
A Pattern Language for J2EE Web Component Development1
Chris Richardson2

Servlets and JSP pages are very effective technologies for building the presentation layer
of an application that support both traditional web browsers and newer wireless handheld
devices. They are a platform independent standard supported by multiple vendors and are
considerably easier to use and more efficient than older technologies such as CGI scripts.
In the Java 2 Platform Enterprise Edition (J2EE) architecture [J2EE], servlets and JSP
pages are referred to as web components and handle HTTP requests from clients, invoke
components in the business logic layer (typically enterprise java beans), and generate
responses that are usually HTML or XML documents.

Unfortunately, the speed and ease at which developers can use servlets and JSP pages to
create a web application can cause them to ignore important issues such as
maintainability and testability. Undisciplined development techniques that work for
small-scale applications fail badly when applied to larger applications. For instance, one
commonly used approach is to construct the presentation layer (and in some cases the
complete application) entirely out of JSP pages containing large amounts of embedded
Java code: presentation logic and sometimes business logic. Applications written this way
typically have several serious problems:

�� Poor maintainability - the presentation layer consists of a large number of JSP
pages, each of which consists of as much as hundreds of lines of Java code and
hundreds of lines of content (XML/HTML) template. Even though it is written in
Java it fails to leverage the benefits of object-oriented design. The result is a large,
hard to understand and maintain mass of unstructured code.

�� Poor separation of artifacts according to role - the Java code is mixed in with
the content and so Java developers and web page designers can end up getting in
each other’s way. They need to be able to work on separate artifacts using the
appropriate tools.

�� Poor testability due to dependence on the servlet API - a JSP page is hard to
test since the only way the test driver could verify that it is working correctly is to
examine the content that it generates.

�� Poor testability due to dependence on the back-end – since the JSP pages call
the business logic, they cannot be tested independently of it. Web page designers
end up having to navigate through a sequence of screens in order to get to the
screen built by the JSP page that they need to test. They might also have to
carefully ensure that the back-end system is put into the correct state in order to
test a particular JSP page, which makes manual testing tedious and automated
testing more complicated. Some systems, such as those that have nightly batch
processes, might only allow some tests to be performed at certain times.

1 Copyright © 2001, Chris Richardson. Permission is granted to copy for the PLoP 2001 conference. All
other rights reserved.
2 cer@acm.org or cer@bea.com

Page 1 of 34 8/1/01

mailto:cer@acm.org
mailto:cer@bea.com

�� Hard to adapt to different types of client devices –An application that supports
mobile devices needs to be able generate content in variety of different markup
languages (e.g. HTML, WML, and HDML). The lack of separation of
presentation logic from content makes this hard.

�� Poor reusability – the lack of modularity means that it is hard to reuse
components in multiple applications.

Some of these issues can be partially addressed by moving some of the code into helper
beans [JSP]. This makes the code easier to understand and separates presentation logic
from the content, enabling web page designers to work separately from the developers.
However, unit testing is still difficult since the helper beans typically use the servlet API.
Also, the JSP pages still call the back-end system and cannot be tested without it running.
Furthermore, using helper beans doesn’t make it easier to support multiple device types
or necessarily improve reusability.

The JSP Model 2 architecture [JSP], in which a servlet handles the request and then
invokes a JSP page to generate the response, also addresses some of these issues:
maintainability is improved; some presentation logic is separated from content; the JSP
pages are independent of the business logic; it supports multiple versions by using
multiple JSP pages. However, the JSP Model 2 architecture is insufficient for many
applications: the servlet may still be unstructured, procedural code; testing of the servlet
is still difficult; the JSP pages can still contain hard to test presentation logic; and the lack
of clearly defined roles for classes makes reuse difficult.

This paper describes a pattern language for developing maintainable and testable web
presentation layers. This pattern language, which builds on the JSP Model 2 architecture,
grew out of the author’s experience developing web-based applications and observing
typical development techniques and the problems they caused. The intended audience for
this pattern language are Java developers and architects who are familiar with the basics
of J2EE web application development.

Figure 1 shows the architecture of a presentation layer built using these design patterns.

Page 2 of 34 8/1/01

Action
Servlet

JSP1..n

forwards request to

UserSession
Manager

Formatter
Bean

Values
Bean

FormValues
Bean

Messages
Bean

Action

executes

UserSession

creates

Servlet API dependent
layer

creates

creates
creates

Business Logic

Invokes

Servlet API independent
layer

Figure 1: Presentation layer architecture

The presentation layer into two sub-layers – the top layer consists of a servlet class, the
JSP pages and some other classes that use the servlet API. The bottom layer contains the
majority of the code and consists of classes that don’t use the servlet API. These classes
can run outside of the web container and are significantly easier to develop and test.

The key aspects of this architecture are as follows:
�� The presentation layer has a single Action servlet class that handles an HTTP

request by first invoking an action bean, which validates the request’s parameters
and invokes the business logic. The servlet then forwards the request to a JSP
page, which generates the response.

�� A UserSessionManager class encapsulates how the user’s session state is stored,
i.e. within an HttpSession object and/or by using cookies.

�� The Action servlet uses three beans to pass data to a JSP page: a messages bean
containing the error messages to display, a values bean containing the data to
display and a form values bean containing previously entered form values.

�� A JSP page uses formatter beans to format values such as dates and numbers.

Page 3 of 34 8/1/01

The following table lists the patterns and the problems they solve:

Pattern Problem Solution

1 Controller Servlet How do you divide up the
work of handling a
request between servlets
and JSP pages?

Dispatch requests to a
controller servlet, which
invokes the business logic
and then forwards the
request to a JSP page,
which generates the
response.

2 Three Java Beans How do you specify the
data that the controller
servlet passes to the JSP
page?

Define three Java beans
(previous form values,
error messages and
display values) that the
controller servlet always
passes to the JSP page.

3 Encapsulate User Session
Management

How do you represent
user session state?

Encapsulate session state
into a User Session
object.

4 Action Servlet How do you implement
the controller servlet?

Implement the controller
servlet as a façade that
delegates to an action
bean.

5 Formatter Bean How does a JSP page
format values such as
numbers and dates?

Define one or more
formatter beans that
invoke the Java
formatting classes.

6 JSP Page Test Driver How do you enable web
page designers to quickly
and easily test their JSP
pages?

Write a test driver
(servlet) for each JSP
page.

The remainder of this paper is organized as follows:
�� Sections 1 through 6 describe the pattern language
�� Section 7 describes how this pattern language can be used
�� Section 8 is a summary

1. Controller Servlet

1.1. Aliases
�� JSP page Model 2
�� Front component + Presentation component

Page 4 of 34 8/1/01

1.2. Context
You are developing the presentation layer of a J2EE application that supports web
clients: desktop browsers and mobile devices. In the J2EE architecture this is
accomplished by developing a presentation layer (also called a J2EE web application)
that consists of static content, such as HTML pages and images, and web components
(servlets and JSP pages) that generate dynamic content.

The web container uses the HTTP request’s URI and a set of mappings (written by the
developer) to select the web component to handle the request. The web component
typically processes a request by validating the request’s parameters (e.g. verify that the
user filled in a form correctly), invoking the business logic and generating a response.

