A Software Fault Injection
Pattern System (%)

Nelson G. M. Leme Eliane Martins CedliaM. F. Rubira
nel songm@ic.unicamp.br eliane@ic.unicamp.br cmrubira@ic.unicamp.br

State University of Campinas (UNICAMP), Brazil
Computing Ingtitute (1C)

I. Introduction

Fault Injection. Nowadays, the Fault Injedion technique has been considered very useful to
evaluate the behavior of computing systems in the presence of faults. This happens becuse the
technique tries to produce or simulate faults during an exeaution of the system under test, and then the
behavior of the system is observed.

Problem. Among the various methods to perform Fault Injedion, the technique of Sdtware
Fault Injedion is getting more popular. In this technique, a spedal pieceof code, asociated to the
system under test, tries to smulate faults. Generally, Fault Injedion testing can be done by using a
Fault Injedion tod, and there is a number of them. However, there ae no tods that work under each
and every computing environment. Also, new kinds of systems, that work under different conditions,
are aeded by developers. Therefore, dthough there ae anumber of fault injedion programs, thereisa
nead for more of them.

Proposed solution. Patterns may ease the development of new fault injedion programs. By
creating a pattern system for Fault Injedion tods, that will alow developers to develop tods for
computing environments that currently do not have aFault Injedion tod.

ll. Architectural Pattern: Fault Injector

Example

Already many toals that use Software Fault Injedion have been developed, and they employ
an architedure in which is posdsble to injed faults; to monitor the system under test; to activate the
system; control the whole process; and inform the user about the test results, as well to receve his or
her requisitions. The achitedure for these tods sould all ow the realization of all these activities.

Context

A devel oper istrying to archited a Software Fault Injedion tod.

Problem

A program or atod that performs Software Fault Injedion (for now on, it will be just refered
as “tod”) should do the foll owing activities, in order to perform fault injedion reasonably:

! - Copyright © 1999, Nelson G. M. Leme, Eliane Martins, Cedlia M. F. Rubira. Permisson is granted
to copy for the PLoP 2001 conference All other rights reserved.

(i)

(i)
(iii)
(iv)
v)

In the beggining, the tod should activate the system under test; if the system isidle,
the ocurrence of a fault will have no consequences. Only when it is having to do
some task is that the presence of a fault may cause some unexpeded behavior of the
target system.

After that is done, the tod may injed faults inside the target sytems, as the user has
spedfied.

Following the injedion, the monitoring of target system should begin, in order to
verify if the system behaves as expeded.

The activities of fault injedion, monitoring and activation should be properly
controled and coordinated.

There should be a user interface in which the user of the tod can spedfy the faults
that he or she intends to injed, and also where he or she can get the results of the
experiment.

Therefore, it isnecessary an architedure to the fault injedion tod that al ows the exeaution of
all these activities. Also, it isrequired that the foll owing forces be balanced:

Solution

It should be possble to change the way in which some of the activities above ae done,
without by that interfering in the other activities.

Only the modules that really need to communicate with the system under test should be
allowed to do so. It should be avoided that control and user interface activities
communicate with the target system, becuse those activities do not deal with aspeds of
the exeaution of the system under test.

There should be a coordinate way to the modules that perform the injedion, monitoring
and activation activiti es to communicate between themselves, in order to avoid that they
change redundant messages.

The tod shoud be esily rewritten to work in a different computing environment; it
should not be restricted to just one environment, as many Fault Injedion tods are.

The achitedure exposed in this pattern should be designed in a way that the Fault
Injedion tod would not be restricted to test just one spedfic type of application.

The fault injedion tod shoud be structured in the following way. It will be defined five

subsystems:

Activator: it activates the target system, allowing it to betested in its normal conditions.
Injector: it doestheinjedion of thefaultsinside the system under test.

Monitor: it monitors the target system, in order to verify if it is operating as expeded.
Controller: it controls the subsystems above, so they do their activities coodinately.

User interface: it recaves the spedfications from the user for the exeaution of the
experiment and it gives back the results.

