The Static Reflection Pattern

Bob Jolliffe
University of Pretoria
bobj@cs.up.ac.za

August 2001

COPYRIGHT (C) 2001, BOB JOLLIFFE. PERMISSION IS GRANTED TO COPY FOR
THE PLOP 2001 CONFERENCE. ALL OTHER RIGHTS RESERVED.

Abstract

Somewhere near the bottom of the food chain of object oriented pro-
gramming, the developer frequently encounters the rock face of a non object
oriented API. This paper describes a specialisation of the Wrapper Facade
[Sch99] [SSRBO0] pattern. Wrapper Facades encapsulate functions and
data provided by ezisting non-object oriented API’s. The Static Reflector
addresses the particular problem of building wrappers which contain func-
tions which take C function pointers as parameters. The pattern makes
use of a static reflection method to facilitate the construction of cohesive,
reusable framework classes which make use of such C functions. I show
that the application of this pattern is surprisingly wide. Though concerned
primarily with the interface between C and C++, the pattern has impli-
cations and applications to other languages as diverse as Java and [incr
Telj.

1 Problem

Many non-object oriented API’s contain functions which arrange for an-
other function (the target function) to be dispatched, perhaps in the con-
text of a new thread or in the future, in response to an I/O, timer or user
interface event. Building object oriented components on top of such APT’s
is complicated by the fact that the target function must be statically de-
clared. There is generally no way to directly specify a member function
of an object instance to be the target of such an API function.

As a motivating problem, consider the problem of implementing a Java
Thread class in a Java Virtual Machine written in C++ using the POSIX
threads API. Java threads have a start() method which causes a new
thread to be spawned to run, with its run() hook method as the thread
entry point. In Java we would create and dispatch the thread like this:

Thread t = new Thread();

t.start();

A starting point might be to collect together the POSIX threads functions
(pthread_create () and family) into a cohesive Wrapper Facade[SSRB00].
It would then be convenient if we could build a C++ implementation as
follows:

class Thread {
public:
Thread() {}
int start()
{
// incorrect - run is not static
return pthread_create(&tid, NULL,
run, NULL);
}
protected:
virtual void* run()
{/* thread function */}

pthread_t tid; //thread id
/* ... other member data for
the thread object */
};

The resulting run() method of Thread instances would have access to
the member data of the instances. We could create new thread classes
by inheriting from the base Thread and simply providing an overloaded
run() method. Unfortunately, the call to pthread _create() is illegal as
the third parameter refers to our run() method, which is not a valid static
C function.

The above code can be modified to compile correctly by simply declar-
ing the run() method as static, but this has a serious drawback. Static
class functions have no direct access to the instance data of the object,
nor can they benefit from inheritance and polymorphism.

2 Context

This problem recurs frequently in the context of building C++ classes
around C functions which take C-style function pointers as parameters.
Such functions are usually scheduling functions of some sort i.e. they
request that another function be dispatched after some event occurs or in
the context of a new thread.

Examples include:

The POSIX threads library The function pthread_create()®, which
is used for creating new threads, has an argument which specifies
the entry function for the new thread. The function prototype is as
follows:

1The Windows beginthreadex() function has a similar form and is also a candidate for
static reflection

The

The

int pthread_create(pthread_t *thread,
pthread_attr_t* attr,
void * (*start_routine) (void *),
void * arg);

The start_routine argument specifies the entry function.

‘Win32 API This interface is rich in its use of function callbacks.
The SetWaitableTimer() function, for example, has an optional
argument to cause an Asynchronous Procedure Call (APC) to be
queued when the timer expires. The argument specifies a pointer to
a C function. An application places itself in an alertable state, such
as in a call to SleepEx(), to receive notification of the event and
dequeue and dispatch the APC.

Tcl C library This library provides a number of useful functions

for creating event-driven applications based around the Tcl Notifier[Ous94].
A commonly used one is Tcl_CreateFileHandler() which has the

form:

Tcl_CreateFileHandler(int fd, int mask,
Tcl_FileProc proc,
ClientData clientdata)

The proc argument is a pointer to a C function. Typically, the
application waits for events in an infinite loop, blocking in calls to
Tcl DoOneEvent ().

