                Patterns for Operating Systems Access Control 

                                                  Eduardo B. Fernandez (
                                  Dept. of Computer Science and Engineering

                                               Florida Atlantic University

                                                       Boca Raton, FL 

                                                       ed@cse.fau.edu 

Introduction

Operating systems are fundamental to provide security to computing systems. The operating system supports the execution of applications and any security constraints defined at that level must be enforced by the operating system. The operating system must also protect itself because compromise would give access to all the data in its files. A weak operating system would allow hackers access not only to data in the operating system files but data in database systems that use the services of the operating system. The operating system performs this protection by protecting processes from each other and protecting the permanent data stored in its files [Sil03]. For this purpose, the operating system controls access to resources such as memory address spaces and I/O devices.  In most systems, access to files is controlled by a special file permission mechanism, while other resources are controlled through diverse mechanisms. Other systems have a unified way of protecting all resources.

We present here five patterns that can be used to control access to process resources, including files. These patterns are based on abstract security models realized using mechanisms of the operating system. We start by describing a File Authorization pattern. This pattern was introduced in [Fer01] as an illustration of the use of the Authorization pattern; we develop it here in detail. This is a relatively high-level architectural pattern, describing a user view of file authorization. Access to lower-level resources can be done in a unified way by using the Controlled Execution Environment pattern. This pattern uses three simpler patterns: the Virtual Address Space Access Control pattern, to control access to areas of the virtual address space of processes, the Execution Domain pattern, to describe dynamic execution rights, and the Reference Monitor pattern, to describe access control enforcement. The simpler patterns have value on their own right and are also used in systems that do not use the Controlled Execution Environment pattern. All these patterns may enforce at the operating system level authorizations defined at the application level as well as protecting the operating system itself.

Security systems should be designed according to fundamental principles [Sal75]. Specifically, our patterns apply the following:

· Accountability: All actions are accountable to some subject, e.g., a user or a process. 

· Need-to-know (least privilege): Subjects should get only the rights needed to perform their functions.

· Complete mediation: Every access request must comply with the defined security controls.

Security mechanisms must follow also a security model and we have presented patterns for the most important models [Fer01]. A basic security model pattern, applied here in several ways, is the Authorization pattern (Figure 1). This pattern realizes a variation of the access matrix model [Pfl97]. This pattern defines an abstract model and can be applied to all the levels of the system. Subjects (active entities) are authorized to access protection objects (files, resources) in specific ways (access types such as read, write, execute) and possibly according to a data-dependent predicate. A copy flag indicates if a right can be transferred. Two basic ways to implement the access matrix are:

· Access Control Lists (ACLs), where each protection object carries a list of the subjects authorized to access it and their access types.

· Capabilities, that correspond to rows of the access matrix and where subjects carry tickets or credentials that allow them to access objects in specific ways.

[image: image1.wmf]<<actor>>

aUser

:

aDirectory

aFile

:

accessPermission

:

open(

aFile

)

searchFile

(

aFile

)

open

setUp

write(

aFile

)

checkRights

(

aUser

, 

aFile

)

‘ok’

write(

aFile

)

[image: image2.wmf]Process

Descriptor

base

limit

access_type

*

VAS

Segment

address

size

*

*

1

Accesses


[image: image3.wmf]:User

:Process

:Domain

:

RefMonitor

:Authorization

x:

activate

enter

write(x)

exists(x)

exists(write)

write(x)

[image: image4.wmf]*

*

*

*

*

1

  Resource {A}

name

address

amount

 

      Domain

ID

create( )

enter ( )

delete( )

ProtectionObject

ID

create ( )

close( )

delete( )

Executes In

 

ConcreteResource

Authorization

right

*

Activates

1

   User

 ID

 Process

 ID

Composite

Domain

Simple

Domain

*

Descriptor

1

0..1

Uses

Reference

  Monitor

Request

*

1

*

1

[image: image5.wmf]*

*

*

Domain

ID

create( )

enter( )

delete( )

Executes In

Descriptor

base

1

Process

ID

Composite

Domain

Simple

Domain

*

limit

access_type

[image: image6.wmf]Process

Reference 

Monitor

Authorization 

Rules

MakesRequestTo

*

*

*

*

Exists

Concrete

Reference

Monitor

Authorization

*

Request

resource

access_type

[image: image7.wmf]:Process

:

RefMonitor

:Authorization

x:

write(x)

exists( )

write(x)

:

AuthorizationRules

exists(x, write)

            







                                    Figure 1. The Authorization pattern

An important extension of this model is Role-Based Access Control (RBAC) [San96], used now in most operating systems and presented as a pattern in [Fer01, Yod97]. In an RBAC system subjects are roles and users are assigned to roles according to their functional tasks or needs and can implement a need-to-know policy, fundamental for security. For convenience, in many systems users are grouped (for example, all those working in a given project). Subjects thus may be users, groups, and roles. For operating systems, subjects also include executing processes. Typically, for accountability reasons, a process runs on behalf of a user, group, or role. 

