Abstract

Chaotic dynamical systems characteristically exhibit erratic, seemingly random, behavior.
They are highly sensitive to initial conditions. Any alteration to the state of a chaotic sys-
tem will eventually lead to very large differences in behavior. Until recently, the preferred
approach to chaotic dynamical systems has been to avoid them. A method developed by Ott,
Grebogi, and Yorke (OGY) takes advantage of this sensitivity to initial conditions, and other
characteristics of chaotic systems, to produce periodic behavior from chaotic behavior. The
pattern language provided in this paper describes the component steps to implementing the
OGY method for controlling chaotic dynamical systems. It establishes an architecture for
chaos control software that allows for experimentation with algorithms and data structures at
each step in order to improve the performance of the overall system.

A Pattern Language for Controlling Chaotic Activity

Gregg T. Stubbendieck
July 21, 2002

1 Introduction

The study of chaotic dynamical systems spans a range of disciplines including atmospheric sci-
ences, physics, engineering, mathematics, and neurosciences. The behavior of a chaotic system
is by nature unpredictable over long periods of time since the smallest change to the system may
result over time to large changes in behavior. This is the famous “butterfly effect,” in which is
speculated that the flap of a butterfly’s wings might over time change the course of global weather
patterns. There are many problems where it is desirable to control the underlying chaotic dynamics
of a system.

After years of study, both theoretical and experimental, much is known about chaotic dynam-
ical systems. In particular, it is known that even though a chaotic system behaves in a seemingly
random way there is a structure to the underlying behavior, and that structure has certain character-
istics. Edwared Ott, Celso Grebogi, and James A. Yorke (OGY)) developed a method for controlling
a chaotic dynamical system[6][1] through small manipulations of the system. The method exploits
the structure of the underlying dynamics and the sensitivity of a chaotic system to small changes
to produce predictable periodic behavior.

The essence of the OGY method for chaos control is fairly straightforward. Once the control
parameters have been calculated it is simply necessary to wait for the system to reach a region of
state space that is covered by the control parameters, then to issue small modifications to a control
parameter to ensure that the system will come back to the same controllable region in a predictable
amount of time.

A software engineer is interested in finding reusable code whereever possible. Since the OGY
method exploits characteristics common to all chaotic systems it should be possible to write the
controller component once and to use it for all chaotic systems. In order to accomplish this goal
it is necessary to answer two challenges. First, the unique characteristics of a particular chaotic
system may require special processing before reaching the OGY specific components. Any special
reshaping or filtering of data should occur outside the implementation of the core control com-
ponent. Second, it is necessary to have flexibility in the method of computing the OGY control
parameters. Assuming that an analytical solution for the chaotic system in question is not avail-
able, which would be the common case for real world chaotic systems, the control software must
calculate the required information from data sampled from the system. It is not clear what method
for calculating this information is best. The notion of “best” implies a set of ranking criteria that
may change depending upon the goals of a particular controller situation. The overall controller

system should be organized so that control parameter computation methods may be changed with
minimum impact to the rest of the system.

1.1 The Purpose of the Patterns

The pattern language provided in this paper describes the component steps to implementing the
OGY method for controlling chaotic dynamical systems, continuing the work in [7]. It establishes
an architecture for chaos control software that allows for experimentation with algorithms and data
structures at each step in order to improve the performance of the overall system. Rather than spec-
ifying what is done in a particular experimental instance with custom built software, this pattern
language separates problem specific considerations from the more general aspects of OGY control.
By establishing a protocol for communication between components, the architecture allows flexi-
bility in the implementation while improving reusability. This independence may be exploited in
an asynchronous parallel execution environment, for example, by transparently allowing the more
computation intensive aspects of the OGY method to execute on separate processors while time
critical functions, such as sampling, continue to operate simultaneously.

1.2 What is Controlling Chaos?

The basic objective of control is to manipulate a system in a way that produces a predictable result.
To change the behavior of a stable, non-chaotic, system, it is necessary to manipulate the system
in a way that is proportional to the amount of change desired. For example, in order to lift a rocket
off the ground, the rocket motor must produce sufficient thrust to offset the weight of the rocket.
The amount of thrust required varies directly with the weight of the rocket.

Chaotic systems are not stable. They are highly sensitive to even the slightest changes in state.
Any modification to a chaotic system, no matter how small, results in large changes in behavior
over time. Lorenz[5] observed this sensitivity in numerical experiments in weather prediction
using the system of equations given by (1)—(3).

dz

E = —o0x+ oy (1)
% = —zz4+rr—y (2
% = xy— bz (3)

The state trajectory of the Lorenz equations, produced by numerically integrating the previous
system of equations, is shown in Figure 1. As illustrated in Figure 2, small differences in the initial
conditions of numerical experiments lead to radically different behavior over time. In contrast to
a stable system, where a change in initial conditions leads to a proportional change in behavior,
any change in the initial conditions of a chaotic system lead to long term behavior that cannot be
predicted.

A chaotic system is considered to be controlled if it is made to exhibit quasi-periodic[5] behav-
ior. Quasi-periodic behavior may be loosely visualized as the trajectory of a race car on a circuit
course, where the system of interest is the race car and its state is represented as the position of
its center of mass on the track. A truly periodic trajectory might be traced down the middle of

3

Figure 1: The state space trajectory Lorenz system of equations shows the evolution of the system
over time. The point plotted at time ¢ is (z¢, v, 2:). The chaotic nature of the system of equations
means that the trajectory will never repeat itself as it traverses this shape.