A web component that handles the submission of the form has to verify that the user
filled in the form correctly3 and redisplay the form with one or more error messages if
they didn’t. To do this, the web component verifies that each request parameter that
corresponds to a required form field has a non-blank value. It will also verify that all
supplied values (required and optional) are syntactically correct, e.g. number and date
fields are in the correct format and that zip codes consist of five digits. Validation of a
complex form can require a lot of code.

In order to invoke the business logic, the web component will convert each request
parameter (which is a string) into the required data type (e.g. number, date) and create a
request object containing the converted values. The web component will handle any
exceptions that are thrown by the business logic.

The web component generates the response, directly, or by using other web components.
It can use other web components by either forwarding the request to another web
component, or including the output of one or more web components.

Servlets can be used to generate HTML/XML content. However, this is only practical for
very simple web pages, since the content would be embedded within print statements
inside the servlet making it hard to create and maintain. JSP pages are much better way to
generate content. It is very straightforward to create and maintain JSP pages using
HTML/XML editing tools.

JSP pages can use tags that make it easy to create, initialize and execute Java beans. For
example, the <setProperty> tag initializes a Java bean with the parameters from the
HttpServletRequest. You can define your own custom JSP tags that can encapsulate
complex Java code and possibly enable web page designers to create more of the front-
end.

Java developers can write JUnit-based[JUNIT] tests for testing servlets and JSP pages
using HttpUnit [HTTPUNIT] and Cactus[CACTUS]. The Cactus framework enables
developers to write unit tests for servlets and other server-side classes that use the servlet
API. A Cactus test case usually consists of the following steps:

1. Initialize servlet API objects, such as the request and session, to the desired state

3 The application shouldn’t rely on client-side scripting for validation: the user might have disabled
Javascript on their browser; many mobile devices don’t have client-side scripting.

Page 5 of 34 8/1/01

2. Instantiate the class under test and invoke the method under test

3. Verify that the return value of the method is correct

4. Verify that the servlet API objects are in the correct state

Cactus is not intended to test the servlet’s service() method (HttpUnit should be used to
do that) but rather helper methods that are called by the service() method.

HttpUnit is an HTTP client framework and enables developers to write test cases for JSP
pages and servlets. A test case can use HttpUnit to send an HTTP request, with the
desired request parameters, headers and cookies to a servlet or JSP page. It can then
verify that the servlet or JSP page generates the correct response by examining the
headers, cookies and the (text) body of the response. HttpUnit includes an HTML/XML
parser and so the test case can also access the DOM [DOM] representation of the
response. HttpUnit is extremely useful for writing simple tests that simulate clicking on
links and filling in forms. It is harder to write test cases that verify that the servlet or JSP
Page has generated correctly formatted content. For example, it would be hard to write a
test case that verifies that the application displays an error message next to an incorrectly
filled in form field. Furthermore, HttpUnit-based tests are often fragile and easily broken
by minor changes to the layout of a page, such as changing the location of a text field’s
error message. In general it is easier to test Java classes directly using JUnit/Cactus than
it is to use HttpUnit.

The application development team includes Java developers and web page designers.

1.3. Problem
How do you divide up the work of handling requests and generating responses between
servlets and JSP pages?

1.4. Forces
�� Web page designers who are not Java programmers need to be able to create and

maintain the content.
�� Java developers and web page designers need to be able to work separately on

different artifacts.
�� You want to be able to write maintainable JUnit-based test cases.
�� You want to be able to easily verify the appearance of dynamically generated web

pages without requiring a functioning back-end.
�� An application needs to be able to handle requests from and generate content for

multiple client types - desktop browsers, PDAs and mobile phones - without
unnecessary code duplication.

1.5. Solution
Build a web application that dispatches each request to a controller servlet, which invokes
the business logic and then forwards the request to a JSP page, which generates the
response. Figure 2 shows the structure of this pattern.

Page 6 of 34 8/1/01

void service(HttpServletRequest, HttpServletResponse)

Servlet

JSP A
Device Type 1

Result bizMethod(Request)

Business
Logicinvokes

<<forwards to>>

JSP A
Device Type 2

JSP B
Device Type 1

JSP B
Device Type 2

<<forwards to>>

<<forwards to>>

<<forwards to>>

Request

creates

Result

creates

usesusesusesuses

Figure 2: Controller Servlet structure

The participants in this pattern are:
�� Controller Servlet

�� validates the HTTP request’s parameters
�� invokes the business logic and handles exceptions and errors
�� forwards the HTTP request to the JSP page chosen to generate the response

�� Business Logic
�� the interface to the application’s business logic
�� defines a bizMethod() that the controller servlet calls

�� Request
�� passed as an argument to the business logic method
�� contains data derived from the HttpServletRequest parameters

�� Result
�� returned by the business logic method

�� JSP Page
�� invoked by the controller servlet to generate the response
�� generates the content from the data in the result object

The controller servlet uses the servlet API’s RequestDispatcher mechanism to forward
the HTTP request to the JSP page. A servlet might forward the request to one of several
different JSP pages. There might also be several different versions of each JSP page
(HTML, WML etc) and the controller servlet might, for example, use the user-agent
request header to select which one to use.

Figure 3 shows how the servlet handles the request in more detail.

Page 7 of 34 8/1/01

:Servlet

service()

:BusinessLogic

result = businessMethod(Request)

:HttpServlet
Request

getParameter()

:Request
Dispatcher

forward(HttpServletRequest, HttpServletResponse)

:Request
<<create>>(parameter1, ...)

:Servlet
Context

getRequestDispatcher(jspName)

aJSP

service()

setAttribute(attributeName, result)

result = getAttribute(attributName)

Figure 3: Controller Servlet collaborations

The sequence of events is as follows:
1. The servlet gets the parameters from the HttpServletRequest, validates them and

creates a request object.
2. The servlet invokes the business logic method passing the request object.
3. The servlet stores the result object returned by the business logic as an attribute of the

HttpServletRequest.
4. The servlet uses the RequestDispatcher to forward the request to a JSP page.
5. The JSP page gets the result object from the HttpServletRequest and generates the

response.

There are times, such as displaying a form for the first time, when a servlet will not
invoke any business logic and will, instead, forward the request directly to a JSP page.

When this pattern is applied, the following decisions need to made.

How to invoke the JSP page? The controller servlet can either include the output of a
JSP page or forward the request to it. A servlet can only forward the request to a single
JSP page but the JSP page can set the response headers enabling it to specify, for
example, the content type. A servlet can include the content of multiple JSP pages. For
example, a servlet could create a web page by invoking a separate JSP page for each part
(header, footer, navigation bar and main content area) of the web page. However, an
included JSP page cannot set any of the response headers. Although for some
applications it might make sense for the servlet to play a role in response generation, it is
usually better to leave that up to JSP pages. In most cases the servlet should forward
requests to JSP pages.

