
1

Evictor

Prashant Jain

Prashant.Jain@mchp.siemens.de

Siemens AG, Corporate Technology

Munich, Germany
Copyright © 2001, Prashant Jain. Permission is granted to copy for the PLoP 2001 conference. All other rights reserved.



Evictor 2
Evictor

The Evictor1 pattern describes how and when to release resources such as memory and file
handles to optimize resource management.

Example Consider a network management system (NMS) that is responsible for managing several
network elements (NEs). These NEs are typically represented in a topology tree. A
topology tree provides a virtual hierarchical representation of the key elements of the
network infrastructure. The NMS allows a user to view such a tree as well as get details
about one or more NEs. Depending upon the type of the NE, its details may correspond to
a large amount of data. For example, the details of a complex NE may include information
about its state as well as the state of its components.

The topology tree can be constructed at application start-up or when the user asks to view
the network of NEs, or some time in between. Similarly, the details of all the NEs can be
fetched as the tree is constructed or can be deferred until the user makes a request for it.
However, regardless of when the details of the NEs are brought into memory, keeping these
details in memory can be quite expensive. If the details of an NE are never accessed by the
user again, they will consume valuable resources in the form of memory. On the other hand,
the user may request the details of the same NEs and therefore keeping the details in
memory (a.k.a caching) can be desirable to improve performance. If the details of an NE
that is frequently accessed by a user are not cached, it can lead to expensive calls being
made to the real NE to get its details. This in turn can degrade system performance.

Context Systems that need efficient management of resources.

Problem Highly robust and scalable systems must manage resources efficiently. A resource can
include local as well as distributed objects and services. Over time, an application acquires
many resources some of which are only used once. If an application keeps on acquiring
resources without ever releasing them, it will lead to performance degradation along with
system instability. To avoid this problem, the application may immediately release
resources after using them. But the application may need to use the same resources again,
which would require re-acquisition of those resources. However, re-acquisition of
resources can itself be expensive and should therefore be avoided by keeping frequently
used resources in memory. To address these conflicting requirements of resource
management requires the resolution of the following forces:

• The frequency of use of a resource should influence the lifecycle of a resource.

• Resource release should be determined by parameters such as type of resource,
available memory and CPU load.

• The solution should be transparent to the user.

Solution Monitor the use of a resource and control its lifecycle using some form of strategy such as
Least Recently Used (LRU) or Least Frequently Used (LFU). Each time a resource is used,
it is marked by the application. A resource that is not recently used or not frequently used
does not get marked. Periodically or on demand, the application selects the resources that
are not marked and releases or evicts them. Resources that are marked continue to stay in
memory since they are used frequently.

1. The idea behind the Evictor Pattern was first described in [HeVi99].
Copyright © 2001, Prashant Jain. Permission is granted to copy for the PLoP 2001 conference. All other rights reserved.



Evictor 3
Alternatively, other strategies can be used to determine which resources to evict. For
example, for memory-constrained applications, the size of resources can be used to
determine which resource(s) to evict. In such case, a high-memory consuming resource
may get evicted even if it was recently used.

Note that the solution only focuses on strategies for resource release/removal. Solutions for
resource acquisition are described in Lazy Acquisition [Kirch01], Leasing [JaKi00], and
Lookup [KiJa00] patterns.

Structure The following participants form the structure of the Evictor pattern:

A resource provides some type of functionality or service and includes local as well as
distributed objects and services

A user uses a resource and can include an application or an operating system.

An evictor evicts resources based on one or more eviction strategies.

An eviction strategy describes the criteria that should be used to determine if a resource
should be evicted or not.

The following CRC2 cards describe the responsibilities and collaborations of the
participants.

Implementation There are four steps involved in implementing the Evictor pattern.

1 Define eviction interface: An eviction interface should be defined that will be
implemented by all resources that can be evicted. For example, the eviction interface in
Java may look like:

public interface EvictionInterface {
public boolean isEvictable ();
public Object info ();
public void beforeEviction ();

}

2. Class-Responsibility-Collaborators (CRC) cards help to identify and specify objects or the components of
an application in an informal way, especially in the early phases of software development. A CRC-card describes
a component, an object, or a class of objects. The card consists of three fields that describe the name of the
component, its responsibilities, and the names of other collaborating components.