For example, the different members of a project may share the project files with different rights, some may be allowed to read and write the files, while others may only read them. When groups are used, rights are given to a group instead of to each individual user; that is, all the users in a group have similar rights for a protected object, e.g., several programmers may be allowed to modify a file.  When we use roles in a project, we may have roles such as project leader, developer, analyst, tester, technical writer. Several users may be assigned to the same role and a given user may have more than one role. 

The File Authorization pattern

Intent

Control access to files in an operating system. Authorized users are the only ones that can use a file in specific ways.

Context

The users of operating systems need to use files to store permanent information. These files can be accessed by different users from different workstations and access to the files must be restricted to authorized users who can use them in specific ways.  Because of the needs of the institution, some (or all) of the files must be shared by these subjects. Use cases for a file system include creation and deletion of files, opening and closing of files, reading and writing files, copying files, etc. A subject has a home directory for each authorized workstation, but the same home directory can be shared among several workstations or among several subjects. The home directory is used to search the files for which a subject has rights. Files are organized using directories, usually in a tree-like structure of directories and files. This facilitates the search for specific files. 

Example

Jim is an application programmer in a bank. He has a user account and some files in the bank operating system. He realizes that the same system also stores files with customer data. These files have no authorization controls. Jim reads several of these files and finds customer information such as SSNs and credit card numbers. He uses this information to charge some items bought at mail order shops.

Problem

Files may contain valuable information and access to them must be controlled carefully. In several recent attacks, hackers obtained lists of credit card numbers by accessing illegally customer data. Because files need to be shared, security becomes harder to enforce.

Forces

We need to balance the following forces:

· There may be different types of subjects, e.g., users, roles, and groups.  The rights for users in groups or roles are derived from the group or role rights (they are implicit rights). Groups of groups are possible, which makes deducing access even harder. All these subjects must be handled uniformly.

· Subjects may be authorized to access files or directories, and to exercise their file rights from specific workstations. To prevent illegal actions we may need ways to apply these two types of authorization.

· Each operating system implements file systems in a different way. We need to abstract out implementation details.

· Not all operating systems use workstations, groups, or roles. We need a modular system where features not used can be cut easily from the model.

Solution

We apply the Authorization pattern first to describe access to files by subjects. Typically, file systems use Access Control Lists that are sets of authorizations. The protection object is now a file component that may be a directory or a file. To reflect the fact that files may be accessed only from some workstations we use the Authorization pattern again, with the same subject and with workstations as protection objects. The tree structure of files and directories can be conveniently described by applying the Composite pattern.

Class diagram

Figure 2 combines two versions of the Authorization pattern with a Composite pattern. File access is an extension of Figure 1 by replacing ProtectionObject by FileComponent and Right by AccessControlListEntry (ACLE), and workstation access is defined by a similar application of the Authorization pattern.

Dynamics

Figure 3 shows the opening and writing of a file. A user actor opens the file, the directory locates it and when found opens it. Opening results in the file access permission being set up for future reference
. When the user later tries to write to the file, her rights to write the file are checked and the write operation proceeds if authorized.

Example resolved

A new operating system is installed that has authorization controls for its files. Now a need-to-know policy is set up, where only users that need access to customer files are given such access. This is the end of Jim’s illicit activities. 

Known uses

This file system pattern can be found in most current operating systems such as Windows, Unix, Linux, etc. Not every one of these systems uses all the concepts of the pattern.

Consequences

This pattern is useful:



                           Figure 2. The File Authorization pattern

· The subjects can be users, roles, and groups by proper specialization of class Subject. Roles and groups can be structured recursively [Fer01]; i.e. there can be role and group hierarchies that permit more flexibility in the assignment of rights.

· The protection objects can be single files, directories, or recursive structures of directories and files.