20 T T T T T T T T T

220 1 1 1 1 1 1 1 1 1
90 91 92 93 94 95 96 97 98 99 100

Figure 2: Graph of the x coordinate of the Lorenz equations over time with o = 10, r = 28.5, and
b = 8/3. The solid line is produced with an initial condition of (1,1, 1), and the dashed line is has
an initial condition of (1.00000000001, 1, 1). The horizontal axis is time. The plot begins 90 time
units after the beginning of the experiment.

45
40
35
30
25
20
15
10

-20

Figure 3: Nearly periodic behavior in the Lorenz system. The system appears to repeat its trajec-
tory but is actually just passing very near to itself. If left alone, the Lorenz system will eventually
leave the region of the periodic trajectory and revert to unpredictable behavior. If the system is
held close to this trajectory its future state will be predictable, and the system will be considered
to be controlled.

the course, but the race car wanders freely from side to side on the track as it traverses the cir-
cuit. Since the race car stays within a bounded distance of the true circuit its behavior is said to
be quasi-periodic. The the OGY method is motivated from the observation that a chaotic system
occasionally exhibits behavior that looks quasi-periodic before reverting to more unpredictable be-
havior. Figure 3 illustrates such behavior in the Lorenz attractor. Such nearly periodic behavior
suggests the location of a truly periodic trajectory nearby in the state space since two trajectories
passing very near to each other will be nearly parellel for a period of time.

1.3 OGY Control

To this point, the discussion has focused on continous systems where the state of the system evolves
smoothly over time. If the state of the system is plotted over time, its track does not contain
any breaks. However, the OGY method is formulated in terms of a a discrete map. Rather than
producing a continuous trajectory, a discrete map shows the point position of the system at each
iteration of the map.

As will be illustrated in the Apply a Poincaré Map pattern, a continuous chaotic system may
be analyzed as a discrete chaotic map. Roughly speaking, a surface, called a surface of sec-
tion, is placed in the region of the chaotic activity. The surface of section is positioned so that
all chaotic trajectories will pierce through it. The Poincaré map produces a sequence of points

Z1,Z2,.--,Tn,.... The point x, is produced at the nth iteration of the map when the trajectory of
the underlying continuous system pierces through the surface for the nth time. The coordinates of
x,, are relative to the surface. If the underlying continuous system is in d-dimensional space, the
points on the Poincaré map will be in the (d — 1)-dimensional space of the surface of section. The
position of the point on the surface piercing when a trajectory passes through the surface.

The behavior produced on a Poincaré map can be used to interpret behavior in the continuous
system. For example, if

|~Tn+1 - xn| <,

where ¢ is very small, then it may be said that the continuous system is exhibiting quasi-periodic
behavior—at least for time period covered by the (n + 1)th iteration of the map.

A controller using the OGY method must identify such points as estimates of actual fixed
points. Once fixed point estimates have been identified, the behavior of the attractor near the fixed
points must be sampled. For each point z, that falls near a fixed point estimate, the pair (z, 1)
is recorded. Since the behavior of the system changes smoothly with respect to position in state
space, the behavior of the system in a small region around a fixed point may be linearized to
provide a useful estimate of system behavior. The sampled pairs of points are used to calculate
such a linearization in order to determine which regions of state space near the fixed point tend
to move toward it and which regions tend to move away. The small neighborhood over which the
linearization applies is the controllable region of the fixed point.

Having located a fixed point and linearized the system behavior around it, it is necessary to
provide an input to the chaotic system that perturbs its behavior slightly. In the Lorenz system of
equations, the r value of (2) may be modified slightly. The effect of a small perturbation should
be to slightly warp the attractor, changing the location of the fixed point in state space.! The fixed
points of the perturbed system are estimated from sampled data and are matched up with fixed
points of the unperturbed system. The movement of the fixed point with respect to the perturbation
is estimated from these paired points using linear interpolation.

At this point, the OGY control method, as illustrated in Figure 4 may be engaged. The chaotic
system is sampled for a period of time until it falls into the controllable region of a fixed point. If
the point lands in an area that tends to move away from the fixed point the control parameter is
manipulated so that the system tends to move toward the fixed point in the in the perturbed system,
keeping the system in the controllable region.

2 Patterns

2.1 Control a Chaotic System with OGY
211 Context

You are faced with a chaotic dynamical system which you desire to behave in a predictable way.
A control parameter of the system is avialable to modify the behavior of the system in some way.

IMore exotic changes to the attractor are possible for small changes to the control parameter, and it is not clear at
the outset what range of parameter changes is appropriate for a particular chaotic system. Some experimentation is
required to find the appropriate parameter change size.

C)

Figure 4: Conceptual operation of the OGY control method. Arrowheads indicate the direction of
movement of successive iterates on the discrete map. (A) A point falls near a fixed point of the
discrete chaotic system. (B) The control parameter is perturbed so that the point is in the stable
region of the perturbed fixed point. (C) The next iteration of the system again falls near the original
fixed point.

Sensors on the chaotic system periodically produce a vector samples of the system state in numeric
form.

2.1.2 Problem

What is the basic structure of the relationship between a controller using the OGY method and the
chaotic dynamical system?

2.1.3 Forces

e To avoid code tailored to a specific chaotic system within the controller component, the
interface between the control component and the chaotic system must be expressed in the
most general terms acceptable to the controller.

e A time series of samples of the chaotic system state and a control parameter together are
sufficient to compute control parameters and then establish control.