What is the relationship between URLs, servlets and servlet classes? A developer has
a lot of flexibility when building a J2EE Web application. In the web application
deployment descriptor, a servlet definition consists of a name, a servlet class name and
other attributes including zero or more initialization parameters. The deployment
descriptor also contains URL�servlet mapping rules. Consequently, there are four
possible approaches:

Page 8 of 34 8/1/01

�� The web application defines a single URL that is mapped to one servlet, which is
implemented by a single servlet class.

�� The web application defines multiple URLs that are all mapped to a single servlet,
which is implemented by a single servlet class.

�� The web application defines multiple URLs that are each mapped to a different
servlet. A single class implements all of the servlets.

�� The web application defines multiple URLs that are each mapped to a different
servlet. A different class implements each servlet.

A servlet class that handles requests for multiple URLs (all but the last approach) would
typically use the URL and the request parameters to determine what to do.

Should the controller be implemented using a servlet or JSP page? You can
implement the controller using a JSP page instead of a servlet. This approach has some
benefits. A JSP page developer can us the tags for manipulating Java beans. You can
create custom tags for use by the web page designers. However, there are drawbacks.
You are unable to use inheritance to implement common behavior among pages. Since
the primary purpose of JSP pages is to generate content, it is a little strange to use them in
a non-presentation role. Also, as noted above, writing Java code inside a JSP page is less
convenient that writing a class.

1.6. Resulting Context
Java developers and web page designers can work independently: Java developers on the
servlets and web page designers on the JSP pages. The servlet contains the majority of
the Java code including all of the error handling code. The servlet can inherit common
behavior from a base class (the JSP specification explicitly discourages the use of
inheritance). Each JSP page contains very little Java code and is testable in isolation and
independently of the business logic. This pattern also enables a web application to easily
support multiple client types – the servlet can select the version of the JSP page that is
appropriate for the client.

The developer can use Cactus to write test cases for the servlet. However, these tests will
be less effective if the servlet consists of a single service() method. It is important to
refactor the service() method into multiple, smaller helper methods.

It introduces a new problem: the interface between each servlet and each JSP page that it
invokes needs to be clearly defined.

1.7. Related Patterns
This pattern should be used in conjunction with the following other patterns:

�� Three Java Beans – defines the interface between a servlet and a JSP page.
�� Action Servlet – describes how to implement a servlet using action beans.
�� JSP page Test Driver – for testing the JSP pages.
�� Formatter Bean – for simplifying JSP pages further.

Page 9 of 34 8/1/01

1.8. Known Uses
�� JSP Model 2 pattern is used widely (although not widely enough). For example,

see the Sun Blueprints [SUN].
�� BEA WebLogic Commerce Server Webflow mechanism [WLCS] can be

considered an instance of this pattern.
�� The Jakarta Struts framework [STRUTS].

1.9. Example
The weather application displays the current weather conditions and forecast for a
selected location. Figure 4 and Figure 5 show the two screens that comprise the user
interface.

Figure 4: Weather Application Enter
Location Screen Figure 5: Weather Application Display Weather Screen

The EnterLocation screen displays a summary of the weather for the user’s favorite
locations and prompts the user to enter either the zip code or city and state. The
DisplayWeather screen displays the current weather conditions and the forecast for the
next few days and enables the user to add the location to their list of favorites.

The web application retrieves the weather forecast from the back-end system through the
WeatherService API, which is implemented by an enterprise java bean. Figure 6 shows
the classes and interfaces that comprise this API.

Page 10 of 34 8/1/01

WeatherForecast getWeatherForecast(Location)
WeatherSummaryCollection getSummaries(LocationCollection)

<<ejb remote>>
WeatherService WeatherForecast

 Date date
 int forecast
 double low
 double high
 double now
 double humidity
 double windSpeed
 double visibility
 double dewpoint

WeatherDetails

Date date
String forecast
double low
double hight

Weather
Summary

current conditions

summaries

String name
String zip

Location

forecast for

summary for

*

1

1

1

WeatherService create()

<<ejb home>>
WeatherServiceHome

Figure 6: Weather System back-end

This API consists of the following classes:
�� WeatherService – the remote interface for weather service EJB.
�� WeatherServiceHome – the home interface for the EJB.
�� WeatherForecast – current conditions for a location and summary forecasts for the

next few days.
�� WeatherDetails – detailed information for one day.
�� WeatherSummary – summary information for a day.
�� Location – zip code and name of the location.
�� LocationCollection – collection of locations.

The weather web application has to handle three different requests:
�� Display the EnterLocation screen – the browser sends this request when the user

enters the URL for the application or clicks on a link.
�� Display the weather for a location – the browser sends this request when the user

either clicks on a favorite location or submits the form.
�� Add Location to favorites – this request is sent by the browser when the user

clicks on the add location link.

Figure 7 shows the servlets that handle these requests.

Page 11 of 34 8/1/01

void service(...)

DisplayForm
Servlet

void service(...)

DisplayWeather
Servlet

void service(...)

AddLocation
Servlet

void service(HttpServletRequest, HttpServletResponse)

Servlet

WeatherService

<<jsp>>
enterZip.jsp

<<jsp>>
displayWeather.jsp

<<forwards to>>
<<forwards to>>

<<forwards to>>

<<forwards to>>

Location
Collection

<<creates>>

<<creates>>

Location

Figure 7: Weather Application Servlets

The weather web application defines three URLs: displayForm, displayWeather,
addLocation. Each URL is mapped to a different servlet:

�� displayForm URL � DisplayForm servlet, which calls the WeatherService EJB
to retrieve the forecasts for the user’s favorite locations and forwards the request
to the JSP page enterZipCode.jsp to display the first screen.

�� displayWeather URL � DisplayWeather servlet, which calls the WeatherService
EJB to get the forecast for the selected location and forwards the request to the
JSP page displayWeather.jsp to display the forecast. If the user enters a location
that doesn’t have a forecast then the DisplayWeather servlet redisplays the form
with an error message.

�� addLocation URL � AddLocation servlet, which adds the selected location to the
user’s list of favorites and then forwards the request to the DisplayForm servlet to
redisplay the list.

The test suite for this application’s presentation layer would use Cactus to test the servlets
directly. Each servlet would have a corresponding test case class. The test suite would
also contain some HttpUnit-based tests.

2. Three Java Beans

2.1. Context
You have applied the Controller Servlet pattern. The controller servlet is responsible for
validating the request’s parameters and invoking the business logic. The controller servlet

Page 12 of 34 8/1/01

then forwards the request to a JSP page passing to it the data returned by the business
logic. There are two different mechanisms that the servlet could use to do this. It could
store the data as attributes of the HttpServletRequest. Alternatively, it could store the
data as attributes of the HttpSession but since the data is specific to a request it makes
more sense to use the HttpServletRequest.

There might be multiple versions of each JSP page in order to support multiple devices.

2.2. Problem
How do you specify the data that the controller servlet passes to JSP pages that it
invokes?

2.3. Forces
�� A controller servlet often has to pass multiple values to a JSP page: some data to

display, the previously entered form values (in order to redisplay the form when
an error occurs) and zero or more error messages to display (an overall error
message for the page and a separate message for each invalid form field).

�� HttpServletRequest attributes are untyped (i.e. they are declared to be of type
Object) and the JSP page has to downcast the values that are passed to it. There is
no compile-time mechanism for ensuring that the controller servlet passes all of
the values that the JSP page requires.