· Most operating systems use read/write/execute as access types but higher-level types of access are possible. For example, a file representing students in a university could be accesses with commands such as list, order alphabetically, etc. 

· Implied authorization is possible; for example, access to a directory may imply similar type of access to all the files in the directory [Fer94]. This approach allows an administrator to write fewer authorization rules because some access rights can be deduced from others.

· Workstation access is also controlled and workstations can be homes for directories. 

· This is a conceptual model that doesn’t restrict implementation approaches.

· Workstation authorization is separated from file authorization and systems that do not need workstation authorization can just ignore the relevant classes.

· In some operating systems, e.g., Inferno [Rau97], all resources are represented as files. Other systems represent resources by objects with ACLs. This means this pattern could be used to control all the resources of the operating system.

Possible disadvantages are:

· Implementations of the pattern are not forced to follow the access matrix model. For example, Unix uses a pseudo-access matrix that is not appropriate for applying the need-to-know policy
. However, constraints can be added to the pattern to force all the instances of the pattern to conform to an access matrix model.

· Typically, access permissions are implemented as Access Control Lists (ACLs) [Gol99, Sil03]. These are data structures associated with a file where each entry defines a subject that can access the file and its permitted access modes. The pattern models the entries of the ACLs but not the fact that they are associated with the file components. 

Other aspects include: 
· Some systems use the concept of Owner, who has all rights on the files he creates. The Owner in this model corresponds to a special type of subject. When roles are used there are no owners and when groups are used ownership is not inherited in subgroups.

· In some systems, files are mapped to the virtual memory address space. The pattern still applies to this case, although a more uniform solution is then possible (see the Virtual Address Space Access Control pattern).

· In some systems, the directory is not strictly a tree because it is possible to have links between files in different subtrees [Sil03]. Modeling this case would require adding some associations in the model of Figure 2.

Related patterns

This pattern uses the Authorization pattern. If roles are used then the Role-Based access Control pattern [Fer01, Yod97] is also relevant. The file structure uses a Composite pattern [Gam95]. It can use the Controlled Execution Environment for implementation.


                  Figure 3. Sequence diagram for opening and writing to a file.

The Virtual Address Space Access Control pattern

Intent

To control access by processes to specific areas of their virtual address space (VAS) according to a set of predefined access types. 

Context

Multiprogramming systems with a variety of users. Processes executing on behalf of these users must be able to share memory areas in a controlled way. Each process runs in its own address space. The total VAS at a given moment includes the union of the VASs of the individual processes, including user and system processes. Typical allowed accesses are read, write, and execute, although finer typing is possible.

Problem

Processes must be controlled when accessing memory; otherwise they could overwrite each other areas or gain access to private information. While relatively small amounts of data can be directly compromised, illegal access to system areas could allow a process to get a higher execution privilege level and thus access files and other resources. 

Forces

We apply the following forces to this case:

· There is a need for a variety of access rights for each separate logical unit of VAS (segment). In this way security and controlled sharing are possible.

· There is a variety of virtual memory address space structures: some systems use a set of separate address spaces, others a single-level address space. Further the VAS may be split between the users and the operating system. We would like to control access to all of these types in a uniform manner.
· For any approach to be efficient, hardware assistance is necessary. This implies that an implementation of the solution will require a specific hardware architecture. However, the solution must be hardware independent.
Solution

Divide the VAS into segments that correspond to logical units in the programs. Use special words (descriptors) to indicate access rights as the starting address of the accessible segment, the limit of the accessible segment, and the type of access permitted (read, write, execute). Figure 4 shows a class diagram for the solution. A process (class Process) must have a descriptor (class Descriptor) to access a segment in the VAS.
Known uses

The Plessey 250 [Ham73], Multics [Gra68], IBM S/38, IBM S/6000, Intel X86 [Chi84], and Intel Pentium  use some type of descriptors for memory access control.  The operating systems in these machines must use this approach for memory management.

Consequences

Possible advantages of this pattern include:

· This pattern provides the required segment protection because a process cannot access a segment without a descriptor for it. Two processes with descriptors with the same base, limit pair can conveniently share a segment. 

· This pattern applies to any type of virtual address space, single, segregated, or split. 

· If all resources are mapped to the virtual address space, the pattern can control access to any type of resource, including files.

· The solution can be implemented in different ways.

Disadvantages include:

· Segmentation makes storage allocation inefficient because of external fragmentation [Sil03]. In most systems segments are paged for convenient allocation.