214 Solution

Figure 5 shows the high level design of the OGY system. The Chaot i cSyst emclass provides
the software interface that is expected by the OgyCont r ol | er . Samples are obtained via the | n-
st runent Li st ener interface. The underlying chaotic system is manipulated by the controller
through the set Per t ur bat i on(Real p) method. The Real parameter represents the real val-
ued amount by which the Chaot i cSyst emis to be perturbed by the OgyControl | er. The I n-
st runent Li st ener interface provides the mechanism for the Chaot i cSyst emto communicate
the samples read by its instrumentation devices to interested parties. Samples are communicated

<<Interface>> ChaoticSystem

InstrumentListener

\void sampleRead(SampleEvent e)

public void addInstrumentListener(InstrumentListener I)
/I\ public void setPerturbation(Real p)
1
<<realize»>

OgyController

Figure 5: A chaotic dynamical system and its OGY controller

from the Chaot i cSyst emto its listeners in the raw form retrieved by the instruments. In Figure 5,
the OgyCont r ol | er receives samples directly from the Chaot i cSyst emvia the | nst r unent -
Li st ener interface.

This pattern serves to illustrate the conceptual structure of the OGY method. The simplified
view of the OGY control process provided in Figure 5 implicitly assigns responsibilities to the
OgyCont rol | er that are not directly related to the control function. The raw sequence of samples
received from a chaotic system must often be transformed before it is useful to an OGY controller.
For example, if the dynamics of the chaotic system are continuous, then the samples will represents
points on a continuous trajaectory. It would be necessary for the controller to apply a Poincaré
map to the data stream in order to produce the discrete map that is assumed by the OGY control
mechanism as discussed in Section 1.3. The following patterns serve to separate such implied
responsibilities out of the OgyCont r ol | er class to provide a flexible framework for applying the
OGY control method.

2.1.5 Redated Patterns

The I nst rument Li st ener is an Observer[2] that is realized in the OgyCont r ol | er class. The
basic responsibility of the Chaot i cSyst emclass is as an Adapter[2] pattern, converting the inter-
face expected by the OgyCont r ol | er to that of the underlying chaotic system. Depending upon
the implementation of the underlying system, the Chaot i cSyst emclass may be a component in
a larger wrapper-like class such as Bridge, Decorator, Facade, or Proxy, also of [2].

The Sanpl eEvent class is a subclass of j ava. uti | . Event Cbj ect. A Sanpl eEvent is
passed to the sanpl eRead() method of an | nst r unent Li st ener when a sample is received
from the Chaot i cSyst em A Sanpl eEvent object contains a data item in the form of a Poi nt
object representing the vector of salar samples received.

2.1.6 Example Code

public class OgyController inplements InstrunentlListener {
private ChaoticSystem chaoticSystem

private Real conputeNextPerturbation(Point e)
{/* OGY control inplenmentation goes here */}

8

public void sanmpl eRead(Sanpl eEvent e) {
Real perturb = conput eNext Perturbation(e.getPoint());
chaoti cSystem set Pert urbati on(perturb);

2.2 Time Series Data Filter
2.2.1 Context

In order for a computer program to perform feedback control such as is performed in the OGY
method, it is necessary to obtain a representation of the system activity from periodic measure-
ments of system state as illustrated in Control a Chaotic System with OGY. It is not always the
case that the vector of samples received via the | nst r unent Li st ener interface is in a form that
is directly usable for the OGY method in its most general form.

2.2.2 Problem

Requiring the OgyCont rol | er class to perform necessary data transformations weakens it by
diluting its focus on the specific task of carrying out OGY control and by tightening the coupling
between the chaotic system and the controller. If the OgyCont r ol | er is tightly coupled with the
Chaot i cSyst emits implementation will tend to be specialized to the ChaoticSystem of interest.

2.2.3 Forces

e Hard coding the data filtering role into the OgyCont r ol | er reduces its flexibility.

e Indirect interfaces may be slower than direct interfaces. Response time is critical in real-time
systems, leading to a tendency to write specialized code.

e It may be necessary to apply a number of transformations to a raw data stream to convert it
from the form produced by a Chaot i cSyst emto one usable by OgyControl | er.

2.2.4 Solution

Reduce the coupling between the OgyCont rol | er and the Chaoti cSyst emby moving data
filtering responsibilities out of the OgyCont r ol | er . Such a modification allows it to focus more
clearly on its specific task of carrying out OGY control. To loosen the coupling, introduce a chain
of one or more Fi | t er objects between the Chaot i cSyst emand the OgyControl | er.

Figure 6 depicts the architecture as modified to allow data filters between the Chaot i cSyst em
and the OgyControl | er. The I nst runent Li st ener interface serves the same purpose as in
Figure 5. The QgyCont rol | er has been modified to be a Ti meSeri esLi st ener so that it is
no longer able to register directly as a listener to the Chaot i cSyst em A distinction is made in
the depicted design between data received from an external source as provided through the I n-
st runent Li st ener interface, which has a representation determined by the external source, and
data provided through the Ti meSer i esLi st ener interface with a format that is determined by
the control application. The data received by OgyCont r ol | er must be in the expected format to
avoid artificial code dependencies in its implementation.

TimeSeriesSource <<Interface>>

TimeSeriesListener

\void sampleReceived(SampleEvent e)

N

<<realize>> J'

\void addTimeSeriesListener()

TimeSeriesFilter

4&

SlowLorenzFilter

Figure 6: The Sl omLorenzFilter isaTi meSeri esFilter. ATimeSeriesFilter isbotha
Ti meSeri esLi st ener and a Ti meSer i esSour ce.