�� There might be several different versions of a JSP page. A different person might
develop each version. A JSP page developer needs to be able to easily determine
the values that are passed to the JSP page without having to read through either
the controller servlet source code or possibly out of date comments.

2.4. Solution
Specify the data that the servlet passes to the JSP page in terms of the following Java
beans:

�� A display values bean that contains the data that the JSP page displays.
�� A previous form values bean that contains the previously entered form field

values.
�� An error messages bean that contains error message(s).

The servlet creates one or more of these beans and stores them as attributes of the
HttpServletRequest. The JSP page then retrieves the beans from HttpServletRequest and
accesses their properties. The JSP can access these beans using the <jsp:usebean/> tag
with a request scope. Their properties of the beans can be accessed using the
<jsp:getproperty/> tag.

Figure 8 shows the structure of this pattern.

Page 13 of 34 8/1/01

Servlet

Display
Values Bean

JSP A
Variant 1..N

uses

Previous Form
Values Bean uses

creates

Error Messages
Bean

uses

createscreates <<forwards to>>

Figure 8: Structure of the Three Java Beans pattern

Figure 9 shows how the controller servlet forwards the request to a JSP page. This
happens either when validation fails or after the servlet calls the business logic.

:Servlet

bean:Bean
<<create>>(p1, p2, ..)

setAttribute("name", bean)

request:
HttpServlet

Request

:Request
Dispatcher

forward(request, response)

:JSP

service()

bean = getAttribute("name")

getP()

Figure 9: Three Java Beans Pattern collaborations

The sequence of events is as follows:
1. The servlet creates the beans, initializes their properties and stores them as attributes

of the HttpServletRequest. It uses a RequestDispatcher to forward the request to the
JSP page.

Page 14 of 34 8/1/01

2. The JSP page retrieves the beans from the HttpServletRequest and uses their
properties to generate the response.

One drawback of this pattern is that it requires more upfront work by the developer to
define the bean classes when the benefits are only mostly apparent later in the
development process.

2.5. Resulting Context
The values that each JSP page expects to be passed are clearly defined. The name and
type of each value is defined. Furthermore, the beans’ constructors can force the servlet
to pass all of the required values. Any mismatch in the names and types of the value’s
beans properties will be caught at compile time. It allows for rapid changes of type and
structure.

The only values that the JSP page has to downcast are the references to the three beans.
Since this interface is unlikely to change during development once the JSP page and its
value bean class is defined the likelihood of ClassCastException runtime error is
relatively low. However, if the developer does make a mistake and passes the wrong type
of bean, it will be detected the first time the JSP page is executed - thorough testing isn’t
required to detect this kind of major error.

The servlet developer and JSP page need to agree on the attribute names. This can be
standardized across the application.

2.6. Related patterns
The Controller Servlet pattern creates the need for this pattern.

The HttpServletRequest attribute mechanism is an instance of the Property pattern
[FOOTE].

2.7. Known Uses
The author has used this pattern on several different projects.

2.8. Variations
An application can combine the PreviousFormValues bean and the ErrorMessages bean
into a single object. For example, BEA WebLogic Commerce Server [WLCS] stores the
result of parameter validation in a ValidatedValues object, which is passed to the JSP
page. It stores for each form field, the value entered by the user, the validation status
(valid/invalid/missing) and an error message.

An application could pass a single bean to the JSP page. However, this bean will in
practice aggregate the three different types of data: previous form values, display values
and messages.

2.9. Example
The JSP page enterZip.jsp expects to be passed two values: a
WeatherSummariesCollection containing the weather summaries for the user’s favorite

Page 15 of 34 8/1/01

locations and an ErrorMessages object (similar to the WLCS ValidatedValues class) that
contains both the error messages and the previously entered location name.

The following listing shows an excerpt from this JSP page:
<jsp:usebean id="values"
class="weather.weatherService.WeatherSummaryCollection"
scope="request"/>
<jsp:usebean id="messages"
class="actionFramework.actions.ErrorMessages" scope="request"/>

<%
Iterator it = messages.getMessages();
while (it.hasNext()) {
%>
<%= it.next() %>
<%
}
%>

<form method="post" action="displayWeather">
ZIP Code:<input name="zipCode" value="<%=
messages.getValue("zipCode")%>" ><font
color="red"><%=messages.getMessage("zipCode")%>

<input type="submit" value="View Weather">
</form>
…

The JSP page displayWeather.jsp expects to be passed a WeatherForecast object and an
ErrorMessages object. The following listing shows an excerpt from this JSP page:
<jsp:usebean id="values" type="weather.weatherService.WeatherForecast"
scope="request"/>
<jsp:usebean id="messages"
class="actionFramework.actions.ErrorMessages" scope="request"/>
…

3. Encapsulate User Session Management

3.1. Context
You are developing a J2EE Web Application. HTTP is a stateless protocol, but web
applications typically need to maintain session state for a user. The servlet API provides
different ways of doing this including storing values as attributes of the HttpSession, or
by using cookies. See [FOWLER] for a discussion of the pros and cons of the various
techniques.

3.2. Problem
How do you represent a user session state?

3.3. Forces
�� It is desirable to encapsulate the mechanism for maintaining the session state so

that it can be changed without impacting the application.

Page 16 of 34 8/1/01

�� Decoupling those parts of the application that use the session state from the
Servlet API will improve testability.

�� HttpSession attributes are weakly typed (i.e. of type Object) and there is no
compile-time type checking. Code that uses an HttpSession attribute is required to
downcast it to the expected type. Furthermore, HttpSession attributes are simple
name-value pairs – it is not possible for an attribute value to be computed
dynamically. Similarly, when an attribute is changed it is not possible to execute
any developer written code.

3.4. Solution
Define a user session manager class that encapsulates the user session management and is
responsible for retrieving and saving a user session object that maintains the state. Figure
10 shows the structure of this pattern.

UserSessionManager(HttpServletRequest, HttpServletResponse)
UserSession getState()
void saveState(UserSession state)

UserSessionManager UserSession
creates

service(...)

Servlet

creates

doSomething(UserSession)

UserSession
Client1..N

uses

invokes

Figure 10: Structure of the Encapsulate User Session State Pattern

The responsibilities of each class are as follows:
�� UserSession – provides getters and setters for accessing the session state.
�� UserSessionManager – encapsulates how the session state is maintained. It might

construct the session state from cookies each time or it might simply retrieve it
from the HttpSession. The getState() method returns the UserSession. The
saveState() method saves the UserSession if required. It might, for example,
update some cookies.

�� UserSessionClient – invoked by the servlet to help process the request. The
UserSessionClient might, for example, validate HTTP request parameters or
invoke the business logic. In order to perform its responsibilities it needs to access
the session state and so invokes the getters and setters defined by the UserSession.

An application’s presentation layer will typically only have one UserSessionManager
class. If the UserSessionManager is stateless it can be implemented as a singleton.
Otherwise, if the UserSessionManager maintains state for the duration of the request the
servlet will create one each time.