· Hardware support is needed, which makes this solution hardware dependent.

· In systems that use separate address spaces it is necessary to add an extra identifier to the descriptor registers to indicate the address space number. 

Some implementation aspects include:

· The limit check when accessing an address must be done by the instruction microcode or the overhead would not be acceptable. This check is part of an instance of the Reference Monitor pattern described below.

· The same idea applies to purely paging systems, except that the limit in the descriptor is defined by the page size. In paged systems pages do not correspond to logical units and cannot perform a fine security control. 

· There are two basic ways to implement this pattern: Properly descriptor systems.  The descriptors are loaded at process creation by the operating system. The descriptors are handled through special registers and disappear at the end of execution. Capability systems. A special trusted portion of the operating system distributes capabilities to programs. Programs own these capabilities and to use them the operating system loads them in special registers or memory segments. In both cases, access to files is derived from their ACLs. 

Related patterns

This pattern is a direct application of the Authorization pattern to the processes’ address space.


               Figure 4. Class diagram for the Virtual Address Space Access Control pattern

The Execution Domain pattern

Intent

Define an execution environment for processes, indicating explicitly all the resources a process can use during its execution, as well as the type of access for the resources. 

Context

A process executes on behalf of a user, group, or role (a subject). A process must have access rights to use the resources defined for its subject during execution. The set of access rights given to a process define its execution domain. At times the process may also need to enter other domains to perform its work; for example, to extract a statistical value (avg, mean) from a file in another user’s domain. Frequently, users structure their domains as a tree. 

Problem

Restricting a process to a specific set of resources is a basic step to control malicious behavior. Otherwise, unauthorized processes could destroy or modify information in files or databases with obvious results or could interfere with the execution of other processes.

Forces

The following forces apply to this case:

· There is a need to restrict the actions of a process during its execution; otherwise it could perform illegal actions.

· Resources typically include memory and I/O devices, but can also be system data structures and special instructions. Although resources are heterogeneous, we want to treat them uniformly.

· A process needs the flexibility to create multiple domains and to enter inner domains for specific purposes. 

· There should be no restrictions on how to implement the domain. 

Solution

Attach to the process a set of descriptors that represent the rights of the process. In Figure 5, class Domain represents domains and in conjunction with the Composite pattern it describes nested domains. Operation enter in class Domain lets a process enter a new domain. A domain includes a set of descriptors that define rights for resources. 

Known uses

The concept of domain comes from Multics [Gra68]. Segments or pages (as in EROS [Sha02]) are structured as tree directories. The Plessey 250 and the IBM S/6000 running AIX [Cam90] are good examples of the use of this pattern. The Java Virtual Machine defines restricted execution environments in a similar way [Oak01]. 


                        Figure 5. The Execution Domain pattern 

Consequences

Possible advantages of this pattern include:

· The pattern lets users apply the principle of least privilege to processes, they can be given only the rights they need to perform their functions.

· It could be applied to describe access to any type of resource if the resource is mapped to a specific memory address.

· Processes may have several execution domains, either peer or nested. 

· The model does not restrict the implementation of domains. A domain could be represented in many ways. For example, the Plessey 250, IBM S/38, and IBM S/6000 use capabilities. The Intel X86 and Pentium series (and their corresponding operating systems) use descriptors for memory access control. 

· One can define special domains with pre-defined rights or types of rights. For example, Multics and the Intel XX86 series use Protection Rings, where each ring is assigned to a type of program, e.g., Supervisor, Utilities, User programs, and External programs. The rings are hierarchically structured, based on their level of trust. Descriptors are used to cross rings in program calls.

· As shown, the descriptors refer to VAS segments, which is the most usual implementation. However, they could  indicate resources not mapped to memory.

Disadvantages include:

· Extra complexity. Special hardware is needed.

· Performance overhead in setting up domains and in entering and leaving domains. Because of this, some operating systems for Intel processors use only two rings, improving performance but reducing security.

· The way to set up the execution domain is implementation dependent. In descriptor systems the operating system creates a descriptor segment with the needed descriptors. In capability systems the descriptors are part of the process code and are enabled during execution.

The Reference Monitor pattern

Intent

Enforce authorizations when a process  requests resources.

Context

A multiprocessing environment with processes making requests for resources.

Problem

If we don’t enforce the defined authorizations it is the same as not having them, processes can perform all type of illegal actions. Any user could read any file for example.