Class
Evictor

Responsibility
• Evicts resources based

on one or more eviction
strategies

Collaborator
• Resource
• Eviction Strategy

Class
User

Responsibility
• Uses a resource

Collaborator
• Resource

Class
Resource

Responsibility
• Provides application

functionality

Collaborator
• User

Class
Eviction Strategy

Responsibility
• Describes criteria to use

to determine which re-
source to evict.

Collaborator
Copyright © 2001, Prashant Jain. Permission is granted to copy for the PLoP 2001 conference. All other rights reserved.



Evictor 4
The method isEvictable() can be used to determine if an object is evictable.
Please see step 2 for details. The method info() is used by the Evictor to extract
strategy-specific information from the object to determine whether or not to evict it.
Please see step 4 for details. The method beforeEviction() serves as a hook
method that can be called by the Evictor before it evicts an object. This gives the object
a chance to release any resources it may have acquired.

For example, the EJB Session Bean and Entity Bean interfaces include a method called
ejbPassivate() that is called just before an entity or a session bean is evicted. This
gives the bean a chance to release any acquired resources.

2 Determine evictable resources: The developer must determine which resources can and
should be evicted. For example, resources that are always required by an application or
those that can not be re-acquired should not be evicted. Any resource that can be evicted
must implement the eviction interface. Prior to evicting the resource, the application
should call the interface giving the resource a chance to do any necessary clean-up
including persisting any necessary state.

In the Java interface described above, the application can use the method
isEvictable() to indicate if a resource can be evicted. If the method returns true,
the resource is considered by the Evictor as a possible candidate for eviction; if the
method returns false, the Evictor ignores the resource.

3 Determine eviction strategy: Based on application requirements, different eviction
strategies can be used in determining when to evict resources as well as which of the
evictable resources to evict. Some of the common strategies used in determining which
resources to evict include "Least Recently Used" (LRU) and "Least Frequently Used"
(LFU).

In CORBA, an application can use LRU or LFU strategies to allow the POA to evict
servants that are not frequently used.

In addition, a user defined strategy can be used that may take different parameters in
determining which resource to evict. For example, a strategy may take into account how
expensive it is to re-acquire an evicted resource. Using such a strategy, resources that
are less expensive to re-acquire may be evicted even if they have been more frequently
used compared to resources that are more expensive to re-acquire.

4 Define the usage of eviction in the system: The business logic of evicting resources
needs to be added to the Evictor. This includes determining how and when resources
should be evicted as well as actually marking resources to be evicted. Typically, the
Evictor exists as a separate object or component in the application and is configured
with the necessary eviction strategy by the application. For example, an application may
choose to evict resources only when available memory goes below a certain threshold.
A different application, on the other hand, may implement a more proactive policy and
may periodically evict resources even if memory does not go below a certain threshold.

An Evictor can use the Interceptor [POSA2] pattern to intercept user access of an object.
The Interceptor can mark the object as being recently used in a manner that is
completely transparent to the user. Periodically or on demand, the Evictor will typically
query all evictable objects to determine which object(s) if any to evict. In the Java
interface described above, the Evictor will invoke the method info() on each object
and use the information it receives in the context of the eviction strategy to determine
whether or not to evict the object.

Example Resolved Consider the example of an NMS that is responsible for managing a network of several
NEs. The details of the NEs can be fetched at system start-up time or when the user makes
a request for them. Without a priori knowledge of a user's intentions, resource usage needs
Copyright © 2001, Prashant Jain. Permission is granted to copy for the PLoP 2001 conference. All other rights reserved.



Evictor 5
to be optimized so that only those NEs are kept in memory that are frequently accessed by
the user. The eviction strategy used for this example is therefore to evict NEs that have not
been accessed by the user for a threshold amount of time.