Page 17 of 34 8/1/01

Figure 11 shows how the controller servlet uses the UserSession and
UserSessionManager classes to handle an HTTP request.

servlet
:ConcreteServlet

:UserSession
Manager

doGet(request, response)

create(servlet,request, response)

request
:HttpRequest

session = getSession(true)

session
:HttpSession

us = getAttribute()

us
:UserSession

Session

setX()

us = getSession()

:UserSession
Client

doSomething(us)

getX()

saveState(us)

Figure 11: UserSession Pattern Collaborations

The sequence of events is as follows:
1. The servlet creates a UserSessionManager and gets the UserSession object.
2. The servlet invokes the UserSessionClient and passes to it the UserSession.
3. The servlet tells the UserSessionManager to save the UserSession.
4. The servlet invokes a JSP page to generate the response.

One drawback of this pattern is that the UserSession object contains state information for
unrelated parts of an application and so might end up having a wide interface.

3.5. Resulting Context
Session state management is performed in a single class and the rest of the classes are
unaware of the specific mechanism used. User session state is well defined and
maintained in a single object. The UserSessionManager is the only class that has to
downcast an HttpSession attribute. The rest of the code that accesses the session state is
checked at compile time. Methods that manipulate the application state use the
UserSession object rather than the servlet API and are easier to test.

3.6. Related Patterns
The HttpSession attribute mechanism is an instance of the Property pattern [FOOTE].
Because this pattern decouples the classes that use the session state from the servlet API,
it enables the Action Servlet pattern to be used.

Page 18 of 34 8/1/01

3.7. Known Uses
The author has used this pattern on several different projects.

3.8. Example
In the weather application, the session state consists of a list of the user’s favorite
locations and is stored in the HttpSession.

The following listing shows the WeatherSession class:
public class WeatherSession implements ApplicationSession {

 private ArrayList locations = new ArrayList();

 public Collection getLocations() {
 return locations;
 }

 public void addLocation(String location) {
 if (!locations.contains(location))
 locations.add(location);
 }
}

The following listing shows the WeatherSessionManager class:
public class WeatherSessionManager {

 private HttpServletRequest request;
 private HttpServletResponse response;
 private static final String APP_SESSION_NAME =
"ApplicationSession";

 public ApplicationSession getSession() {
 HttpSession session = request.getSession(true);
 ApplicationSession appSession =
(ApplicationSession)session.getAttribute(APP_SESSION_NAME);
 if (appSession == null) {
 appSession = makeApplicationSession();
 session.setAttribute(APP_SESSION_NAME, appSession);
 }
 return appSession;
 }

public WeatherSessionManager(HttpServletRequest request,
HttpServletResponse response) {
 this.request = request;
 this.response = response;
 }

 protected ApplicationSession makeApplicationSession() {
 return new WeatherSession();
 }
}

Page 19 of 34 8/1/01

3.9. Variations
The UserSession need not store the session state directly. It could, for example, be an
interface with a concrete implementation class whose accessor methods simply call
getAttribute() and setAttribute() on the HttpSession.

4. Action Servlet

4.1. Context
You have applied the Controller Servlet, Encapsulate User Session Management and
the Three Java Beans patterns. The controller servlet is responsible for validating the
request’s parameters, invoking the business logic, creating the three Java beans that JSP
page required and forwarding the request to the JSP page. This can require hundreds of
lines of Java code.

A servlet, like all classes that use the Servlet API, can only run within the Web container.
The Cactus framework can be used to write test cases for all of the servlet’s methods
except the servlet’s service() method. This means that the service() must call helper
methods to validate the parameters and invoke the business logic. The service() method
can only be tested using HttpUnit-based test cases. However, verifying that the service()
method is behaving correctly might be hard since the HttpUnit-based test case would
have to examine the content generated by the JSP page invoked by the servlet in order to
do this.

Cactus test cases run inside the application server’s web container. The edit-compile-run
cycle for code that must run inside an application server can be longer because each time
a change is made the code must be redeployed on the server. This can require either
restarting the server, which can easily take over a minute or, if possible, utilizing a
vendor-specific hot deploy mechanism, which, even though it is much quicker than a
server restart, might not be instantaneous.

4.2. Problem
How do you implement the controller servlet?

4.3. Forces
�� You want to be able to write test code using JUnit-based test cases.
�� You want to avoid writing methods that are hard to test.
�� You want to be able to reuse components in multiple applications.
�� You want the presentation layer to be easy to understand and maintain.
�� You want to be able to quickly and easily make changes and test them.

4.4. Solution
Implement a servlet as a façade that creates, initializes and executes an Action bean,
which is a command-like object [GOF] that doesn’t use the servlet API. Figure 12 shows
the structure of this pattern.

Page 20 of 34 8/1/01

ActionResult execute()

<<interface>>
Action

executes

Servlet API Independent ClassesServlet API Dependent
Classes

String jspName

ActionResult

creates
void service(request, response)

ActionServlet

creates

UserSessionUserSession
Manager

create(UserSession)
<<setters>>
void setX(String)
void setY(String)
...

ConcreteAction

Display
Values
Bean

PreviousForm
ValuesBean

ErrorMessages
Bean

Result bizMethod(Request)

Business
Logic

invokes

Request

creates

Result

creates

Figure 12: Structure of the Action Servlet pattern

The participants in the pattern are:
�� ActionServlet

�� obtains the UserSession from the UserSessionManager
�� creates an Action and initializes its properties with the matching parameters

from the request
�� executes the action
�� forwards the request to the specified JSP page

�� Action
�� validates its properties (which correspond to the request’s parameters)
�� invokes business logic and handles any exceptions that are thrown
�� returns an ActionResult
�� uses and updates the UserSession

�� ActionResult
�� specifies which JSP page to display and the values to pass to it

�� UserSession
�� maintains the user’s session state

�� UserSessionManager
�� manages the UserSession

�� DisplayValuesBean, PreviousFormValuesBean, ErrorMessagesBean
�� these are beans from the Three Java Beans pattern

�� Business Logic
�� the interface to the application’s business logic
�� defines a bizMethod() that the controller servlet calls

�� Request

Page 21 of 34 8/1/01

�� passed as an argument to the business logic method
�� contains data derived from the HttpServletRequest parameters

�� Result
�� returned by the business logic method

Figure 13 shows how a servlet that is implemented using this pattern handles an HTTP
request.

:Servlet

:Action
<<create>>(ss)

:HttpRequest

setX(x)

execute()

:Business
Logic

result = bizMethod(request)

:Bean :ActionResult

create(jspName, aBean)

:Request
Dispatcher

forward(request, response)

:UserSession
Manager us:UserSession

create(...)

ss = getState()

saveState(ss)

setY(y)

validate()

x = getParameter("x")

y = getParameter("y")

create(result)

request:Request
create()

Figure 13: Action Servlet collaborations

The sequence of events is as follows:
1. The servlet creates a UserSessionManager and gets the UserSession.
2. It creates an Action passing the UserSession to Action’s constructor.
3. It initializes each of the Action’s properties with the corresponding parameter from

the HttpServletRequest.
4. The servlet invokes execute() on the Action.
5. The Action validates its properties and invokes the business logic.
6. The Action returns an ActionResult object specifying which JSP page to use and the

beans to pass to the JSP page.
7. The servlet passes the possibly updated UserSession back to the

UserSessionManager.
8. The servlet then forwards the request to the specified JSP page passing the values

returned by the Action.