Forces

The following forces will affect the solution:

· Defining authorization rules is not enough, they must be enforced whenever a process makes a request for a resource.

· There are many possible implementations, we need an abstract model of enforcement.

Solution

Define an abstract process that intercepts all requests for resources and checks them for compliance with authorizations. Figure 6 shows a class diagram showing a reified Reference Monitor. In this figure Authorization rules denotes a collection of authorization rules organized as ACLs or in some other way. Figure 7 shows a sequence diagram showing how checking is performed.

Known uses

Most modern operating systems implement this concept, e.g., Solaris 9, Windows 2000, AIX, and others. The Java Security Manager is another example.

Consequences

Advantages include:

· If all requests are intercepted we can make sure that they comply with the rules. 

· Implementation has not been constrained by using this abstract process. 

Disadvantages are: 

· Specific implementations (concrete Reference Monitors) are needed for each type of resource. For example, a file manager to control requests for files was shown in Figure 3 (as part of the directory ). 

.


                         Figure 6. Class diagram of the Reference Monitor pattern


                              Figure 7. Sequence diagram for enforcing security of requests

· Checking each request may result in intolerable performance loss. We may need to perform some checks at compile-time for example and not repeat them at execution time. 

Related patterns

This pattern is a special case of the Checkpoint pattern [Yod97]. The Interceptor pattern [POSA2] can act as Reference Monitor in some situations

The Controlled Execution Environment pattern

Intent

To control access to all operating system resources by processes, based on user, group, or role authorizations. 

Context

A process executes on behalf of a user or role (a subject). A process must have access rights to use these resources during execution. The set of access rights given to a process define its execution domain. Processes must be able to share resources in a controlled way. The rights of the process are derived from the rights of its invoker. 

Example

When Jim discovered that the customer files had authorizations and could not be accessed directly he tried another approach. He realized that processes were not well controlled and could access memory and other resources belonging to other users. He systematically searched areas of memory and I/O devices being used by other processes until he could scavenge a few credit card numbers that he could use in his illicit activities. 

Problem

Even if direct access to files is restricted users can do “tunneling”, attack them through a lower level. If the process execution environment is uncontrolled processes can scavenge information by searching memory and accessing the disk drives where files reside. They might also take control of the operating system itself, in which case they have access to everything. 

Forces

We apply the following forces to this case:

· We need to constrain the execution of processes and restrict them to use only  resources that have been authorized based on the rights of the activator of the process. 

· Subjects can be users, roles, or groups. We want to deal with them uniformly.
· Resources typically include memory and I/O devices, but can also be files and special instructions. We want to consider them in a uniform way.

· subject may need to activate several processes and a process may need to create multiple domains. Execution domains may need to be nested. We want flexibility for our processes.

· Typically, only a subset of a subject’s rights needs to be used in a specific execution. We need to provide to a process only the rights it needs during its execution (least privilege).

· The solution should put no constraints on implementation.

Solution

Figure 8 shows the UML class diagram of the Controlled Execution Environment pattern. This model combines the Authorization, the Execution Domain, and the ReferenceMonitor patterns to let processes operate in an environment with controlled actions based on the rights of their invoker. Process execution follows the Domain pattern, as a process executes it creates one or more Domains. Domains can be recursively composed. The descriptors used in the process’ domains are a subset of the Authorizations that the Subject has for some Protection Objects (defined by an instance of the Authorization pattern). ProtectionObject is a superclass of the abstract Resource class and ConcreteResource defines a specific resource. Process requests go through a ReferenceMonitor that can check the domain descriptors for compliance. 

Figure 9 shows a sequence diagram showing the use of a right after entering a domain. Here x denotes a segment requested by the process. An instance of the Reference Monitor controls the process requests. This diagram assumes that the descriptors of the domain have been previously set up.

Example resolved

A new operating system was installed, with mechanisms to make processes operate with the rights of their activator. Jim did not have access to customer files, which made his processes also unable to access these files. Now he could not scavenge in other users’ areas and again his illicit actions were thwarted. 

Known uses

The IBM S/38, the IBM S/6000 running AIX, the Plessey 250 [Ham73], and EROS [Sha02] have applied this pattern using capabilities. Properly descriptor systems such as the Intel architectures may use this approach although their operating systems not always do so.

Consequences

Possible advantages of this pattern include:

· We can apply the least privilege principle to processes based on the rights of their activators. This also provides accountability. 

