
1

Organizational Patterns: Looking Back Nearly 30
Years

Neil B. Harrison

Department of Computer Science
Utah Valley University

Orem, Utah, USA
neil.harrison@uvu.edu

Abstract—Since patterns of the dynamics of organizations

were introduced, they have had an enduring impact on the
practices of software development. They have influenced the
notable software practices such as Scrum and Extreme
Programming, and Agile software development in general. The
main work, Organizational Patterns of Software Development has
been widely cited. It continues to be cited in academic works even
to this day. The patterns appear to have had the greatest impact
on agile development processes and the dynamics of
communication and collaboration. However, they also appear to
have had some influence in a broad range of other areas.

Keywords—Patterns, Organizational Patterns, Agile Software
Development, Scrum

I. INTRODUCTION
The human dynamics of software development

organizations are an important factor contributing to or
hindering the success of the team. These dynamics include the
roles individuals play, the patterns of communication, the
amount of communication, leadership and mentoring, and
others. Successful practices in these areas have been captured as
Organizational Patterns.

Patterns of the dynamics of organizations were presented at
the first conference of Pattern Languages of Programs in 1994
[1]. The patterns were based on numerous studies of software
development organizations, including a notable study of
Borland’s software development organization [2]. These studies
revealed that the structure of organizations and the
communication dynamics in the teams play a major role in the
productivity of the teams.

Continued studies of organizations yielded further patterns
and information about organizational dynamics [3, 4]. Jim
Coplien and Neil Harrison brought all the patterns together in
“Organizational Patterns of Agile Software Development” [5].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission. A
preliminary version of this paper was presented in a writers' workshop at the 30th
Conference on Pattern Languages of Programs (PLoP). PLoP'23, October 22-25,
Allerton Park, Monticello, Illinois, USA. Copyright 2023 is held by the
author(s). HILLSIDE 978-1-941652-19-0

The Organizational Patterns book presents 104 patterns,
divided into four distinct, but not completely separate pattern
languages. They reflect different ways in which human
dynamics play roles in organizations. These languages are
“Project Management”, “Piecemeal Growth”, “Organizational
Style”, and “People and Code”. The first deals with how to set
up an organization, including roles and interactions among
them. The second is about the fact that an organization evolves
during the course of the project. People come and go, roles
emerge, and the functions of roles may change. The third
language is all about how social forces impact the code – and
vice versa.

The robust sales of the book indicated that it has had some
influence on the software development community at large, and
perhaps in realms beyond software development. In this paper, I
have attempted to understand the nature of their impact. I
examined the references to the patterns as well as current and
past software methodologies. In the following sections, I discuss
how these patterns appear to have influenced the software
development landscape. Organizational patterns from the
aforementioned book [5] are given in italics, and thumbnail
definitions are provided in an appendix to this paper.

II. HISTORICAL BACKGROUND
Patterns never claim to be novel work. Indeed, they focus on

capturing practices that have been proven to work. As such, the
organizational patterns build on a legacy of effective teams.

Since its inception, software development has likely often
been done in groups of two or three people working closely
together. Richard Gabriel reports an early record of
programming in pairs that dates from 1957 [6].

Mel Conway studied how committees invent new things and
found that the organizational structure of the team tended to
match the structure of the artifact being invented [7]. Coplien
and Harrison captured this as the organizational pattern,
Conway’s Law. This pattern has been much discussed and
debated.

One of the early works that explored the impact of people
and organizations on the production of software was “The
Mythical Man-Month.” It was the source of “Brooks’ Law,”
which is commonly portrayed as, “adding people to a late project
makes later.” Coplien and Harrison found organizational
patterns to deal with the reality that people are not

2

interchangeable commodities which can be added to or removed
from projects at will. The most notable of these was probably
Moderate Truck Number; other patterns included
Apprenticeship and Sacrifice One Person.

In 1971 Thomas Allen published the results of years of
studies of engineering organizations in, “Managing the Flow of
Technology” [8]. This work explores the flow of information in
engineering teams, including the impact of physical distance on
information flow. Coplien and Harrison observed similar things,
including the value of informal places for conversations (The
Water Cooler.) Allen also described the value of “gatekeepers”,
which was the inspiration for the pattern of the same name.