Of the subsystems above, only injector, monitor and activator communicate with the system
under test. They should exchange messages through the controller subsystem, which makes the

coordination

between them. The controller will receve eperiment spedfications from the user

interface, which it will use to define the parameters that will be passed to the subsystems. These,
afterwards, will send back to the controller the data obtained in the exeaution of the experiment, data
that will be stored and passed back to the user interface.

Beyond those subsystems, there ae other two. These latter subsystems help the exeaution of
the subsystems above, acting as datarepositories:

Fault manager: this datarepository stores the faultsto beinjeded.
Monitored data manager: this repository stores the data orginated from the monitoring of
the system under test.

Each one of the above subsystems communicatesin a dready specified and high level way, so
they can be replaced, without interfering in the others.

Structure

The following diagram shows the structure of the solution proposed on the previous sedion.

FALULT INJECTION [Irterface
LISER.
SYSTEM INTERFACE
[GerFalha |Cartrol |G ertonit

FALLT COMTROLLER MORIT. DATA
MANAGER MANAGER.

lirjet

[hfonit

| 2w

INJECTOR MOMNITOR ‘ ACTIATOR {0

E : Sys tem : E
eeeessrs s s e s ! uhadear tast B s ;

Fig. 1: “Fault Injector” architectura pattern structure.

The redangles correspond to the subsystems described in the “Solution” sedion, and the
circlesrepresent the interfaces for each subsystem.

Dynamics

A posshle execution scenario o a system that follows the present pattern could be the

foll owing:
(i)
(i)

(iii)

(iv)

v)

(Vi)
(vii)

The exeaution starts at the controller subsystem.

The controller asks the interface to demand from the user the data about the
experiment. The interface get that data and it gives back the data to the controller,
which by its time stores the data in the fault manager.

The controller asks the activator to start the system under test. The activator tries to
do so. In case of failure, the experiment ends, and the controller asks the interface to
show an error message.

In case of successof the activator, the controller asks the fault manager data about a
fault (or faults) to beinjeded. Thisdataisthen passed to the injector, which starts the
fault injedion, and it informs the controller about the progressof the injedion.

The controller starts the monitor, which begins to monitor the system under test. The
data obtained in that process is passd to the controller, which stores it in the
monitored data manager.

After al the faults have been injeded and gathered al the data from the target
system, the controller finishes the experiment, deactivating the monitor.

The data gathered may be pased to the interface, through the controller.

Implementation

The following steps indicate a method to implement the “Fault Injedor” pattern.

@
@

©)
(4)

®)

(6)

)

©)

Specify the target sysem for the todl. The target system for the tod should be deared
defined.

Determine the form of fault injection. The next step is to establish how the faults will be
injeded in the system under test. The developer should choose the most suitable
technique to thekind o system that thetod will ded with.

Syxecifiy the form of the monitoring process The developer should choose in which way
the tod will monitor the target system.

Design the injedor and monitor subsystems. The developer should create these
subsystems, taking into account what has been establi shed in the steps (2) and (3). In this
moment, the devel oper should not care about how these subsystems will interact. In order
to huild these @mponents, the patterns “Injedor” and “Monitor”, also described in this
pattern system, may be used.

Specify how the target systemwill be activated. It isnecessary to design some way to start
the exeaution of the target system. After that, the activator subsystem may be buil d.

Build the controll er subsystem. After the subsystems of the steps (4) and (5) are defined,
the developer should design the subsystem that will make the emmunication between
them and that wil | coordinate their activities.

Design the data repostories (fault manager and monitored data manager). Once the basic
operation form of thetod is defined, it may be spedfied how it will store its data. In this
step, a structure to store the spedfication of the faults will be designed (this structure will
be stored in the fault manager). Also, it will be developed a structure to store the data
obtained from the monitoring o the target system. (structure which will stay at the
monitored data manager).

Build the user interface subsystem. Acoordingly with what has been defined in the sep
(6), it will be daborated an user interface that will receve from the user the data needed
by the subsystems of the tod, and that will also show the results of the fault injedion
experiment.