Each NE needs to implement the Eviction interface:

public class NE implements EvictionInterface {
private NEComponent [] components;
private Date lastAccess;

public boolean isEvictable () {
// Assume all NEs can be evicted
return true;

}

public Object info () {
// Return the date/time of last access that
// will then be used by the Evictor to determine
// whether or not to evict us
return lastAccess;

}

public void beforeEviction () {
// First, release all resources currently held

// Now, call beforeEviction() on all NE components
// to give them a chance to release necessary resources
for (int i = 0; i < components.length; i++) {
components[i].beforeEviction ();

}
}

// ... other NE operations ...
}

Similarly, all first class NE components need to implement the Eviction interface so that
they can recursively release any resources when they are evicted.

The Evictor can be implemented as an object that runs in its own thread of control. This
allows it to periodically check if there are any NEs that have not been accessed for a
threshold duration of time.

public class Evictor implements Runnable {
private NE [] nes;
public Evictor () {

new Thread(this).start();
}

public void run() {
// For simplicity, we run forever
while(true) {
// Sleep for configured amount of time
try {

Thread.sleep(pollTime);
}
catch(InterruptedException e) {break; }

// Assume "threshold" contains the date/time such
// that any NE accessed before it will be evicted

// Go through all the NEs and see which ones to evict
for(int i = 0; i < nes.length; i++) {
NE ne = (NE) nes[i];
if (ne.isEvictable())
{

Date d = (Date) ne.info();
if (d.before(threshold))
{

Copyright © 2001, Prashant Jain. Permission is granted to copy for the PLoP 2001 conference. All other rights reserved.



Evictor 6
ne.beforeEviction ();
// Now remove the NE (application-specific)

}
}

}
}

}
}

Note that the information that is returned by the method info() and how the Evictor
interprets that information is application-specific and can be tailored according to the
eviction strategy that needs to be deployed.

Variants Deferred Eviction: The process of evicting one or more objects can be refined into a two-
step process. Instead of removing the objects immediately, they can be first put into some
kind of a FIFO queue. When the queue gets filled, the object at the head of the queue is
evicted. The queue therefore serves as an intermediate holder of objects to be evicted
giving the objects a “second chance.” If any of these objects are accessed prior to being
removed from the queue, they need not incur the cost of creation and initialization. This
variant, of course, incurs the cost of maintaining a queue and also the resources associated
with keeping the evicted objects in the queue.

Evictor with Object Pool: An object pool can be used to hold evicted objects. In this
variant, when an object is evicted, instead of removing it from memory completely, it
simply loses its identity and becomes an anonymous object. This anonymous object is then
added to the object pool if it is not completely full. If the object pool is already at its
maximum capacity, the object is removed from memory. When a new object needs to be
created, an anonymous object from the queue can be dequeued and given a new identity.
This reduces the cost of object creation. The size of the object pool should be set according
to available memory.

Eviction Wrapper: An object that is evictable need not implement the Eviction interface
directly. Instead, the object can be contained inside a wrapper object [POSA2] that then
implements the Eviction interface. The Evictor will invoke the beforeEviction()
method on the wrapper object that in turn is responsible for evicting the actual object. This
variant makes it easier to integrate legacy code without requiring existing classes to
implement the Eviction interface. An example of this variant is the use of reference objects
as wrapper objects in Java. Please see the section Known Uses for further details of this
example.

Known Uses EJB—The EJB specification defines an activation and deactivation mechanism that can be
used by the container to swap out beans from memory to secondary storage, thus freeing
memory for other beans that need to be activated. The bean instances must implement the
method ejbPassivate() and release any acquired resources. This method is called by
the container immediately before swapping out the bean.

Java—The release of JDK 1.2 introduced the concept of reference objects that can be used
to evict an object when heap memory is running low or when the object is no longer being
used. A program can use a reference object to maintain a reference to some other object in
such a way that the latter object may still be reclaimed by the garbage collector when
memory is running low. In addition, the Reference Objects API defines a data structure
called a reference queue onto which the garbage collector places the reference object prior
to evicting it. An application can use the reference queue to take necessary action when
certain objects become softly, weakly, or phantomly reachable and hence ready to be
evicted.