In 1980 Barry Boehm published “Software Engineering
Economics” [9]. Boehm had studied many large software
projects in order to determine how to predict software
development effort. The book presented a model of software
development effort based on project size as well as numerous
other factors. However, while Boehm’s research showed team
capability to be a highly significant factor in the effectiveness of
software development, it did not explore the role of human
dynamics of the teams in software development. The
organizational pattern research picked up where Boehm left off:
Cain, Coplien and Harrison found that human dynamics could
play at least as big a role as any of the factors in Boehm’s model.
Studies found several organizations with extremely high
productivity – designated as “hyperproductivity” (see [2], [4].)
These levels of productivity were far above the productivity
measured by Boehm, and were rooted in what became the
organizational patterns, such as levels of communication and
leadership style.

Much of the information in the patterns came from studies
of many organizations, both inside and outside of Bell Labs,
where we worked. In addition, we saw in our own experiences
at Bell Labs many beneficial practices that became patterns.
Many of the practices we used became patterns in the “People
and Code” pattern language. A notable example is Named Stable
Bases.

At the time of the writing of the organizational patterns, there
was a groundswell of movement away from the traditionally
perceived waterfall approach to software development to more
iterative approaches. The Agile Manifesto was written [10].
Scrum [11] and Extreme Programming (XP) [12] were being
developed. These practices and the organizational patterns
influenced each other, although the patterns predated and
influenced many of the practices (see later sections.) At about
the same time, Ward Cunningham wrote the Episodes Pattern
Language [13], which was part of the inspiration for the pattern,
Development Episodes.

III. INFLUENCE ON AGILE PRACTICES
We can see the imprints of many of the organizational

patterns in many Agile practices, both at their start and even
today. As noted above, Agility was coming of age in the mid-
1990s and early 2000s; about the same time the organizational
patterns book was being written, and slightly after the earliest
organizational patterns had been published. While it is difficult
to definitively quantify the effect of the organizational patterns
on Agile methodologies, we see evidence of their impact.

A. The Agile Manifesto
The Agile Manifesto for Software Development, published

in 2001, is a statement of comparative values with respect to
approaches to software development. It is clearly influenced by
the rejection of large methodology-heavy software projects and
the emergence of small episodes of development.

While there is some evidence of influence of the
organizational patterns on the Agile Manifesto, it is limited
primarily because they address different things. The Agile
Manifesto is a statement of values and principles of software
development, while the patterns are solutions to people-related
problems in teams. The two are complementary, but not strongly
overlapping. Note that several of the creators of the Manifesto
were familiar with the organizational patterns, including Jeff
Sutherland, Mike Beedle, Ward Cunningham, and others. (Jim
Coplien was absent from the Manifesto meeting because of a
scheduling conflict.)

There are, however, specific synergistic areas. Here are some
examples where the patterns provide answers or
implementations of the values or principles in the Agile
Manifesto:

- “Individuals and interactions” is the premier value of
the Manifesto. A large number of patterns implement
this value, including Community of Trust, Team Pride,
Matron Role, Engage Quality Assurance, The Water
Cooler, Lock ‘Em up Together, and others.

- Customer collaboration is a value. This is reflected in
the pattern, Engage Customers.

- The Manifesto states that comprehensive
documentation is less valued. Where comprehensive
documentation is still required, the Mercenary Analyst
pattern provides an answer.

- A principle is early and continuous delivery. Patterns
that facilitate this include Incremental Integration and
Named Stable Bases.

- A principle is to trust the team to get the job done. This
is reflected in the patterns Community of Trust and Self-
Selecting Team, among others.

B. Extreme Programming
Extreme programming shows some influence of the

organizational patterns. The influence is most apparent in two
values and one practice:

- Communication: This shows the same influence as
“individuals and interactions” of the Agile Manifesto.

- Courage: This is only possible in a team that has the
pattern Community of Trust. Courage is also embodied
in the pattern, Wise Fool.

- Pair Programming: This practice is based on
Developing in Pairs.

A few practices in XP are somewhat at odds with some
organizational patterns. This indicates that they should be
examined carefully.