Consequences

The adoption of the pattern “Fault Injedor” brings the foll owing benefits:

It alows that the way in which the tasks of fault injedion, monitoring, activation,
coordination, display and storage of data ae done be danged individually without
affeding the other activities. Therefore, if some subsystem needs to be danged, it is
possble to reuse the code for the other subsystems.

The pattern centralizes the communications between subsystems in the controller, that
will then coordinate the messages that should be exchanged. By doing so, it avoids the
communication of redundant messages.

Only the subsystems that need to communicate with the target system do so. Thisis done
so because it causes thelowest level of disturbance as possble.

But, the architedural pattern presents the foll owing problems, too:

It is not possble to make aquick and smple communication between the injector,
monitor and activator subsystems without passng by the controller. This may slow the
injedion process what increases the level of disturbance of the target system.

In case that in the midst of injedion processthe injector or the monitor subsystem needs
some extra piece of information from the user, they have to send the request to the
controller, which by its time will send the request to the user interface. This may delay
the exeaution of the target system, causing an increase in the disturbance of it.

Known Uses

JACA Fault Injection Tool [LMRO]]. Thistod is being devel oped at the State University of
Campinas (UNICAMP), Brazil, and implements the achitedure just described above. It is written in
Java, and it gives an example of how to implement the pattern. It also proves the validity of the
pattern’ s benefits.

FIRE (Fault Injection using a REflective architectur e) [Ros98]. Thisis another tod built at
the State Univergity of Campinas (UNICAMP), Brazil. It proved the usefulness of the technique of
Fault Injedion through the use of a Meta-Object Protocol (MOP). Also, it was one of the best
structured Fault Injedion tods, and contributed alot in writing this pattern.

FlexFl [BRR99]. A tod developed by the Polytechnic Ingitute of Torino, Italy, is another
highly structured tod. Here too, the developers of the tod acknowledges the nead for building Fault
Injedion todsthat could be more easily adapted, and the way to do so is by better structuring the tods.
It also contributed alot to the creation of this pattern.

FIESTA (Fault Injection for Embedded System Target Application) [KJA98]. One of the
first todsthat stated the need for making more adaptable Fault Injedion Tods. However, the approach
the developers chose here was unique. They redized that the modules activator, monitor and injector
aready exist for many systems, in the form of debuggers Debuggers, like GNU's gdb, can change
values inside a system, observe many of its aspeds and can start the exeaution of the system.
Therefore, it was just a matter of writing the other subsystems of the achitedure axd conneding them
with a debugger. Since there ae debuggers for almost any computer system, the tod could be esily
changed torun in different systems.

Related Patterns

The following petterns may help the implementation of a system which is based in the
architedural pattern “Fault Injedor”:

e Thedesign petterns“Injedor” and “Monitor” describe, each one of them, how to structure
the injector and monitor subsystems of this pattern.

lll. Design Pattern: Injector

Example

In the development of aFault Injedion tod, the first problem is to find a structure that makes
the fault injedion asit is, namely, a structure that will simulate the presence of faults insgde the system
under test.

Context

Indde a architedure for a Software Fault Injedion tod, the developer wants to crede a
structure that will produce or simulate the presence of faultsin the system under test.

Problem

Indde the tod or program that makes fault injedion, there should be a module or component
that is the one which effedively simulates the occurence of faults insde the system under test. This

component isin close mntact with the target system, therefore it should work in the same environment
and in the same @nditions of the system. It should change the behavior of some dement inside the
system under test, in such way that it seems to have a fault. It should also manage the fault injedion
considering the fact that they may be permanent, transient, or intermitent.

Beyond these activities, the dructure that will make the fault injedion should alow the
balance of the foll owing forces:

Solution

The structure that makes the fault injedion as it is would be esily adaptable to work
under adifferent computing environment.

The digturbance of the target system should be aslow as posshle. In order to perform the
test in the closest to red conditions, the injedion component should interfere the
minimum in the exeaution of the system under test.

It should be possble to use the same structure either in multi-thread environments or
single-thread environments.

The injedor component should be esily extensible, in the meaning that it can work with
new kinds of faults, added after the design of thetod has already been done.