Each of the above is characterized by having at least two arguments;
one being a pointer to a C function and the other a general purpose
argument which is passed through to the target function (the void* arg
in pthread_create, the ClientData clientdata in Tcl_CreateFileHandler).
The purpose of this argument is to pass data to the target function.

Such functions are commonly found in system APITs as well as in legacy
C libraries. These functions are important in the implementation of com-
ponents for use in extensible object oriented frameworks. Template and
Hook methods[Pre95] commonly form the metapatterns for such compo-
nents, with the initiating method which makes the call to the C API
scheduling function, being the template method. Hook methods are the
application specific “hotspots” ie. the methods which are dispatched as
a consequence of invoking the template method. They provide the ap-
plication specific behavior. The problem-solution pair description below
illustrates how the impedance mismatch between C and C++ frequently
dictates the use of a third participant in this collaboration, the static
reflector function.

3

Forces

The developer needs to interact with a non object-oriented API for
reasons of efficiency or fine grained functionality. The creation of
Wrapper Facades i.e. clustering cohesive groups of functions into
classes, is a proven good strategy[Sch99] for dealing with this inter-
actiion. Functions which arrange the dispatch of other functions,

such as those described above, present an implementation problem
in creating classes based on Wrapper Facades because the target
functions, in each case, must fall outside of the Wrapper Facade (or
any other) class. The run() method of a thread class, for example,
should form part of the cohesive cluster of functions which operate
on thread objects.

e An important benefit of building object-oriented infrastructure on
top of a non object-oriented API is the encapsulation of data with
the methods which operate on that data. It is therefore important
for the dispatched function to have access to object instance data.
In the thread case above, for example, the thread run() method
should have access to the tid member data.

4 Solution

CAPI
Wrapper Facade
Template Method Scheduler
Function
Hook Method

despatch
Static Reflector

Figure 1: Collaborations

The Static Reflection pattern resolves these forces by providing a mech-
anism for causing the dispatch of an object member function. It does this
by introducing a static method to the collaboration, which is the interme-
diate target of the scheduler function. It makes use of the generic void*
type argument provided by the scheduler functions to send, not explicit

data to the target function, but a reference back to the originator of the
scheduling call (a this pointer in C++). This collaboration is illustrated
in Figure 1.

Applying this pattern to our Java Thread class implementation yields
a solution which resolves the problems encountered earlier:

class Thread {
public:
Thread () {}
int start()
{
return pthread_create(&tid, NULL,
reflect, this);
}
protected:
inline static void reflect(void* id)
{
(Thread*) (id) ->run();
}

virtual void* run()
{/* thread function */}

pthread_t tid; //thread id
/* ... other member data for object */

};

The thread start() method, as before, is just a thin wrapper for the
pthread create() API function. What is different now is that the entry
point of the new thread is the static reflect() function. This function
uses the void* parameter passed to it to find a way back to the thread in-
stance run() method. The run() method is a non-static member function
with access to the Thread instance data.

5 Resulting Context

An important consequence of the Static Reflection pattern is the ability
to build framework objects through inheritance. By making the hook
method virtual in the base class, derived classes need simply to provide
an implementation of the hook method. The reflector in the base class
will ensure that the hook is dynamically bound and despatched.

A desirable consequence of placing the static reflector within the names-
pace of the class is that scoping can be used to make the hook method
protected. Placing the reflector outside of the class would require either
the hook method to be declared public or the reflector to be a friend.

A possible negative consequence of this pattern is the extra overhead
involved with the double dispatch. This overhead is minimized by inlining
the reflector method. Combined with the effects of compiler optimization
the overhead should be negligible.

abstractClass
___________ | nvokes C API
;? gm)le?: ?g) voi d schedul i ng functi onbl
#hook()
concreteClassA concreteClassB
#hook() #hook()

Figure 2: Inheritance

6 Rationale

The task of the static reflector method is to simply delegate to the hook
method of the object which originated the message. The mechanism is
similar to the double dispatch of the Visitor Pattern of [GHIJV95]> By
providing a reflector method to reflect the message back to the originat-
ing object the pattern solution effectively resolve the forces in the given
context:

e Cohesion is achieved, because we can include our target function
among the other Wrapper Facade functions which act upon the ob-
ject.

e Access to encapsulated data is achieved, because the target function
is a non-static member function of the class.