Chaot i cSystem I nstrument Ti neSeri es

QgyControl |l er Sl owLorenzFil ter

Figure 7: A block diagram showing a possible sequence of Ti neSer i esFi | t er objects between
the Chaot i cSyst emand the OgyControl | er.

The Ti meSer i esSour ce class provides the interface for Ti meSeri esLi st ener objects to
subscribe as listeners with objects providing time series data. The | nstrunent Ti neSeri es
classisboth an | nstrunent Li st ener and a Ti meSer i esSour ce. An object of a class derived
from I nst runment Ti meSer i es translates the external data format of the Chaot i cSyst emto
the internal format expected by the controller application. The Ti meSeri esFi |l t er class is an
abstract class derived from Ti meSer i esSour ce and Ti neSer i esLi st ener.

A TinmeSeriesFilter is both a Ti meSeri esLi stener and a Ti neSeri esSource. A
Ti meSeri esFil ter receives a data stream from another Ti neSer i esSour ce, modifies the
data, then sends the modified data to its own Ti meSer i esLi st eners. The Sl owLor enzFi l ter,
for example, passes on only every other sample that it receives. Ti meSeri esFi | t er sare used to
change the data stream produced by the Chaot i cSyst emto a form usable by the OgyCont r ol -
| er without requiring modification to either the Chaot i cSyst emor OgyCont r ol | er software
component.

The block diagram in Figure 7 shows an example flow of information through a series of objects
based on the classes depicted in Figure 6.

10

2.25 Redated Patterns

The Ti meSer i esFi | t er combines the Observer patterns with a hint of the Adapter, both from [2].
Rather than converting class interfaces, as done by the Adapter, it converts a data stream from one
form to another. The class is a realization of the Observer pattern. It registers with Ti meSe-
ri esSour ce to receive data. Since it is derived from Ti meSer i esSour ce, it is also a Subject,
allowing other Observer objects to regeister with it and receive its transformed data stream.

The | nst runent Ti meSer i es class has similar pattern relationships. It actually implements
the Adapter pattern, translating the interface of | nst r unent Li st ener to that of Ti neSeri es-
Li st ener.

2.2.6 Example Code

The Lor enzSyst emclass represents a Chaot i cSyst em

public class LorenzSystem extends ChaoticSystem {

/1l ... (sonme code not shown)

/**

* Integrate one tinestep into the future and notify
* |listeners of the new sanple.

*/

public void integrateNext() {

/'l Not shown: compute the next point in the trajectory,
/'l yNext, using a numerical integration technique.

increnmentTinme(timestep);
Sanpl e s = new Sanpl e(yNext, getCurrentTinme())
Sanpl eEvent e = new Sanpl eEvent (this, s);
not i f yNewSanpl e(e);
b}

The Lor enzTi neSer i es class handles the translation from the Lor enz Sy st emoutput format
and the application internal time series data format. Since the | nst r unent Li st ener and Ti nme-
Seri esLi st ener data formats for this example are equivalent, the class merely serves as an
Adapter between the | nst r unent Li st ener and Ti neSer i esLi st ener interfaces.

public class LorenzTi neSeries extends |nstrunentTi meSeries {
public LorenzTi neSeries() {}

public void readSanpl e(Sanpl eEvent e) {
/[* in this exanple, the instrunent data format is
* the sanme as the tine series data format
*/
not i f yNewSanpl e(new Sanpl eEvent (t hi s, sanpl eQut));
bl

The Ti neSeri esFi | t er class provides basic implementation for objects filtering time series
data. It declares an abstract method fi | t er Sanpl e(Sanpl e s), which a subclass will use to
implement its particular sampling strategy

11

/**

* A TinmeSeriesSource which receives sanples from anot her
* TinmeSeriesSource, perforns sonme transformation on the
* received sanmples, then passes the transformed sanpl es
*on.
*/
public abstract class TineSeriesFilter extends Ti nmeSeri esSource
i mpl ements Ti meSeri esLi stener {
public TinmeSeriesFilter() {}
/**
* A sanpl e has been read fromthe instrunented device.
* Transformthe data to the TinmeSeries format and send the
* sanmple along to TineSeriesListeners.
* @arame the object associated with this event, containing
* t he sanpl e val ue.
*/
public void sanpl eRecei ved(Sanpl eEvent e) {
Sanpl e sanpl eln = e. get Sanpl e();
filterSanpl e(sanpleln);
}
/**
* Receive the next sanple in the tinme series. Wen
* transforned sanples are produced by the filter, distribute
* themto this object’s |listeners.
* @ee TineSeriesSource#notifyNewSanpl e()
*/
protected abstract void filterSanpl e(Sanpl e sanple);

The Sl owLor enzFi | t er illustrates time series filtering by discarding every other sample it
receives.

public class SlowLorenzFilter inplenents TineSeriesFilter {
private int count = O;

protected void filterSanpl e(Sample s) {
if (count %2 == 0) {
not i f yNewSanpl e(new Sanpl eEvent (this, s));
}

++count ;

o}

The Lor enzEx class initializes a Lor enzSyst emobject then creates a Lor enzTi neSer i es
object and registers it as an | nst r unent Li st ener with the Lor enzSyst em A Sl owLor enz-
Fi | t er object is created and registered as a listener to the Lor enzTi neSer i es object. Finally,
an object of the inner class Lor enzLi st ener is registered with the Sl owLor enzFi | t er object
to print out the filtered time series that it receives.

public class LorenzEx {
private class LorenzListener inplenents TineSeriesListener {
public LorenzListener() {}