3

- Pair Programming may not be the most expedient or
effective approach in all cases. Sometimes it is better to
use the pattern, Solo Virtuoso.

- XP tends to encourage emergent architecture through
refactoring. However, an intentional system
architecture is more robust; see Architecture Team,
Architect Controls Product, and Architect Also
Implements.

- XP encourages detailed unit testing. However,
developers are often blind to their own mistakes. Be
sure to have independent quality assurance, but use the
pattern, Engage Quality Assurance. Also, testing at the
system level matches customers’ needs best. See
Application Design is Bounded by Test Design.

- Onsite Customer can lead to feature creep. It may also
be impractical. The organizational pattern Surrogate
Customer is a workable alternative.

Test-Driven Development (TDD) suggests writing (unit)
tests before writing the associated code. The pattern Application
Design is Bounded by Test Design recommends establishing the
application by designing the tests a usage-centric system-wide
approach.

C. Scrum
Scrum has some of its roots in organizational patterns. In

“Scrum : the Art of Doing Twice the Work in Half the Time”
[11], Jeff Sutherland explains how the organizational studies and
patterns helped shape some of the practices in Scrum. Daily
Scrum meetings came from this work (see pattern: Standup
Meeting).

Sutherland and others have written patterns of Scrum [14].
The book took shape over numerous workshops
(“ScrumPLOP”) held over several years. In these workshops,
the authors formed and reviewed the patterns. The authors
frequently discussed the influence of organizational patterns in
Scrum, and agreed that the organizational patterns are part of the
foundation of Scrum. The Scrum book lists forty of the
organizational patterns part of the complete set of Scrum
patterns. A sample of the organizational patterns that form part
of the foundation of Scrum follows:

- Conway’s Law gives guidance for organizing the
workforce, “partitioned according to the most important
concerns for the creation of value by the enterprise.” It
was rewritten and enlarged in the Scrum patterns.

- Community of Trust is a starting point for all Scrum
organizations. Without it one cannot have functional
relationships between the Scrum Team and the Product
Owner, or between the Scrum Master and the
Development Team.

- It is essential that Scrum Team Members all work
together toward a common Sprint Goal. This unified
approach is built on the organizational pattern, Unity of
Purpose.

- The Scrum pattern Small Teams has roots in the
organizational pattern, Size the Organization.

- The Scrum pattern Self-Organizing Team is closely
related to Self-Selecting Team, although they are not
exactly the same. It also follows the organizational
pattern, Informal Labor Plan. A related pattern is
Developer Controls Process.

- The Scrum Patterns Product Backlog and Sprint
Backlog are implementations of the organizational
pattern, Work Queue.

- The Scrum pattern Daily Scrum is built on the Standup
Meeting pattern. Standup Meeting describes the purpose
and structure of frequent small meetings; Daily Scrum
additionally specifies the frequency of such meetings.

- In Scrum, problems that prevent the team from moving
forward are kept in an Impediment List. Individuals who
are able to resolve these items do so. This is similar to
the organizational patterns, Interrupts Unjam Blocking,
Don’t Interrupt an Interrupt, and Someone Always
Makes Progress. While there is not strong evidence that
these patterns inspired the Impediment List practices, it
is clear that they are related.to each other.

D. Other Use in Practice
The organizational patterns may have had influence in other

software development practices, as well as practices in other
industries. For example, other areas in which social interaction
is significant, such as education, may be rich in the use of
organizational patterns. This is an area for possible future
exploration.

IV. ACADEMIC WORK
The organizational patterns have been the subject of some

attention in academic research as well. The organizational
patterns book has been widely cited in academic papers. We
studied these citations to understand the nature of the academic
impact of the organizational patterns. From this we learned that
the organizational patterns have had a moderate impact on the
field and continues to have some impact.

I limited the investigation to the references to the
organizational patterns book; it is likely by far the best-known
source. Other publications of organizational patterns are much
smaller, and virtually all the patterns in those articles appear in
the book. The citation count of the organizational patterns book
from Google Scholar is currently 525. The most recent citation
(as of May 10, 2023) was March 2023.