In this sdion it is described a structure to injed faults. This gdructure will have three
components, listed bel ow:

Injection manager: this component will control the injedion process in itsalf. It will
instantiate the injectors (described in the foll owing item) accordingly to the kind of fault
to beinjeded. Also, the manager will activate them in accordance with the timing o the
fault. And yet the manager will be able to activate the injedors smultaneoudy, in case it
will be working under a multi-thread environment. Finally, it will verify if the injedors
managed to do their jobs, when it will return amessage of success.

Injector: it is ingantiated by the injection manager to take cre of the injedion of some
spedfic kind o fault. It should be a subclassof an abstract base dassfor the injedors, in
which each subclassis written to deal with some spedfic kind of fault. However, the
injedor does not communicae diredly with the system under test: it does © through a
physical injector (described in the following item). When an injector is ingtantiated, this
one automatically instantiates an asociated physical injector.

Physical injector: it isthe cmponent that communicates diredly with the system under
test, and therefore it is the lowest level component. It presents a standart interface, which
contains primitive operations to communicae with the target system, accordingly with the
environment of the latter one. If it is required to make the fault injedion in a new
environment, it is expeded that only the physical injector hasto be rewritten.

Each component should be the most cohesive and weakly linked as posshle. By doing so, it
may be posshle to change some of these mmponents withoud interfering in the others.

Structure

The following diagram shows the structure discussed in the previous sdion.

Systam
undar tast

— Injector Faultd

Injection
Manager

Injector Faultl

1

fnjector —] Injector Fault2

[Primitives 1

i Physical Injector

Fig. 2. “Injector” design pattern structure.

The interface | Primitives refers to the set of the primitive operations for communicétion with

the target system.

Dynamics

A scenario for the exeaution of the structure previously exposed could be the foll owing:

(i)

(i)
(iii)

(iv)
(v)
(vi)

(vii)
(viii)

Theinjection manager receaves the spedfication of a fault (or faults) to beinjeded in
the system under test.

It instantiates the injedors that take cae of each kind o fault receéved.

By itstime, each injector instiates a physical injector to communicate with the target
system.

The injection manager activates each of the injectors, so they make the fault
injedion. If it is working under a multi-thread system, the injectors can be activated
simultaneoudly.

Each injector performsthe fault injedion through the physical injectors.

If any of the faults to be injeded in the target system presents a repetition pettern,
the injection manager activatesitsinjector again, following steps (iv) e (v).

Each injector returnsthe result of its operation.

The injection manager receaves the results of all injectors and returns if it was
successful or not to injed the spedfied faults.

Implementation

A possble way to implement the “Injedor” pattern isindicated bel ow:

(1) Specify if the programthat will do the fault injection can be multi-thread or not. The fact
that the tod is multi-thread ar not may change the way it works. Namely, if it will be able
toinjed several faults smultaneoudly (if it is multi-thread) or not.

(2) Establish afault modd. The developer should elaborate a fault model with which he or
shewill work. Thisis, he or she should spedfy the types of faults that will be injected.

©)

(4)

®)

(6)

)

Elabarate a set of primitive operations for communicating with the target sysem In this
moment, it should be daborated a set of primitive operations that allows the
communication with the target system.

Implement the physical injedors. Once step (3) is done, the physical injectors should be
implemented. These will have a interface that is the set of primitive operations
established in step (3). In this gep the developer will have the dosest contact with
caracteristics of the environment.

Implement an abstract base dassfor injedor. It should be aeated an abstract base dass
for the injectors. This classwill establish a @mmon interface for al injector and it will
also have some default methods that the injectors may reuse.

Implement the injedors for each kind o fault. Using the abstract base dassdefined in step
(5), theinjectors for each kind o fault are implemented, acoordingly with the fault model
established in step (2). In this process it should be take into acoount the set of primitive
operations for communication with the target system defined in step (3).

Implement the injedion manager. It should be determined how the injection manager,
based on a fault spedfication recaeved, will instantiate the corred injectors and activate
them in theright time. In this gep, it should be taken into acocount whether the system is
multi-thread ar not, what has been defined in step (2).