7 Examples

The Java thread example in the previous section is an example of a syn-
chronous application of the Static Reflector pattern. The pattern is also
used in this way in [SSRBO00] to implement a threaded TCP service han-
dler. Another example from the POSIX threads API is in the installation
of thread exit handlers with pthread_cleanup_push().

The pattern is more commonly seen in the context of asynchronous,
event-driven scenarios. In this section I describe two such cases: one using
C++ and the Win32 API and the other using IncrTcl and the underlying
Tcl Notifier. Both cases describe the implementation of timer handlers.
I/0O event handlers and GUI event handlers can be constructed using the
same pattern, but the code for timers is shorter.

2In fact it is more like a triple dispatch, where the dispatching of the reflector is separated
by space (a new thread context) or time (an event handler) from the originating call

7.1 Win32 APCs

The Win32 API provides a mechanism known as an Asynchronous Proce-
dure Call (APC)[Mic00]. Threads have an APC queue upon which APCs
are queued when they are due to be scheduled. Threads need to be in
an alertable state for the APCs to be dequeued and dispatched. APCs
are typically used for timer and I/O event handlers and provide an alter-
native mechanism to the WaitForMultipleObjects() family of functions
for demultiplexing and dispatching. APCs are a more explicit event de-
livery mechanism. WaitForMultipleObjects(), like the Unix select()
and poll functions[Ste98], lends itself more to a state-driven rather than
event-driven design[GB99].

In the example below, an APC is used to implement a timer handler.
The template method in this class is the start() method and the hook
method, timedout () is a pure virtual method. Note how the static reflec-
tor method, reflect (), and the timedout () hook are both protected. A
concrete timer class, myTimer, is implemented by providing an implemen-
tation of the timedout () hook.

#include <windows.h>
#include <iostream>
#include <string>

class Timer {

public:
Timer ()
{
thndl = CreateWaitableTimer (NULL, FALSE, NULL);
}
void start(int fire, int repeat)
{
// scale everything up to milliseconds
1liDueTime.QuadPart=-fire*10000;
interval = repeat;
// arrange for Win32 APC to reflector
SetWaitableTimer (thndl, &liDueTime, interval, \
Timer: :reflect, this, FALSE);
}
protected:

// the static reflector function
static VOID CALLBACK
reflect (LPVOID self, \
DWORD dwTimerLowValue, \
DWORD dwTimerHighValue)
{
Timer* id = (Timer*)self;
id->TimedOut () ;
}

virtual void TimedOut() = 0;
HANDLE thndl;

LARGE_INTEGER 1liDueTime;
int interval;

};
class myTimer : public Timer {
public:
myTimer(const string& name = "Anonymous")

:myname (name) {}
// the callback - with access to member data!
void TimedOut ()

{
cout << myname << " timed out" << endl;
}
protected:
string myname;
}
int main()
{
myTimer T1("A Win32 alertable timer"),T2;
cerr << "Starting timers ...\n";

T1.start (3000, 3000);
T2.start (4000, 3000);
// A primitive event loop ...
while(1) {
SleepEx (INFINITE,TRUE) ;
}
}

7.2 [incr Tcl]

Incremental Tcl [incr Tcl] is an object system for the Tcl language created
by Michael J. McLennan of Lucent Technologies|McL93]. Being an inter-
preted language, the mechanics are considerably less sophisticated than
C++. [incr Tcl] supports classes, scoping and inheritance, but has no
notion of polymorphism and virtual methods. The underlying event de-
multiplexing and dispatching mechanism is based on the C language Tcl
Notifier, which necessitates the application of the Static Reflector pattern
to build notifiable, event driven objects. The form is slightly different
from the previous examples, but the pattern is the same.

class Timer {

Note: the after command causes
the reflex scriptlet to be
evaluated at global scope after
the elapsed ms.

reflex thus plays the role of
the static reflector

H OH H H H H

method schedule {ms} {
set reflex "$this hook"
after $ms $reflex

}

method hook {} {
puts "Timer expired"

}

class myTimer {
inherit Timer

method hook {} {
reschedule for 2 sec later
schedule 2000
puts "myTimer expired!!"

myTimer ti
t1l schedule 2000

wait forever in event loop

t1’s hook will be despatched
after 2 seconds

vwait 1

It may not be immediately clear how static reflection is being used here.
The key point is that the semantics of the tcl after command determines
that the argument script to after is evaluated at global scope. Notice how
the template method (schedule) creates a string variable (reflex) which
acts as the reflector to call back the hook method. In this case the hook
method must be public because reflex is evaluated outside of the class
namespace. We could have made the reflex script call back to a class wide
procedure within Timer, which in turn called hook. This way the hook
method could be declared protected, but at some cost.