In order to understand the areas of influence, I investigated
the topics of the citing papers; see Table 1. This is not an
exhaustive list of paper topics, but it indicates the most common
research topics that reference the book.

4

TABLE I. CITING PAPER TOPICS

Research Topic Frequency of
Occurrence

Agile software development 31
Group dynamics and collaboration 27
Architecture, Design, and Modeling 19
Management, especially project management 15
Technical topics such as tools 15
Distributed software development 15
Communication 13
Scrum 8
Software Engineering 8
Education and teaching 8
Business 7
Ontology of organizational patterns 7
Requirements 6
Organizational structure, including
organization hierarchy 6

Experience 6
Free and Open-Source Software 6
Conway’s Law 6
Systems engineering 5
Pair programming 5
Large-scale agile software 5
Extreme Programming 3
Customer interaction 3
Startups 3
Other miscellaneous topics, including general
papers on patterns 43

Note that some of these categories overlap some. For example,
papers on Agile software development may also discuss Scrum.
Some papers may fit into more than one category. Therefore,
these categories should be considered to indicate only general
trends. We make the following observations:

- It is not surprising that the most frequent topic observed
was agile software development. Note that in spite of
the title of the book, the organizational patterns can be
used in non-agile software development organizations,
as well as non-software organizations.

- The categories of collaboration and communication
certainly have considerable overlap. Collaboration
relates to individuals and groups working together,
while communication refers to the transmittal of
information between individuals and groups. However,
we cannot be sure that the authors of these papers share
the same definitions.

- Distributed development was a common topic among
the papers. At the beginning of the organizational
patterns work, distributed development was still young
and relatively uncommon. There are a few
organizational patterns that specifically apply to
distributed teams, namely Face to Face before Working
Remotely, Standards Linking Locations, and
Organization Follows Location. The recent explosion

of remote work changes the dynamics of teams. This is
an important area for further study.

- Open-source software has become very popular in
recent years. Like remote work, it changes the human
dynamics of software development. There has been
some investigation into this topic, but there is no doubt
much to be learned.

- The number papers on software architecture that cited
the book was significant. One notable paper that
described the key role of organizational patterns in
software architecture [15] mentioned ten different
organizational patterns and explained how they impact
software architecture.

The organizational patterns may have influence in fields
other than software development. They certainly apply to many
different types of organizations, particularly the patterns on
project management, piecemeal growth (or the organization),
and organizational style. The patterns on people and code relate
specifically to software. I did not extensively search literature
outside of the software field but observed little to no evidence of
influence outside of software organizations.

V. CONCLUSIONS AND FUTURE WORK
While this study is limited in scope, it indicates that the

patterns have played a meaningful role in software. I am pleased
with the continuing influence of the organizational patterns on
software development. Of special note is their influence in agile
software development and Scrum.

Further study of the role of organizational patterns in these
areas may be fruitful:

- Distributed software development has changed the way
teams interact with each other. These new ways of
communicating and collaborating demand careful
study. There are certainly new patterns of organizational
dynamics to be mined. However, distributed
development is certainly at odds with some patterns.
Practices of distributed development should be
examined and perhaps changed in order to attain the
benefits of some of the patterns.

- Open-source software presents a new paradigm of
teams. These practices should be examined to
understand the best practices and the patterns used. This
is likely a particularly rich area of study.

- Software architecture continues to have interesting
interactions with teams. It too, is changing, with the
advent of cloud computing. There may be some
implications for the organizational patterns.

- It may be useful to explore the references to
organizational patterns in academic works in more
depth. For example, the papers may reference specific
patterns or sets of patterns.

5

REFERENCES
[1] Coplien, James O., “A Generative Development-Process Pattern

Language.” In Pattern Languages of Program Design, Addison-Wesley,
Reading, MA 1995, pp. 183-237.

[2] Coplien, James O., “Borland Software Craftsmanship: A New Look at
Process, Quality, and Productivity,” in Proceedings of the 5th Annual
Borland International Conference, Orlando, FL, USA, 1994.

[3] Harrison, Neil B., “Organizational Patterns for Teams”, in Pattern
Languages of Program Design 2, Addison-Wesley, Reading, MA, 1995,
pp. 345-352.