Consequences

The adoption of the “Injedor” design pattern brings the foll owing benefits:

It makes easer to rewrite the injedion component to work in anew environment. All the
code that has to deal with spedfic caracteristics of the environment is concentrated in the
physical injector. If it isrequired to change the environment, the canges in the ade will
be restricted to the physical injector.

It is easly extensible. In case it is needed to include new faults in the fault model, the
developer will have only to create anew subclass of the abstract base dass for the
injedors. Also, he or she will have to modify the injection manager to reagnize a fault
spedfication for this new kind o fault.

The same ohjed structure can be used for multi- or single-thread environments. In case
the injection manager receves the spedfication of several faults to be injeded, it will
instantiate several injedors. If it is a multi-thread environment, they can be activated
simultaneoudly; if not, they can be activated sequenceally. As an additional advantage,
this means that only the injection manager has to be modified to change from multi-
thread to single-thread, or vice-versa.

The structure needs a minimum of communication with other modules in the fault
injedion program. Asit can be seen, the mmunicaion with other modules is restricted
to afault spedfication, in the beginning, and a operation result in the end.

However, the present pattern causes the foll owing problems:

The design pettern pus a level of indiredion between the injector and the system under
test, in the form of the physical injector. Thisindiredion resultsin a overhead, which may
cause a disturbancein its exeaution.

Known Uses

SOFIT (Software Object-oriented Fault Injection Todl). In the paper describing the Fault
Injedion tod SOFIT [AvT95], Avresky et al. first reaognize the neal for some @mmon structures for
performing Fault Injedion, in order to avoid that developers would reaeae the same sructures each
time anew Fault Injedion tod was designed. Clealy, Avresky et al. were looking for a pattern, but at
that time, patterns were not as widespread as today. For performing the injedion itself, Avresky et al.
sugeest a three level structure, just as described in this pattern, and they use it in their tod, named

SOFIT.

FIRE. Aiming at building a highly structured Fault Injedion tod, the developers of FIRE did
the same for theinjedion asit is, making a caefully designed structure for that task. The level of detail
in the design of FIRE for that structure was very helpful in the aedion of this pattern.

JACA Fault Injection Tool. In that tod, one can find the most closely implementation of this
pattern. That way, it may serve as an example of how to use the structure described here for injedion as
itisinareal projed.

Related Patterns

The following pettern isrelated to “Injedor” design pattern:

e The "Fault Injedor” architedura pattern provides an architedure for a program that
performs fault injedion. Therefore, the “Fault Injedor” architedural pattern gves an
architedure where the “Injedor” design pattern could fix in.

IV. Design Pattern: Monitor

Example

There ae many tedhniques to perform the fault injedion as it is. However, the program that
test systems using fault injedion has also to monitor the target system in order to olserve its behavior.
The developer of a fault injedion program or tod must define a structure that allows the program to
insped several aspeds of the behavior of the system under test.

Context

Indde the achitedure of a Software Fault Injedion tod, the developer wants to create a
structure that all ows the monitoring o a system undergoing fault injedion testing.

Problem

A fault injedion tod or program tries to generate or simulate faults inside the system under
test. But, it isalso required to monitor the system so it can be verified how it will react in the presence
of thefaults. There should be a Structure that contains and controls a number of sensors in contact with
the target system. It is important to remember here that what is being lodked after is a structure to
monitor a system undergoing fault injection testing. It is not an objedive of this pattern to propose a
general architedure to monitor a system under any circunstances and for different purposes.

Such structure for monitoring should balancethe foll owing forces:

* The structure that does the monitoring works in a given computing environment. In the
case that this environment change, the work required to adapt the monitoring structure
should be as small aspossble, and it should use the maximum of code already written.

e The monitoring of the system under test should cause as low intrusivity as posshle in the
exeaution of the target system. It is desirable that the monitoring process do not modify
the onditions under which the target system works with.

e Itisdesrable that the same monitoring structure should work in a multi- or single-thread
environment as well.

e The monitoring structure should allow that new aspeds of the target system to be
observed be added even after the sructureis already defined and implemented.