· It could be applied with any type of resource.

· Subjects may activate any number of processes and processes may have several execution domains.

· The model does not restrict the implementation.




Figure 9. Sequence diagram for entering a domain and using a right in that domain.

· Execution domains are defined according to the Domain pattern and may include any subset of the subject’s rights.

Possible disadvantages include:

· Some extra complexity and performance overhead. 
· Dependence on the hardware architecture.
Related patterns

This pattern uses the Authorization, Execution Domain, and Reference Monitor patterns. The VAS Access Control pattern may be indirectly used by the Execution Domain pattern. 

Acknowledgements

Thanks to Antonio Rito Silva, Kyle Brown, and Joe Yoder for valuable comments that considerably improved this paper.

References

[Cam90] N.A.Camillone, D.H.Steves, and K.C.Witte, “AIX operating system: a trustworthy computing system”, in IBM RISC S/6000 Technology, SA23-2619, 1990.

[Chi84]  R.E. Childs,Jr., J. Crawford, D.L.House, and R.N.Noyce, “A processor family for personal computers”, Proceedings of the IEEE, Vol. 72, No 3, March 1984, 363-376.

[Fer94] E. B. Fernandez, J. Wu, and M. H. Fernandez, ``User group structures in object-oriented databases", Proc. 8th Annual IFIP W.G.11.3  Working Conference on Database Security,   Bad Salzdetfurth, Germany, August 1994. 

[Fer01] E.B.Fernandez and  R. Pan “A pattern language for security models”,  

http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/ 
[Gam95] E. Gamma, R. Helm,R. Johnson, and J. Vlissides, Design patterns –Elements of 

reusable object-oriented software, Addison-Wesley 1995.

[Gol99] D.Gollmann, Computer security, J. Wiley & Sons, 1999.

[Gra68] R.M.Graham, “Protection in an information processing utility”, Comm. of the ACM, Vol. 11, No 5, May 1968, 365-369.

[Ham73] K.J. Hammer Hodges, “A fault-tolerant multiprocessor design for real-time control”, Computer Design, December 1973, 75-81.

[Oak01] S. Oaks, Java security, 2nd Ed., O’Reilly, 2001.

[Pfl97] C.P. Pfleeger, Security in computing (2nd Ed.), Prentice-Hall 1997.

http://www.prenhall.com
[POSA2] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-oriented software

architecture, vol. 2 , Patterns for concurrent and networked objects, J. Wiley & Sons, 2000.

[Rau97] L. Rau, “Inferno: one hot OS”, Byte, June 1997, 53-54.

[San96] R. Sandhu et al., "Role-Based Access Control models", Computer , vol. 29 , No2, February 1996, 38-47.
[Sha02] J.S.Shapiro and N. Hardy, “EROS: A principle-driven operating system from the ground up”, IEEE Software, Jan./Feb. 2002, 26-33. See also: http://www.eros-os.org
[Sil03] A. Silberschatz,  P. Galvin, G. Gagne,  Operating System Concepts (6th Ed.), John Wiley & Sons,  2003.

[Yod97] J. Yoder and J. Barcalow, "Architectural patterns for enabling application security".  Procs. PLOP’97,  http://jerry.cs.uiuc.edu/~plop/plop97   Also Chapter 15 in Pattern Languages of Program Design, vol. 4 (N. Harrison, B. Foote, and H. Rohnert, Eds.), Addison-Wesley, 2000.

        Right





accessType


predicate


copyFlag





checkRights ( )








*





*





AuthorizationRule





  Subject





ID








ProtectionObject





ID





 Authorization


priority


privileges


 


startSession ( )











  Workstation


ID








AuthorizedOn








*








*








*








*








*








1








  FileComponent


 








 ACLE


accessMode


 


 








Authorized


For





























  Directory


name








       File


name


size


createFile ( )


save ( )


 














HasHomeDirectory








     Subject


ID

















    Figure 8. The Controlled Execution Environment pattern



































*
































(Copyright  ( 2002. Eduardo B. Fernandez. Permission is granted to copy for the PLoP 2002 conference. All other rights reserved.


� In some systems, opening a file also requires a specific authorization. Figure 3 assumes that this is not the case although the pattern does not preclude this possibility (only Figure 3 assumes this). 


� Some versions of Unix, e.g. IBM’s AIX, extend this model to support a full access matrix.





PAGE  
8