This pattern does have some drawbacks. Sometimes the code that handles a request needs
to access the servlet API classes and interfaces in order, for example, to access request’s
headers, cookies or perhaps servlet context init-parameters. Fortunately, this is relatively
rare and actions can co-exist with regular servlets.

Page 22 of 34 8/1/01

4.5. Resulting Context
The action classes don’t use the servlet API, which means they can be executed outside
of the web container. This makes them considerably easier to develop and unit test. Each
action class has a well-defined interface and a small set of responsibilities, which makes
it easier to understand and maintain. Although the business logic invoked by the Action
might have side-affects, the incremental functionality directly implemented by the Action
can be considered to be a function that computes an ActionResult, which improves
testability. Test cases can verify the behavior of the Action by examining the
ActionResut.

The Action Servlet is generic and can be reused across multiple applications.

4.6. Related Patterns
This pattern is enabled by the Controller Servlet, Encapsulate User Session and the
Three Java Beans patterns.

An Action could be considered to be a Command [GOF].

4.7. Known Uses
An example of this pattern is the WebWork framework [WEBWORK]. Developers write
action classes that implement the WebWork’s Action interface. A Dispatcher servlet
creates an Action, initializes its properties with the corresponding request parameters and
then invokes its execute() method, which returns the name of the JSP page to forward the
request to.

A good example of a variation of this pattern is the Struts framework [STRUTS]. This
framework has an ActionServlet class that uses Action classes to handle requests. This
approach makes the design more modular and easier to understand since each Action
class is relatively small and has a well-defined purpose. However, testing is still difficult
since Struts Action classes use the HttpServletRequest and HttpServletResponse objects.

The author has used this pattern on several different projects.

4.8. Example
Figure 14 shows the action classes and their test cases for the weather application.

Page 23 of 34 8/1/01

DisplayFormAction(WeatherSession)
void setCurrentLocation(location)
ActionResult execute()

DisplayForm
Action

DisplayWeatherAction(WeatherSession)
void setLocation(location)
ActionResult execute()

DisplayWeather
Action

AddLocationAction(WeatherSession)
void setLocation(location)
ActionResult execute()

AddLocation
Action

ActionResult execute()

<<interface>>
Action

WeatherService

Collection getLocations()
void addLocation(Location)

WeatherSession

void service()

ActionServlet
executes

DisplayForm
ActionTests

DisplayWeather
ActionTests AddLocation

ActionTests

tests tests tests

junit.framework.
TestCase

Figure 14: Weather Action beans

The responsibilities of each class are as follows:
�� ActionServlet – creates and executes the Action specified by an init parameters.
�� DisplayFormAction - handles requests for the displayForm URL. It calls the

WeatherService to get weather summaries for the user’s favorite locations. It
returns an ActionResult that specifies the JSP page enterZip.jsp.

�� DisplayWeatherAction - handles requests for the displayWeather URL. It calls the
WeatherService to get the detailed weather forecast for the chosen location. It
returns an ActionResult that specifies the JSP page displayWeather.jsp.

�� AddLocationAction - adds the location to the list of user’s favorites. It returns an
ActionResult that specifies the JSP page enterZip.jsp.

�� DisplayFormActionTests – JUnit TestCase class for DisplayFormAction.
�� DisplayWeatherActionTests – test case class for DisplayWeatherAction.
�� DisplayAddLocationActionTests – test case class for AddLocationAction.

The following listing shows the servlet definitions from the deployment descriptor:
 <servlet>
 <servlet-name>DisplayForm</servlet-name>
 <servlet-class>actionFramework.servlets.ActionServlet</servlet-
class>
 <init-param>
 <param-name>actionClass</param-name>

Page 24 of 34 8/1/01

 <param-value>weather.ui.actions.DisplayFormAction</param-
value>
 </init-param>
 </servlet>

 <servlet>
 <servlet-name>DisplayWeather</servlet-name>
 <servlet-class>actionFramework.servlets.ActionServlet</servlet-
class>
 <init-param>
 <param-name>actionClass</param-name>
 <param-
value>weather.ui.actions.DisplayWeatherAction</param-value>
 </init-param>
 </servlet>

 <servlet>
 <servlet-name>AddLocation</servlet-name>
 <servlet-class>actionFramework.servlets.ActionServlet</servlet-
class>
 <init-param>
 <param-name>actionClass</param-name>
 <param-value>weather.ui.actions.AddLocationAction</param-
value>
 </init-param>
 </servlet>

The three servlet definitions all use the same Action class.

Each Action class has a test class that implements the JUnit-based test cases. Each test
case consists of the following steps:

1. Create an Action object

2. Set its parameters

3. Invoke its execute() method

4. Verify that the ActionResult is correct

Some test cases would execute the action with valid parameters and others would use
invalid parameters.

5. Formatter Bean

5.1. Context
You are writing a JSP page that is displaying the properties of a single object or the
properties of a hierarchy of objects. Some of the properties are dates, numbers and
money. A web application might have users in multiple countries, with different
conventions for formatting these types of values.

5.2. Problem
How does the JSP page format values such as numbers and dates?

Page 25 of 34 8/1/01

5.3. Forces
�� A JSP page should format the date, money and number properties of an object

using Java formatting classes such as SimpleDateFormat, and NumberFormat.
�� The JSP page must use the appropriate locale and time zone.
�� You need to be able to test the formatting code, yet Java code inside a JSP page is

hard to test.
�� Java developers and web page designers need to be able to work separately on

different artifacts.
�� You need to format values consistently throughout an application.

5.4. Solution
Define one or more formatter beans that use the Java formatting classes to format the
numeric, date and other similar properties of an object. A formatter bean has read-only
properties corresponding to the properties of the object it is formatting. The value of each
formatter property is a formatted string value. Figure 15 shows the participants of this
pattern.

JSP

Display Values
Bean A x

B y
...

AnObject
SubObject

create(AnObject, Locale)
<<getters>>
String getX()
String getY()
...
<<subobjects>>
SubFormatterCollectionIterator getZ()

AnObjectFormatter

formats

SubObject
Formatter

formats

creates creates

*z

Figure 15: Formatting Java Bean participants

The JSP page will get an object from the display values bean and create the appropriate
formatter class passing to it the object and perhaps the locale and time zone. The JSP
page will then call the bean’s getters and insert the values into the generated content. If
the JSP page needs to display multiple sub-objects, the formatter will provide a method
that returns an iterator through a collection of sub-object formatters. Figure 16 shows
how the classes collaborate.

Page 26 of 34 8/1/01

:AJSP :ValuesBean

object = getValue()

:ObjectFormatter
create(object, local)

getX()

getX()

Figure 16: Formatting Bean Collaborations

A formatter bean might not use the Java formatting classes directly. Instead, it might call
static formatting methods on a global formatting utility class. Using a global formatting
class can help ensure consistency across an application.