Solution

The structure for monitoring a system undergoing Fault Injedion testing should be totally
made of software, and henceforth it would depend d shared resources with the target system. This
approach has been chosen becuse it is considered cheaper and more versatile. The monitoring
structure would have three @mponents

e Monitoring manager: this component would control and coordinate the monitoring
process To each dfferent asped of the target system, it would instantiate a spedfic
sensor (seefoll owing item). The emponent would receve the data of each of the sensors
and it would pu them in data objects that would be sent to an external component.

e Sensor: this object isin charge of monitoring some spedfic asped of the system under
test. It is defined an abstract base dassfor all sensors. This classwould spedfy a common
interface ad some default methods. From this class al the other sensors would be
derived, each sensor for each dfferent asped. The sensors communicate with the target
system through physical sensors (seebe ow).

e Physical sensor: the objeds of this classmakes the mmmunication between sensors and
the system under test. They have as interface a set of primitive operations that al ows the
communication with the target system without having to spedfy details relative to the
environment. Therefore, only this component has to ded with those detail s.

The @mponents above, again, should be the most cohesive and most weakly linked as
posshble. Thisway, if it is necessary to change some of them, the others may remain unmodified.

Structure

The componentslisted in the previous sdion should be structured in the foll owing way:

bl anit oring
Manager
Sensarfspect 1
1
n
—
Sensor SensorAspect?
1
[Primitives 1
fmmem e C) Sensorfspect
Systam ! Fhysical Sensor]

unﬂ'erTes.t ...

Fig. 3: “Monitor” design pattern structure.

The interface | Primitives designates the set of primitive operations that communicates with the
target system.

One may redize that the above structure is very much similar to the structure described in the
“Injedor” pattern. That happens becuse of the foll owing fact. By studying monitoring theory, one can

seethat a “monitor” is a processthat waits for some event, and when that event happens, it may trigger

an action. In

fact, an “injedor” isin fact a spedalized case of a “monitor”, in which the injedor waits

for an event (the gart of exeaution of the system under test, for example) andthat will trigger an action,
which isthe smulation of the presence of afault.

Dynamics

The following scenario for a exeaution of a component based on the pattern can be daborated:

(i) The monitoring manager recaves a requirement for monitoring the system under
test.

(i) The monitoring manager ingtantiates sensors to monitor each dfferent asped of the
system.

(iii) Each sensor instantiatesits associated physical sensor.

(iv) The monitoring manager activates the sensors. If it is a multi-thread environment,
they are activated simultaneously. Otherwise, they may be activated sequencedly.

(v) The sensor communicaes with the physical sensor, through the primitive operations
for communication, to start to gather data from the target system.

(vi) The physical sensor communicates with the system under test and gt the required
data. It passesit to the sensor.

(vii) The sensor gives the data back to the monitoring manager.

(viii) The monitoring manager packs the datain a data objed and it sends the objed to the

(ix)

external component which hasrequired the monitored data
The processis repeaed from sep (v), while it is necessary to gather data from the
target system.

Implementation

Below it is displayed the steps for the implementation process of the monitoring structure:

@

@
©)

(4)

®)

(6)

Specify if the system will work in a multi- or single-thread environment. One of the key
pointsin monitoringisto know whether the monitor will work in a multi- or single-thread
environment.

Describe what data from the target system is required. It should be determined what
aspeds of the target system will be monitored, and what data will be gathered from them.
Formulate a set of primitive operations to commnunicate with the target system. A set of
primitive operations that allows the communicaion with the target system should be
created. These operations should have not to spedfy caracteristics of the environment.
Implement the physical sensors. Based on the operations created in step (3), the physical
sensors should be designed, with that set of operations as their interface Only in this step
isthat the developer has to take cae of the given caracteristics of the environment.
Implement the sensors. An abstract base dass for the sensors should be daborated, in
order to spedfy a common interface and also some default methods that they may reuse.
After that, taking care of the aspeds defined in step (2), the sensors are buil t.

Implement the monitoring manager. The monitoring manager should be implemented. A
way for instantiating and activating the sensors should be spedfied, taking into account
what was defined in step (1). Also in the present sep, it will be defined how the
monitoring manager will pack the datain objects.