12

public void readSanpl e(Sanpl eEvent e) {
Sanple s = e.get Sanpl e();
doubl e[] pt = s.getPoint();
Systemout.println(""+pt[0]+" "+pt[1]+" "+pt[2]);
Pl

private void go() {
doubl e[] ylnit = new doubl e[3];
for (int i=0; i<3; i++)
ylnit[i] = 1.0000000000;
LorenzSysteml|ls = new LorenzSysten(ylnit,0.01);
Ti neSeri esSource |ts = new LorenzTi neSeries();
| s. addl nstrunment Li stener(Its);
Ti meSeri esSource slf = new Sl owLorenzFilter();
I ts. addTi meSeri esListener(sIf);
sl f. addTi neSeri esLi st ener (new LorenzLi stener());
for (int i=0; i<10000; i++)
{
I s.integrateNext();
oy

2.3 Embed the Time Series
2.3.1 AlsoKnown As

Delay Coordinates

2.3.2 Context

In sampling a nonlinear n-dimensional dynamical system, it is not always possible to sample all
n dimensions. In order to characterize the behavior of the system it is necessary to represent the
system behavior in the appropriate number of dimensions.

2.3.3 Problem

How does one transform a scalar time series into a n-dimensional series of samples?

2.34 Forces

e Time delays between coordinates of the embedding should be multiples of the sample rate.

e It is not simple to calculate the optimal time delay or embedding dimension solely from
sampled data.

e Downstream components should not care if they’re getting samples from an embedded sys-
tem or from the n-dimensional nonlinear system itself.

e It is undesirable to clutter the sampler with two jobs—obtaining samples from the dynamical
system and performing the embedding.

13

<<Interface>> TimeSeriesSource <<Interface>>
Instrumentl istener TimeSeriesListener
/'\ 4 <<realize>> /'\
O J

K [I
<<realize>> X | X
ScalarTimeSeries TimeSeriesFilter

JAN

EmbeddingFilter

Time getTimeStep()

void setDelay()
void setDimensions()

Chaoti cSystem }%I Scal ar Ti meSeri es H EnbedFi | ter H Control | er

Figure 8: Embedding filter. Top: UML diagram depicting class relationships; bottom: block
diagram of flow between components.

2.35 Solution

A theory due to Takens[8] states that the behavior of a chaotic system can be reconstructed from
a scalar time series with delay coordinates. A m-dimensional point X (¢) with delay 7" can be
constructed from a scalar time series z(1), 2(2), . . ., z(¢) using delay coordinates as follows.

X(t)=[2(t),2(t =T),...,2(t — (m —1)T)]" (4)

Figure 9 shows the Lorenz attractor reconstructed using delay coordinates from the x dimension
of the system. While the shape of the reconstructed system is not exactly the shape of the original,
the Lorenz attractor can be recognized.

Figure 8 shows an Enbeddi ngFi | t er class derived from Ti meSeri esFi |l ter. It can be
used to embed a 1-dimensional time series as part of a filter chain. Two operations for tuning
the behavior of Enbeddi ngFi | t er are available. The set Del ay(i nt) operation sets the delay
between dimensions in the embedding. The set Di mensi ons(i nt) operation sets the number of
dimensions in the embedded data stream.

Calculation of the delay and dimensions parameters from sampled data is both computationally
intensive and data intensive. On the one hand, it is desirable to embed the system in the smallest
number of dimensions that faithfully represents the shape of the attractor. This reduces the com-
plexity of computations later in the process. One method for finding the number of dimensions for
which an embedded trajectory does not intersect with itself. The unavoidable presence of noise in
the data stream adds a level of uncertainty to this calculation since noise may make it falsely ap-
pear that a trajectory crosses itself. On the other hand, the varying time delay between coordinates
warps the shape of the reconstructed attractor. A good time delay value causes maximal separation
between embedded trajectories.

14

Figure 9: The Lorenz attractor reconstruced with delay coordinates using the = dimension of the
equation. The time delay between coordinates in this diagram is 0.06.

2.3.6 Rdated Patterns

The Enbeddi ngFi | t er may be implemented as a specialization of Ti neSeri esFi | t er from
Section 2.2. Rather than addressing the general concept of filtering, this pattern is concerned with
the conversion of a 1-dimensional time series into a n-dimensional time series that reconstructs the
dynamical behavior of the underlying system.

2.3.7 Example Code

A Scal ar Ti meSeri es object is used as the | nst r unment Li st ener applied to the Lor enzSys-
t emof the previous example. The Scal ar Ti neSer i es class passes along only the first coordinate
of the sample vector received from the Chaot i cSyst em simulating the situation where only one
sample dimension is available.

/**

* A source of 1-dinmensional time series data received from
* an instrunented system In this inplenentation, an
* instrumentation sanple is received and only the first
* di msion of the received sanple vector is passed al ong.
*/
public class Scal arTi neSeri es extends Ti neSeri esSource
i mpl ements | nstrunentlListener
{

/**

* A sanpl e has been read fromthe instrunented device.

* Transformthe data to the TinmeSeries format and send the

* sanple along to TineSeriesListeners.

* @arame the object associated with this event, containing
* t he sanpl e val ue.

