Suppose you own a database of user data and need to expose it to other teams of your company
securely. You can do this using a serverless approach using the Gatekeepr pattern, that simply exposes the
database through an API Gateway and this gateway would be responsible for getting the authorization token

Building a Pattern Language for Serverless Architectures — Page 9



Fig. 9. Fan-in/Fan-out, Function Chain and State Machine patterns

by calling an authorizer function. Another way to do that would be to directly expose this function and let your
clients be responsbile for calling it and getting the authorization token, removing the extra layer and getting
some latency and cost decrease by adding some more responsibility to the client. See Figure 10.
Trade-off Analysis: Calling an additional function adds one extra layer of complexity and cost, but gives more
control and flexibility to the system.

(10) Frugal Consumer as alternative to Queue-based Load Leveling: Both patterns are similar and solves the
same problem: dealing with non-scalable back-ends. They differ in the way the client interacts with the throttling
mechanism: the first one uses a function as entry point, while the second one uses the queue.
Use case: Say you’re building a front-end app that needs to call a non-scalable external API that throttles
huge amounts of requests. You could work around this scalability problem by using either Frugal Consumer or
Queue-based Load Leveling patterns. Both would work fine, with the difference that the last one is based on a
message delivery request, while the first one is based on a direct function call. Both patterns would work in the
same way, limiting the rate of messages delivered to the limiting service. See Figure 11.
Trade-off Analysis: Calling a function adds one extra layer of complexity and cost, but makes it more general,
making possible the extension to HTTP of event-based clients interactions. By the other side, removing this
layer makes it specific to interactions using messages.

(11) Polling Event Processor as specification of Periodic Invoker: The core logic of Polling Event Processor
makes use of Periodic Invoker in order to check for updates in external systems.
Use case: Imagine you’re building a service that needs to summarize the data about the weather of the last
month. To do so, you extract this data from a public weather API. This task is executed monthly, and it provides
no event-based API, so a solution such as Polling Event Processor is required. You can define a schedule (such

Building a Pattern Language for Serverless Architectures — Page 10



Fig. 10. Gatekeeper and Valet Key patterns

Fig. 11. Frugal Consumer and Queue-based Load Leveling patterns

as offered by AWS Event Bridge) to start a function execution once in a month, fetch and extract this data. See
Figure 12.

Fig. 12. Polling Event Processor and Periodic Invoker patterns

Building a Pattern Language for Serverless Architectures — Page 11



5. RELATED WORKS

Davide Taibi and Niederkofler [2020], through a multivocal literature review, selected and listed the state of the art
of serverless patterns from white and gray literature. The paper lists several patterns, describing the problem solved
and the proposed solution of each one. Also, the patterns are separated into 5 categories, namely orchestration
and aggregation, event management, availability, communication, and authorization. We aim to analyze how
these patterns can work together to compose robust systems, and also perform trade-off analysis to improve the
decision-making process for engineers.

Sbarski (2022) [Sbarski et al. 2022] lists serverless patterns and their use cases in the industry. Also, this work
shows the application of them in the context of the most used cloud-platform nowadays, Amazon Web Services
(AWS), giving a highly practical approach. In this work, we plan to analyze these patterns in a more general
approach.

Jeremy Daly’s blog [Daly 2018] describes, with intuitive diagrams, the state-of-the-art of serverless patterns
being used daily by developers.

Also, Richardson [2018] lists lots of microservices patterns that can be translated to the serverless paradigm.
The blog posts are a fast-access source of information about pattern, being the main source for practitioners.

6. CONCLUSION

In this paper, we presented a list of patterns from different types of literature and built a pattern language to relate
them. To describe them, we based our analysis in the context they apply, the problem they solve and solution
they propose. After that, we could build the relationships between them based on which way they relate. We also
described a trade-off analysis between patterns that are solutions to the same problem. After that, we could show
a diagram that makes it easier and intuitive to use as a reference to practitioners that aim to build components
using a serverless architecture.

Although we could build a pattern language, we believe that it can be improved with a deep dive into some
points, such as: understanding the intersections between categories and understanding how existing microservice
patterns can be translated to the serverless paradigm.