Consequences

The

adoption of the “Monitor” design pattern brings the foll owing benefits:

e It makes eader to adapt the monitoring structure to work in a new environment. If it is
required to work in a new environment, it is expeded that only the physical sensor has to
be rewritten.

e |t can be easily extended. In the ase that new aspeds of the target system have to be
monitored, what is required is the creaion of a new subclass of the abstract base dass
for the sensors, that will monitor the new asped, and a modification of the monitoring
manager so it can instantiate this new classof sensors.

e The same structure works in multi- or single-thread environments. The multi-thread
environment is preferable. But, if thisis not possble, a scheme such as polling could be
used, and the structure would be the same.

e The monitoring structure requires a minimum of externa communicaion. In the
beginning it receves a solicitation for monitoring the target system from some external
component. While it is monitoring, the structure sends back data obeds. This heps
keegping thelevel of intrusivinessto a minimum.

However, the “Monitor” pattern causes the foll owing problems:

e The design pettern pus a level of indiredion between the sensor and the system under
test, which isthe physical sensor. Thismay increasethe level of intrusiviness

e It may aso increase the intrusiviness because it shares computing resources with the
target system, which inevitably brings an overhead to the system.

Known Uses

SOFIT (Software Object-oriented Fault Injection Tool). For monitoring, SOFIT uses the
same threelayer structurethat it uses for injedion, and the paper describing the tod [AvT95] describes
asageneral structure for Fault Injedion tods, just asin this pattern.

FIRE (Fault Injection using a REflective architecture) [Ros98]. The Fault Injedion tod,
FIRE, as in the whole system, uses adso for monitoring a caefully designed structure, which is
described in detail. Again, it was very helpful in designing this pattern.

JACA Fault Injection tool. For monitoring, too, the JACA Fault Injedion tod gives the most
closdy implementation of this pattern, illustrating the similarities between the structures for fault
injedion, asit is, and monitoring.

Related Patterns

The following pattern may be related to the “Monitor” design pattern:

e The “Fault Injedor” architedura pattern intends to solve the problem of how to archited
a program that does fault injedion. The design pattern “Monitor” fixes in the architedure
proposed by that pattern.

V. Conclusion

The pattern system shown here @nsolidates the knowledge abou how to do software fault
injedion. It gives a base on knowledge from which other researchers may extend fault injedion,
creating new ways of performing this technique. The pattern system also gives to the devel opers many
resources in order to design a fault injedion program. By doing so, it allows the development of more
fault injedion programs. This may make the software fault injedion technique even more popular.

VI. References

[AVTO5]

[BRROY]

[KJAOSE]

[LMRO1]

[Ros98]

Avresky, D. R.; Tapadiya, P. K. “A Method for Developing a Software Based Fault
Injedion Tod”. Texas A&M University, Department of Computer Science, Technical
Report 95-021. Texas, USA, 1995.

Benso, Alfredo; Rebaudengo, Maurizio; Reorda, Matteo Sonza. “FlexFi: A Fexible
Fault Injedion Environment for Microprocessor-Based Systems’. SAFECOMP 1999.
Springer-Verlag, Heidelberg, Germany, 199, pages 323-335

Krishnamurthy, N.; Jhaveri, V.; Abraham, J. “A Design Methodology for Software
Fault Injedion in Embedded Systems’. Proc of the 1998 IFIP International Workshop
on Dependable Computing and its Applications. Johannesburg, South Africa, Jan. 12-
14, 1998, pages 237-248.

Leme, Nelson G. M.; Martins, Eliane; Rubira, CedliaM. F. “A Software Fault Injedion
Pattern System”. Proceedings of the I1X Brazlian Symposum on Fault-Tolerant
Computing. Floriandpolis, SC, Brazil, March 5™-7", 2001, pages 99-113.

Rosa, Amanda. Uma Arquitetura Reflexiva para Injetar Falhas em Aplicaces
Orientadas a Objetos. Mastership thesis, UNICAMP, Campinas, Brazil, 1998.