*/

public void readSanpl e(Sanpl eEvent e) {

15

Sanpl e sanpl eln = e. get Sanpl e();
doubl e[] pointln = sanpl el n. get Point();
doubl e[] pointQut = new double[1];
poi ntQut[0] = pointln[O0];
Sanpl e sanpl eQut =
new Sanpl e(poi nt Qut, sanpl el n. getTine());
not i f yNewSanpl e(new Sanpl eEvent (t hi s, sanpl eQut));

o}

The Enbeddi ngFi | t er class receives a time series of scalar samples and reconstructs n-
dimensional dynamics using the method of delays. Once the number of dimensions and the time
delay between coordinates have been decided, the job of computing the embedding is straightfor-
ward. Here, the embedding parameters are set from precalculated values. An adaptable Enbed-
di ngFi | t er might calculate the parameters from sampled data.

public class Enbeddi ngFilter extends TineSeriesFilter {

/Il (some code not shown)

/**

* Receive the next sanple in the scalar tine series. Wen

* transforned sanples are produced by the filter, distribute
* themto this object’s |listeners.

*

* @ee TineSeriesSource#notifyNewSanpl e()

*

~

protected void filterSanpl e(Sanple i nSanple) {
doubl e newPoi nt = inSanpl e. get Point ()[0];
if (bufSize == buffer.length) {
/1
/1 Circular buffer is full, generate an enbedded poi nt
doubl e[] out Point = new doubl e[nunDi ns] ;
for (int i=0; i<nunmDins-1; i++) {
int sourcelndex = startlndex + i * delay;
sourcel ndex % buffer.!|ength;
outPoint[i] = buffer[sourcel ndex];
}
out Poi nt [nunDi ns- 1] = newPoi nt;
/*
* Create an output Sanple object. Use the |atest
* scalar sanple’s time as the enbedded sanple’'s tine.
*/
Sanpl e out Sanple =
new Sanpl e(out Poi nt, i nSanpl e. get Ti ne());
not i f yNewSanpl e(new Sanpl eEvent (t hi s, out Sanpl e)) ;
/1 Bookkeepi ng:
/1 replace oldest point in buffer with newest
buf fer[startlndex] = newPoint;
/1 then nmove start index
startl ndex ++;
/1 renmenber: we know buf Size == buffer.length here
if (startlndex == bufSize) {
startlndex = 0;

16

o}
else // bufSize < buffer.length; fill the buffer

{
buf f er [buf Si ze] = newPoi nt;

++buf Si ze;

2.4 Apply a Poincaré Map
24.1 AlsoKnown As

e Surface of Section

2.4.2 Context

The OGY method operates on a discrete chaotic map. Periodic points are identified through ob-
servation of system behavior on the map. The dynamical behavior of the system near the periodic
points is determined experimentally, both with and without perturbation of the control parame-
ter. After sampling the local behavior of the periodic points, the behavior is linearized, and the
parameters for control are calculated.

Many chaotic systems are continuous in nature. Periodic behavior in such systems is exhibited
as traversal of periodic orbits in the system’s state space. In order to gain control of the system
with the OGY method, the continuous behavior must be converted into a discrete map.

2.4.3 Problem

How does one apply the OGY method to a continuous m-dimensional dynamical system?

244 Forces

e It is not simple to find an optimal placement for a Poincaré surface.

e The time delay between piercings of the Poincaré surface is not predictable in general. The
notion of time must be modified or discarded.

e Finding periodic points on a discrete map requires less data and computation than finding
periodic orbits in continuous data.

e It is possible to determine characteristics of a continuous system by analyzing the discrete
behavior exhibited on a Poincaré map.

2.45 Solution

Apply a Poincaré map to the system to obtain a discrete time view of the continuous system’s
dynamical behavior. A surface of section is a (m — 1)-dimensional surface that is situated so that
it is transverse to the flow on the attractor. The surface may be considered to be polarized, so that
it has a back and a front. As depicted in Figure 10, each time the flow of the system pierces the
surface from back to front, a point is plotted on the surface at the location of the piercing[4]. The
resulting discrete map is a Poincaré map[3]. Periodic points on the surface of section correspond

17

Figure 10: A Poincaré map is calculated by detecting when the flow of the continuous system
pierces the surface of section.

to periodic orbits in the continuous system. Figure 11 depicts a closeup view of a Poincaré map of
the Lorenz attractor.

The Poi ncar eFi | t er class in Figure 12 implements a Poincaré map. The Cont i nuous-
Ti meSer i es receives m-dimensional samples from a continuous dynamical system and transmits
them to the PoincareFilter, which translates the continuous time series into a (m — 1)-dimensional
discrete system suitable for OGY control.

246 Redated Patterns

The Poi ncar eFi | t er may be implemented as a specialization of Ti meSeri esFi | t er from
Section 2.2. Since the OGY method is defined for discrete chaotic systems, the ability to convert
a continuous flow into a discrete map while preserving the required dynamical information is
fundamental to the wide applicability of the OGY method.

2.4.7 Example Code

/ * %

* Transforms a n-di mensional continuous time series into

* a discrete tine series of points on the surface of section

*/

public class LorenzPoincareFilter extends TineSeriesFilter {
private bool ean | ast Poi nt Negative = fal se
private Sanple |astSanple = null;

protected void filterSanpl e(Sanple i nSanpl e) {
if (surfacePierceDetected()) // just pierced through {
doubl e[] pt = inSanpl e. getPoint();
doubl e[] newPt = new doubl e[i nSanpl e. get NunDi nensi ons()-1];
/*
* The last step likely did not |and exactly on the
* surface. Backtrack to the surface and get the
* coordi nates of the new n-1 di nensional point.
*/
doubl e[] newPt = bactrackToSurface(l astSanple.getPoint(), pt);
/*
* Create an output Sanple object. Use the |atest