There are many non object oriented APIs to which this this pattern
can be meaningfully applied. One other such API the author is aware of is
the Gtk toolkit, which is a C GUI framework used in the Gnome project®.
Functions such as gtk_signal_connect () bind a C style function to a user-
interface event. Static reflection is required to route such event handlers
to object methods.

3More information about gnome and gtk can be found at http://www.gnome.org/

8 Exceptions and Variations

Not all scheduling type functions are candidates for static reflection. One
notable exception is the installation and dispatch of signal handlers. The
BSD signal() function and it’s POSIX counterpart, sigaction(), specify
a function to be dispatched in response to an operating system signal.
Neither API function provides the facility for passing a this pointer, so
static reflection cannot be used. [Sch97] demonstrates how design patterns
can be applied to the development of signal handling components.

The OpenGL GLUT library supports C-style callback functions for
GUI events. These callbacks do not have the facility for passing a this
pointer, so static reflection cannot be used. The author is aware of object
oriented interfaces to OpenGL but not how they are implemented.

Variations on the static reflector pattern are commonly seen when the
collaboration between template, reflector and hook methods transgress
class boundaries. I have shown examples where all three are defined in
a single class. There are cases where it may be desirable to more clearly
separate the functionality of these three.

Creating pools of managed threads, for example, may suggest a de-
sign strategy where the template and reflector methods occur in a thread
factory class, and the thread entry hook in a separate thread class. Sim-
ilarly, one can separate an event handler class from the event dispatch
and demultiplexing mechanism, as is done in the Reactor[SO95] pattern.
The essence of the template-reflect-hook collaboration remains the same
in each case.

9 Related Patterns

This pattern is closely related to the Wrapper Facade[Sch99] pattern,
which addresses the problem of building object oriented infrastructure on
top of non object-oriented APIs. Whereas the Wrapper Facade deals with
cohesive grouping of related existing API functions, the Static Reflector
provides a mechanism for extending Wrapper Facades to include scheduled
functions such as thread entry points and event callbacks.

In its application to the context of event callbacks, there is also some
relationship with the Reactor pattern. The TkReactor implementation of
the Reactor in the ACE toolkit makes use of static reflectors to dispatch
timer and I/O handlers.

Hook Method, Template Method, Double Dispatch[GHIJV95].

10 Acknowledgments
Karen Renaud for proof-reading the first draft. Doug Shmidt for suggest-

ing the Java thread example. Dorin Sandu for a marvellous sheperding
job.

10

References

[GB99)]

[GHIV95]

[McL93]
[Mic00]
[Ous94]
[Pre95]
[Sch97]
[Sch99]
[S095]

[SSRB0O]

[Ste98]

Peter Druschel Gaurav Banga, Jeffrey C. Mogul. A scalable
and explicit event delivery mechanism for unix. In USENIX
Annual Technical Conference, June 1999.

Eric Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

M. McLennan. [incr Tcl]: Object-Oriented Programming with
Tel, 1993.

Microsoft Corporation. Microsoft Developer Network (MSDN)
Library, April 2000.

John K. Ousterhoudt. Tecl and The Tk Toolkit. Addison-
Wesley, 1994.

Wolfgang Pree. Design Patterns for Object Oriented Software
Development. ACM Press, Addison Wesley, 1995.

Douglas C. Schmidt. ” Applying Design Patterns to Simplify
Signal Handling”. C++ Report, SIGS, 9(6), June 1997.

Douglas C. Schmidt. Wrapper facade: A structural pattern for
encapsulating functions within classes. C++ Report, 1999.

Douglas C. Schmidt and James O’Coplan, editors. Pattern
Languages of Program Design I. Addison Wesley, 1995.

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern Oriented Software Architecture: Patterns
for Concurrent and Networked Objects, volume 2. Wiley, 2000.

W. Richard Stevens. Uniz Network Programming, volume 1.
Prentice Hall, 2nd edition, 1998.

11