One drawback of this pattern is that it requires more work by the developer to define the
additional formatter beans and sometimes the benefits are not immediately apparent.

5.5. Resulting Context
This pattern reduces the amount of Java code inside a JSP page. The formatting classes
are potentially reusable by multiple JSP pages. They can be easily tested using JUnit.

5.6. Related Patterns
This pattern is a specialization of the JSP Helper Bean pattern [JSPHELPER].

5.7. Known Uses
The author has used this pattern on several different projects.

5.8. Variations
An application could combine the values bean and the formatter into a single class.
Although this simplifies the implementation, it might not always be possible since
different versions of a JSP page might want to format the same value differently. For
example, the HTML version might display a time and date as a “Wednesday July 5th at
10:15am” where as the WML version might display the date and time on separate lines.

5.9. Example
The JSP page displayWeather.jsp uses the formatting classes shown in Figure 17.

Page 27 of 34 8/1/01

WeatherForecastFormatter(WeatherForecast)
String getLocation()

WeatherForecastFormatter

WeatherDetailsFormatter(WeatherDetails)
String getForecast()
String getNow()
String getHigh()
String getLow()
String getHumidity()
...

WeatherDetails
Formatter

WeatherSummaryFormatter(WeatherSummary)
String getLocation()
String getDate()
String getNow()
String getHigh()
String getLow()
....

Weather
Summary
Formatter

*

static String formatForecast(int forecast)
static String formatTemperature(double temp)
static String formatDayOfWeek(Date d)

Weather
Formatting

WeatherForecast

 Date date
 int forecast
 double low
 double high
 double now
 double humidity
 double windSpeed
 double visibility
 double dewpoint

WeatherDetails

Date date
String forecast
double low
double hight

Weather
Summary

current conditions summaries

*

1
formats

formats

formats

Figure 17: Weather formatting classes

The WeatherForecastFormatter, WeatherDetailsFormatter and
WeatherSummaryFormatter classes format the WeatherForecast, WeatherDetails and
WeatherSummary classes. The class WeatherFormatting is a utility class that defines
some general purpose formatting methods.

The JSP page enterZip.jsp uses the WeatherSummaryFormatter.

6. JSP Page Test Driver

6.1. Context
You are developing a web application and you have applied the Controller Servlet and
the Three Java Beans patterns. A JSP page is only responsible for content generation. A
Controller Servlet passes to the JSP page three Java beans that contain the data that the
JSP page needs. Web page designers who are not Java programmers are responsible for
creating and maintaining the HTML/XML content in the JSP pages.

Page 28 of 34 8/1/01

6.2. Problem
How do you enable web page designers to quickly and easily verify that their JSP pages
generate the correct content?

6.3. Forces
�� Content pages often undergo lots of minor, last minute changes as the web page

designers tweak them to make them work correctly with multiple browsers,
monitor sizes and operating systems.

�� It is essential that the web page designers are able to easily and repeatedly test
their work.

�� JSP pages (like all other code) need to be tested against a wide range of input
values in order to ensure adequate coverage.

�� Manually navigating to the screen built by the JSP page you want to test is
tedious.

�� Setting up the exact test conditions can be difficult.
�� It is desirable to be able to test JSP pages without relying on a working back-end

system.

6.4. Solution
Write a test driver servlet that creates the beans that the JSP page expects to be passed,
initializes them with test data and then invokes the JSP page. Figure 18 shows the
structure of this pattern.

void service(...)

TestDriver
Servlet JSP

Under Test

DisplayValues
Bean

creates and initializes

forwards to

HttpServlet

PreviousForm
Values Bean

creates and initializes

ErrorMessages
Bean

creates and initializes

ListOfTests.html
links to

Figure 18: JSP Unit test structure

The HTML page ListOfTests.html displays the list of available tests as hyperlinks. A web
page designer can easily test their changes by clicking on each of the links. Clicking on a
link executes the test case by invoking the TestDriverServlet. The link has a testCase
parameter, which tells the TestDriverServlet which test data to use to create the beans
that it passes to the JSP page. After creating the beans, the servlet forwards the request to
the JSP page.

Page 29 of 34 8/1/01

6.5. Resulting Context
It is extremely easy for a web page designer to execute all of the test cases for a JSP page.
Although, the primary purpose of the test is to enable the web page designers to view
their JSP pages, it can sometimes be useful to also execute these tests as part of an
automated test suite using HttpUnit.

A functioning back-end system is not required since the TestDriverServlet directly
creates the beans the JSP page needs.

The TestDriverServlet can be implemented using the Action Servlet pattern.

Creating and maintaining the potentially complex test data for each test case is an issue.
An application could create the objects in a number of ways: directly using Java code;
read them from an XML file or load them from a database.

6.6. Related Patterns
This pattern is enabled by the Controller Servlet pattern.

6.7. Known Uses
The author has used this pattern on several different projects.

6.8. Example
The JSP page enterZip.jsp requires the following test cases:

�� No favorite locations
�� One favorite location
�� Two favorite locations
�� Invalid zip entered

The HTML page EnterZipCodeTests.html displays a list of these test cases. Each test
case is a link to the servlet TestDisplayFormJSP, which in turn is implemented using the
Action bean TestDisplayFormJSPAction. The following listing shows an excerpt from
the web application’s web.xml file:
<servlet>

<servlet-name>TestDisplayFormJSP</servlet-name>
 <servlet-class>actionFramework.servlets.ActionServlet</servlet-
class>
 <init-param>
 <param-name>actionClass</param-name>
 <param-
value>weather.ui.actions.TestDisplayFormJSPAction</param-value>
 </init-param>
</servlet>
…
<servlet-mapping>
 <servlet-name>TestDisplayFormJSP</servlet-name>
 <url-pattern>testDisplayFormJSP</url-pattern>
 </servlet-mapping>
<servlet>

Page 30 of 34 8/1/01

The following listing shows the source for TestDisplayFormJSPAction:
public class TestDisplayFormJSPAction implements Action {

 private WeatherSession session;
 private String testCase;

 public TestDisplayFormJSPAction(WeatherSession session) {
 this.session = session;
 }

 public void setTestCase(String testCase) {
 this.testCase = testCase;
 }

 protected ActionResult execute() {
 ActionResult ar = new ActionResult("enterZipCode");
 WeatherSummaryCollection summaries = new
WeatherSummaryCollection();
 String location = "Oakland, CA";
 Date now = new Date();
 if (testCase.equals("none")) {
 } else if (testCase.equals("one")) {
 summaries.add(new WeatherSummary(new Location(location,
null), now, WeatherConstants.SUNNY, 43, 64));
 } else if (testCase.equals("two")) {
 summaries.add(new WeatherSummary(new Location(location,
null), now, WeatherConstants.SUNNY, 43, 64));
 summaries.add(new WeatherSummary(new Location(location,
null), now, WeatherConstants.SUNNY, 43, 64));
 } else if (testCase.equals("error")) {
 ActionMessages messages = new ActionMessages();
 Validator validator = new Validator(messages);
 messages.invalidField("zipCode", "123456", "Invalid
Location");
 messages.addMessage("An error occurred");
 ar.setMessages(messages);
 }
 ar.setValues(summaries);
 return ar;
 }
}

The action returns an ActionResult that specifies the JSP page enterZip.jsp. The action’s
testCase property is initialized from the request’s testCase parameter and determines
which test data to use.