18

'1417 T T T T T T T T T
4
+ 1
¥ *«Fbr%rﬁ 1
o T
-14.175 4wt
+++ﬁ++1*++ o
L
+++*f%+ T
e
-14.18 + ﬁf b
o [T +
+ +++
++ +
o F
-14.185 Lt *+++ L o
' Iﬁrf jr’f* * R +
at {# + #ﬁii +++ *
gt R T gy + T
+ ¥ ¥ P e, Lt
14.19 +; + LT T i
s I
Ll T
Jr+4r‘d31**:r #ﬁii "
-14.195 N ++&_§f R L, o+ 4
+ +
. it %#Qgp +
#hot +
142 . 7 E
A
LR
_14205 1 1 1 1 1 1 1 1 1

-11.85 -11.849 -11.848 -11.847 -11.846 -11.845 -11.844 -11.843 -11.842 -11.841 -11.84

Figure 11: A closeup of a Poincaré map of the Lorenz attractr. The map is placed at z = —8.5.
The horizontal and vertical axes of this graph are the y and z coordinates, respectively, where the
continuous system pierced the surface of section.

TimeSeriesSource

<<Interface>> <<Interface>>
Instrumentl istener TimeSeriesListener
/I_ --1 Z} <<realize>> /'\
L J
<<realize>y | I
1 1
ContinuousTimeSeries TimeSeriesFilter

T

PoincareFilter

Figure 12: A Poincaré map may be implemented as a Ti meSer i esFi | t er, converting a contin-
uous time series to a discrete time series

19

2.5

* scalar sanple’s tine as the enbedded sanple’s tine.
*/
Sanpl e out Sanple =
new Sanpl e(newPt , i nSanpl e. get Ti ne());
not i f yNewSanpl e(new Sanpl eEvent (t hi s, out Sanpl e)) ;
| ast Poi nt Negative = fal se;

Pl
| ast Sanpl e = i nSanpl e;

Find Periodic Behavior in Chaos

2.5.1 Context

The OGY method controls a chaotic system by exploiting the behavior of the system around the
unstable periodic points of the chaotic attractor. A great strength of the OGY method is that it
works without knowledge of the dynamical equations describing the system. However, the lack of
an analytical solution means that fixed points must be located within chaotic activity empirically.

252 Problem

How can fixed points be determined from data sampled from a chaotic dynamical system?

2.5.3 Forces

For an embedded time series, it is critical that the embedding space has enough dimensions
to reconstruct the state trajectory of the chaotic system. If the embedding space has too few
dimensions, the system’s trajectory will cross over itself leading to false identification of
fixed points.

Empirical detection of fixed points requires a period of uncontrolled sampling. The duration
of the sampling period cannot be predicted from the outset, and it may be long.

Finding periodic orbits in a continuous system may be expensive in terms of data and com-
putation.

The ergodic nature of chaotic systems guarantees that the system will approach all periodic
points. Thus, it is guaranteed that there will be periodic points and that it is possible to get
information about the system near an arbitrary periodic point.

Finding periodic orbits in a continuous system may be considered equivalent to finding pe-
riodic points in a discrete system. A Poincaré section placed appropriately in the state space
yields a discrete map where a point z; on the map represents the sth piercing of the map by
the continuous trajectory.

It is not clear in general how close a point and its successor have to be before they are con-
sidered to be close to a fixed point. The critical distance depends on the system in question.

254 Solution

A chaotic attractor has infinitely many periodic cycles[9]. For OGY control, it is necessary to find
one or more of them by observing the behavior of the system. A n-cycle on a discrete map consists

20

<<Interface>> TimeSeriesSource <<Interface>> <<Interface>>
InstrumentListener TimeSeriesListener FixedPointSource

FixedPoint getBestFixedPoint()

/N AN - /N
e <<realize>>
-----q <<realize> r--------- !
<<realize>> , I I

DiscreteTimeSeries FixedPointCollector

Figure 13: A fixed point collector may be a listener on the time series, estimating fixed point
locations from pairs of successive points in the series.

of a sequence of n points, py, ..., p, that repeats indefinitely on the map. Each point of a n-cycle
of a discrete map f is a fixed point of the map f™, where

fi@) = f(2)
) = f(f@)

The location of a fixed point on a discrete map may be estimated from sampled data by observing
pairs of successive points in the time series. Figure 13 shows how a fixed point collector fits
into the example class hierarchy. The Fi xedPoi nt Col | ect or class implements the Ti neSe-
ri esLi st ener interface, receiving a discrete time series of points from a Chaot i cSyst em The
Fi xedPoi nt Col | ect or implements the Fi xedPoi nt Sour ce interface which provides access
to the best fixed point estimate currently available. The metric for fixed point quality is left to the
Fi xedPoi nt Col | ect or implementation. Since system behavior changes smoothly with distance
from the fixed point, a good candidate metric would be the distance from a point in the time series
to its successor. Points that are closer together are considered to be better estimates of fixed points.

Figure 3 shows a trajectory of the Lorenz attractor that is estimated to be near a periodic
trajectory—one that would repeat its course indefinitely. The depicted cycle would present itself
as a fixed point on a surface of section placed at =z = 10, and would be a 2-cycle on a surface of
section placed at z = —10.