CORBA—To manage memory consumption in an application, a Servant Manager
typically keeps an upper bound on the total number of instantiated servants. If the number
Copyright © 2001, Prashant Jain. Permission is granted to copy for the PLoP 2001 conference. All other rights reserved.



Evictor 7
of servants reaches a specified limit, the servant manager can evict an instantiated servant
and then instantiate a servant for the current request [HeVi99].

Paging—Most operating systems that support virtual memory make use of the concept of
paging or swapping. The OS copies a certain number of pages from the storage device into
main memory. When a program needs a page that is not in main memory, the OS evicts a
page from memory and copies it to the storage device. It then copies the required page from
the storage device into main memory. This allows the OS to keep an upper bound on the
total number of pages in main memory.

Consequences There are several benefits of using the Evictor pattern:

• Scalability: The Evictor pattern allows an application to keep an upper bound on the
amount of resources that are being used and hence in memory at any given time. This
allows an application to scale without impacting total memory consumption.

• Low-memory Footprint: The Evictor pattern allows an application to control via
configurable strategies which resources should be kept in memory and which resources
should be released. By keeping only the most essential resources in memory, an
application can be kept lean as well as more efficient.

• Transparency: Using the Evictor pattern is completely transparent to the user and
therefore does not impact application usage from the user’s perspective.

• Reliability: The Evictor pattern reduces the probability of resource exhaustion and thus
increases the stability of an application.

There are some liabilities of using the Evictor pattern:

• Overhead: The Evictor pattern requires additional business logic to determine which
resources to evict and to implement the eviction strategy. In addition, the actual eviction
of resources can incur a significant execution overhead.

• Re-acquisition Penalty: If an evicted resource is required again, the resource would
need to be re-acquired. This can be expensive and can hinder application performance.
The probability of this happening can be reduced by fine tuning the strategy used by the
Evictor to determine which resources to evict.

See Also The Leasing design pattern [JaKi00] describes how the usage of resources can be bound by
time thus allowing unused resources to be released automatically. The Lazy Acquisition
design pattern [Kirch01] describes how resources can be (re-)acquired at the latest possible
point in time during system run-time in order to optimize resource usage.

The Resource Exchanger design pattern [SaCa96] describes how to reduce a server’s load
in allocating and managing resources. While the Evictor design pattern deals with releasing
resources to optimize memory management, the Resource Exchanger design pattern deals
with exchanging resources to minimize resource allocation overhead.

Acknowledgements

Thanks to the patterns team at Siemens AG and to my shepherd, John Vlissides, for their
feedback and valuable comments.

References

[BRJ98] G. Booch, J. Rumbaugh, I. Jacobsen: The Unified Modeling Language User Guide, Addison-Wesley,
1998

[GHJV] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns – Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995
Copyright © 2001, Prashant Jain. Permission is granted to copy for the PLoP 2001 conference. All other rights reserved.



Evictor 8
[HeVi99] M. Henning and S. Vinoski, Advanced CORBA Programming with C++, Addison-Wesley Longman,
Inc., 1999

[JaKi00] P. Jain and M. Kircher, Leasing Pattern, Pattern Language of Programs conference, Allerton Park,
Illinois, USA, August 13-16, 2000

[KiJa00] M. Kircher and P. Jain, Lookup Pattern, European Pattern Language of Programs conference, Kloster
Irsee, Germany, July 5-9, 2000

[Kirch01] M. Kircher, Lazy Acquisition Pattern, European Pattern Language of Programs conference, Kloster
Irsee, Germany, July 4-8, 2001

[POSA2] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann: Pattern-Oriented Software Architecture—
Patterns for Concurrent and Distributed Objects, John Wiley and Sons, 2000

[SaCa96] A. Sane and R. Campbell, Resource Exchanger, in J. Vlissides, J. Coplien, and N. Kerth (eds.),
Pattern Languages of Program Design, Volume 2, Addison-Wesley, 1996
Copyright © 2001, Prashant Jain. Permission is granted to copy for the PLoP 2001 conference. All other rights reserved.