7. Using this Pattern Language
Developers can easily apply this pattern language when developing brand new
applications or implementing brand new functionality in an existing application.

Developers can also use these patterns to refactor existing JSP pages. For example, the
Formatting Bean pattern can be applied to move Java code out of a JSP page. The
Controller Servlet pattern can be applied to split a JSP page into a controller JSP page
and one or more presentation JSP pages.

Page 31 of 34 8/1/01

The pattern language can also be used to guide the major restructuring of an entire JSP-
based application in order, for example, to support mobile devices. The patterns can be
applied in the following order:

1. Controller Servlet - divide each JSP page into multiple JSP pages: a controller
and one or more presentation JSP pages.

2. Three Java Beans - define the interface between the controller JSP page and the
presentation JSP pages.

3. Encapsulate User Session Management – create a session state manager that
encapsulates the session management policy.

4. JSP Page Test Driver – write unit tests for the presenter JSP pages.
5. Action Servlet - extract the action classes from the controller JSP pages. Initially,

the JSP pages could execute the action classes. However, at some point in time
the JSP page controllers can be replaced by a single controller servlet. This
requires the URLs that reference the JSP pages directly to be replaced with URLs
that mapped to the controller servlet.

8. Summary
Developers can use JSP pages and servlets to quickly build a presentation layer that
supports web clients. However, they often ignore important design principles and end up
building applications that are hard to maintain and test. For example, a commonly used
approach is to build the entire presentation layer using JSP pages that invoke the business
logic directly. This means that web page designers and Java developers are unable to
work independently. Effective testing is difficult since the only way to test a JSP page is
to send an HTTP request and examine the content it generates. Furthermore, because
applications written this way don’t cleanly separate content and application logic, it is
difficult to extend them to support mobile devices, which is becoming an increasingly
important requirement.

This paper presented a pattern language consisting of six patterns for building
maintainable and testable presentation layers for applications that support both desktop
and mobile clients. These patterns address testability, maintainability, reusability and
adaptability in the following ways:

�� Testability - The Controller Servlet pattern improves testability by making the
servlet solely responsible for calling the back-end. Web page designers can test
JSP pages without a working back-end. The Encapsulate User Session
Management, Action Servlet and Formatter Bean patterns further enhance
testability by minimizing the number of classes that use the servlet API. JSP Page
Test Driver outlines an effective testing strategy for JSP pages.

�� Maintainability – Maintainability is significantly improved in a number of ways.
The Formatter Bean, and Controller Servlet patterns minimize the amount of
code in the JSP pages. The Three Java Beans pattern specifies a well-defined
interface for each JSP page.

�� Reusability – The Action Servlet pattern defines a Controller servlet and Action
classes that are reusable by multiple applications.

Page 32 of 34 8/1/01

�� Adaptability – The Controller Servlet pattern makes it straightforward to support
multiple types of client device and multiple languages simply by using multiple
sets of JSP pages.

Some patterns enable other patterns. Figure 19 shows the dependencies between them.

Controller Servlet

Three Java Beans

Action Servlet

Encapsulate User Session
Management

JSP Page Test Driver

Formatter Beans

Enabled
Pattern

Enabling
Pattern

Figure 19: Dependencies between patterns

In this diagram, a pattern points to the patterns that enable it.

Applying the pattern language replaces each large monolithic JSP page with several
components including a simpler JSP page that is only responsible for content generation,
a controller servlet and several helper classes:

�� Action beans – command-like classes that perform validation and invoke business
logic

�� UserSession – encapsulates the session state
�� UserSessionManager – responsible for retrieving and saving the UserSession
�� Values, messages and old form values beans – used by the controller servlet to

pass data to the JSP page
�� Formatter beans – used by JSP pages to format values, such as dates and numbers

Each helper class has a well-defined interface and implements a small well-defined piece
of functionality. Most of the helper classes don’t use the Servlet API classes and
interfaces, which means that developing test cases for them is straightforward.
Furthermore, this componentization of the presentation layer of the web-based
application makes it possible to modify the behavior of the application without modifying
any existing code. New behavior can be plugged in by changing a configuration file.

The controller servlet and most of the helper classes are reusable by multiple
applications.

Developers can easily use these patterns when writing brand new applications. They can
also apply them to improve the design of an existing application.

9. References
�� [CACTUS] – Cactus test framework,

http://jakarta.apache.org/commons/cactus/index.html

Page 33 of 34 8/1/01

http://jakarta.apache.org/commons/cactus/index.html

�� [DOM] – Document Object Model, www.w3.org/DOM
�� [GOF] – Design Patterns – Elements of Reusable Object-Oriented Software,

Gamma et al
�� [FOOTE] – Meta data and Active Models, Brian Foote and Joseph Yoder,

http://www.laputan.org
�� [FOWLER] – Martin Fowler, Information Systems Architecture,

http://www.martinfowler.com/isa/index.html
�� [HTTPUNIT], HttpUnit API, http://httpunit.sourceforge.net
�� [J2EE] – J2EE Specification, http://www.javasoft.com/j2ee
�� [JUNIT] – JUNIT testing framework, http://www.junit.org
�� [JSP] – JavaServer Pages Specification, http://www.javasoft.com/jsp
�� [STRUTS] – Jakarta Struts framework, http://jakarta.apache.org/struts/index.html
�� [SUN] Developing Enterprise Applications,

http://www.javasoft.com/j2ee/blueprints
�� [WEBWORK] – WebWork framework, http://sourceforge.net/projects/webwork
�� [WLCS] – WebLogic Commerce Server, http://e-docs.bea.com/

10. Acknowledgements
Thanks to Ashok Anand, Bill Burdick, Dragos A. Manolescu, Rich MacDonald, Georgia
McNamara, Fritz Passow, Laura Richardson, Scott Shaw and Bjorn Wennerstrom for
their constructive comments on drafts of this paper.

Page 34 of 34 8/1/01

http://www.w3.org/DOM
http://www.laputan.org/
http://www.martinfowler.com/isa/index.html
http://httpunit.sourceforge.net/
http://www.javasoft.com/j2ee
http://www.junit.org/
http://www.javasoft.com/jsp
http://jakarta.apache.org/struts/index.html
http://www.javasoft.com/j2ee/blueprints
http://sourceforge.net/projects/webwork
http://e-docs.bea.com/

	Controller Servlet
	Aliases
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Related Patterns
	Known Uses
	Example

	Three Java Beans
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Related patterns
	Known Uses
	Variations
	Example

	Encapsulate User Session Management
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Related Patterns
	Known Uses
	Example
	Variations

	Action Servlet
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Related Patterns
	Known Uses
	Example

	Formatter Bean
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Related Patterns
	Known Uses
	Variations
	Example

	JSP Page Test Driver
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Related Patterns
	Known Uses
	Example

	Using this Pattern Language
	Summary
	References
	Acknowledgements