[4] Cain, Brendan G, Coplien, James O, and Harrison, Neil, "Social Patterns
in Productive Software Development Organizations." (vol. 2). Annals of
Software Engineering, 1996.

[5] Coplien, J. and Harrison, N., Organizational Patterns of Agile Software
Development, Prentice-Hall, 2005.

[6] Gabriel Richard P., personal communication, sometime in the last 20
years.

[7] Conway, Melvin E., “How do Committees Invent?” in Datamation, 14
(5), 1968, pp. 28-31.

[8] Allen: Managing th eflow of Technology
[9] Boehm, Barry, Software Engineering Economics, Prentice-Hall 1981.
[10] Agile Manifesto: agilemanifesto.org, 2001.
[11] Sutherland, Jeff and Sutherland, J. J., Scrum: the Art of Doing Twice the

Work in Half the Time, Penguin Random House, New York, 2014.
[12] Beck, Kent, Extreme Programming Explained, Addison-Wesley,

Reading, MA, 2000.
[13] Cunningham, Ward, “Episodes: A Pattern Language of Competitive

Development,” in Pattern Languages of Program Design 2, Addison-
Wesley, Reading, MA, 1995.

[14] Sutherland, Jeff, et al., A Scrum Book: the Spirit of the Game, Pragmatic
Bookshelf, 2019.

[15] Booch, Grady, “On Architecture”, in IEEE Software, May-June 2008, pp.
18-19.

6

VI. APPENDIX: PATTERNS REFERENCED

The following organizational patterns were referenced in
this paper:

- Application Design is Bounded by Test Design: Design
the system according to tests that define it.

- Architect Also Implements: System architects should
have recent practical implementation experience.

- Architect Controls Product: The product is defined by
the architecture.

- Architecture Team: Use a team of architects
representing different views of the system.

- Community of Trust: Team member must trust each
other and feel safe in their interactions.

- Conway’s Law: The organization of a team and the
organization of the artifact it invents are isomorphic.

- Developer Controls Process: Developers control the
way they work.

- Developing in Pairs: Developer should often work in
pairs.

- Development Episodes: Divide work periods into
separate dedicated episodes.

- Don’t Interrupt an Interrupt: Fix one critical blocking
issue at a time; don’t get distracted by another issue.

- Fact to Face Before Working Remotely: Remote teams
should meet each other personally first.

- Engage Customers: Closely work with customers
during all phases of the project.

- Engage Quality Assurance: Involve quality assurance in
test design right from the start.

- Gatekeeper: An individual who looks for future trends

- Incremental Integration: Use frequent, small system
builds.

- Informal Labor Plan: Individuals devise their own short-
term plans.

- Interrupts Unjam Blocking: Address blocking problems
immediately.

- Lock ‘Em Up Together: Design teams should physically
work together to craft initial designs.

- Matron Role: A person concerned with the human and
social needs of the team.

- Mercenary Analyst: Engage someone expert in writing
to write documentation.

- Named Stable Bases: Stabilize system interfaces
periodically.

- Organization Follows Location: Distributed teams
organize along geographic boundaries.

- Self-Selecting Team: Allow the team to select its
members.

- Size the Organization: Begin with no more than ten
people on the team.

- Solo Virtuoso: Sometimes a person needs to work
alone.

- Someone Always Makes Progress: When fixing a
blocking issue, try to keep people working on the main
development.

- Standards Linking Locations: Distributed teams should
have unified standards.

- Standup Meetings: Have short meetings; enforce it by
having them standing up.

- Surrogate Customer: In the absence of a real customer,
a team member plays the role of customer.

- Team Pride: The team must feel pride in workmanship.

- The Water Cooler: Provide an informal gathering place
where innovative ideas are born.

- Unity of Purpose: All team members must understand
and share the same goals.

- Wise Fool: A person not afraid to state uncomfortable
facts.

- Work Queue: provide a prioritized list of work items.

	I. Introduction
	II. Historical Background
	III. Influence on Agile Practices
	A. The Agile Manifesto
	B. Extreme Programming
	C. Scrum
	D. Other Use in Practice

	IV. Academic Work
	V. Conclusions and Future Work
	References

	VI. Appendix: Patterns referenced