Finally, we believe that this work is useful for researchers, software engineers and software architects as a tool
in the decision-making process of developing a serverless system. For future works, we intend to further specify
the relationships between serverless patterns, as well as to assess the level of maturity practitioners have on the
subject, and the impacts of such pattern language have on the practice.

REFERENCES

Jeremy Daly. 2018. Serverless Microservice Patterns for AWS. (2018). https://www.jeremydaly.com/
serverless-microservice-patterns-for-aws/

Claus Pahl Davide Taibi, Nabil El Ioini and Jan Raphael Schmid Niederkofler. 2020. Patterns for Serverless Functions (Function-as-a-Service):
A Multivocal Literature Review. (2020). https://www.scitepress.org/Papers/2020/95785/95785.pdf

Sam Newman. 2015. Building Microservices (1st ed.). O’Reilly Media.
Chris Richardson. 2018. Microservices patterns: with examples in Java. Manning.
Peter Sbarski, Yan Cui, and Ajay Nair. 2022. Serverless Architectures on AWS (2nd ed.). Manning.
Andreas Wittig and Michael Wittig. 2015. Amazon Web Services in Action (1st ed.). Manning.

Received August 2015; revised September 2022; accepted October 2022

A. PATTERNS

Copyright 2022 is held by the author(s). HILLSIDE 978-1-941652-18-3

Building a Pattern Language for Serverless Architectures — Page 12

https://www.jeremydaly.com/serverless-microservice-patterns-for-aws/
https://www.jeremydaly.com/serverless-microservice-patterns-for-aws/
https://www.scitepress.org/Papers/2020/95785/95785.pdf


Table I. List of the patterns we considered to build the relationships
Read-heavy Report Engine [Davide Taibi and Niederkofler 2020][Daly 2018]
Bulkhead [Davide Taibi and Niederkofler 2020]
Circuit-Breaker [Davide Taibi and Niederkofler 2020][Daly 2018]
Function Warmer [Davide Taibi and Niederkofler 2020][Daly 2018]
Eventually Consisted [Davide Taibi and Niederkofler 2020][Daly 2018]
Aggregator [Davide Taibi and Niederkofler 2020][Daly 2018]
Fan-in/Fan-out [Davide Taibi and Niederkofler 2020][Daly 2018]
Function Chain [Davide Taibi and Niederkofler 2020]
State Machine [Davide Taibi and Niederkofler 2020][Daly 2018]
Data Lake [Davide Taibi and Niederkofler 2020]
API Gateway [Davide Taibi and Niederkofler 2020][Daly 2018]
Internal API [Davide Taibi and Niederkofler 2020][Daly 2018]
Router [Davide Taibi and Niederkofler 2020][Sbarski et al.

2022][Daly 2018]
Anti-corruption Layer [Davide Taibi and Niederkofler 2020][Sbarski et al. 2022]
Frugal Consumer [Davide Taibi and Niederkofler 2020][Daly 2018]
Queue-based Load Leveling [Davide Taibi and Niederkofler 2020][Daly 2018]
Thick Client [Davide Taibi and Niederkofler 2020][Sbarski et al. 2022]
Priority Queue [Sbarski et al. 2022]
Externalized State [Davide Taibi and Niederkofler 2020]
Data Streaming [Davide Taibi and Niederkofler 2020][Sbarski et al.

2022][Daly 2018]
Publish/Subscribe [Davide Taibi and Niederkofler 2020][Daly 2018]
Distributed Trigger [Davide Taibi and Niederkofler 2020][Sbarski et al.

2022][Daly 2018]
Responsibility Segregation [Davide Taibi and Niederkofler 2020]
Internal Handoff [Davide Taibi and Niederkofler 2020][Daly 2018]
Periodic Invoker [Davide Taibi and Niederkofler 2020]
Polling Event Processor [Davide Taibi and Niederkofler 2020]
Gatekeeper [Davide Taibi and Niederkofler 2020][Daly 2018]
Valet Key [Davide Taibi and Niederkofler 2020]

Building a Pattern Language for Serverless Architectures — Page 13


	Introduction
	Background
	Materials and Methods
	Serverless Pattern Language
	Language

	Related Works
	Conclusion
	Patterns