255 Example Code

public class Fi xedPoi nt Col | ector
i npl ements Ti neSeri esLi st ener, Fi xedPoi nt Sour ce {
private Point prevPoint = null;

/1 ... (sone code not shown)

publ i c Fi xedPoi nt get Best Fi xedPoi nt ()
{/* return best fixed point currently held */}

public void readSanpl e(Sanpl eEvent e) {

Point p = e.get Sanpl e().getPoint();
doubl e fixedness = di stance(p, prevPoint);

21

<<Interface>> <<Interface>>
TimeSeriesListener FixedPointSource <
FixedPoint getBestFixedPoint()
S A
<<rea|ize?> <<realize>> , <<rea|ize?>
1
NeighborhoodSampler FixedPointCollector

Figure 14: A neighborhood sampler listens to the time series and collects data points falling near
fixed point estimates obtained from a fixed point source.

i f (fixedness < get MaxFi xedness())
st or eFi xedPoi nt (new Fi xedPoi nt (p, fi xedness));

2.6 Sample the Fixed Point Neighborhood
2.6.1 Context

Once the location of a fixed point has been estimated, the OGY method must be able to characterize
the behavior of the system around the fixed point. In order to accomplish this numerically, sample
points a neighborhood around the fixed point must be collected.

2.6.2 Problem

How does one collect samples around a fixed point estimate for characterizing the locally linear
behavior?

2.6.3 Forces

e In general, the optimal size of the neighborhood cannot be guessed without prior knowledge
of the chaotic system.

e While sampling behavior around two different estimates of fixed points it might become
apparent that the estimates are of the same fixed point. The data from the neighborhoods of
the two estimates should be combined.

e A fixed point estimate as collected by the fixed point collector provides a rough estimate of
the location of a possible fixed point on the attractor. By collecting samples of system activity
around the estimate it is possible to more reliably characterize nearby system behavior.

2.6.4 Solution

Figure 14 depicts the Nei ghbor hoodSanpl er class. Itisa Ti meSeri esLi st ener so that it can
obtain points from the discrete time series produced by the chaotic system. The Nei ghbor hood-

22

Sanpl er also has a reference to a Fi xedPoi nt Sour ce, such as the Fi xedPoi nt Col | ect or of
Section 2.5, to obtain estimates of fixed points to seed the sampling process. Each sample is an
ordered pair (z;, z;11), where z; is a point falling into the neighborhood of the fixed point and z;
is the next point in the discrete time series from which x; was obtained.

It may not be clear at the outset what diameter of the neighborhood around a fixed point es-
timate is the right size to obtain control. One approach is to limit the number of neighborhood
points collected around a fixed point to a size that is sufficient for subsequent calculations. Once
the maximum number of points have been collected around a particular fixed point, the farthest
point defines the diameter of the current neighborhood. When a closer point is encountered in
the input stream it is added to the collection and the farthest point is removed. Through this pro-
cess, the size of the neighborhood shrinks over time, automatically tuning to the system under
observation.

As the Nei ghbor hoodSanpl er collects data, it may improve its estimate of the location of the
fixed point. For example, it is possible that while collecting samples around a fixed point estimate,
a sample point falling into the region is also a better estimate of the fixed point. The Nei ghbor -
hoodSanpl er should take into account improvements in the estimate of the fixed point location.

A chaotic system may have more than one fixed point on the discrete map representing its
dynamics. The Nei ghbor hoodSanpl er should be capable of sampling the neighborhoods of
multiple fixed point estimates simultaneously. When sampling multiple fixed point neighborhoods
simultaneously, the Nei ghbor hoodSanpl er must determine from sampled data if two fixed point
estimates refer to the same fixed point or if they represent the existence of two distinct fixed points.

2.6.5 Example Code

public class Nei ghbor hoodSanpl er
i mpl ement's Ti neSeri esLi st ener
{

Fi xedPoi nt Col | ector fpCol | ector;
Vect or queues = new Vector();

i nt numQueues;

i nt queueSi ze;

doubl e[] prevPt = null

Nei ghbor hoodSanpl er (Fi xedPoi nt Col | ector fpc,int nuns,int gqSize) {
nunfueues = nunms; queueSi ze = Size; fpCollector = fpc;
}

public void sanpl eRecei ved(Sanpl eEvent e) {
Sanpl e s = e. get Sanpl e();
doubl e[] pt = s.getPoint();

manageQueues() ;
if (prevhPt !'= null && queues.size() > 0) {
Iterator glt = queues.iterator();
Nei ghbor hoodSanpl e ns = new Nei ghbor hoodSanpl e(prevPt, pt);
while (glt.hasNext()) {
Nei ghbor Queue g = (Nei ghbor Queue) gl t. next();
try {
g. put (ns);

23

break; /* break if insert succeeds */
}
catch (Nei ghbor Queue. TooFar AwayExcepti on e)
{/*ignore-try next queue*/}
Pl
prevPt = pt;
}

private void manageQueues() {
/* Create Nei ghborQueues using fixed point estinates
* fromfpCollector. Mke sure that two different queues
* do not cover the same space (sane fixed point region).

*/
/1 ... (code not shown)

}o}

/**

* A Nei ghbor Queue stores sanples in a double ended priority

* queue. |If the maximum size of the queue is reached a new

* sanpl e nust have higher priority than the lowest priority

* sanple in the queue. Wen a new sanple is inserted in this

* condition, the lowest priority sanple is renoved and

* discarded. Priority is inversely proportional to the queue’s

* fixed point estinate.

*

~

public class Nei ghbor Queue {
[** thrown in put() if queue is full and new sanpl e has | ower
* priority than the lowest priority sanple in the queue.
*/
public class TooFar AwayExcepti on extends Exception {}

/** Stores the neighborhood sanples. Priority is inverse
* of distance fromthis queue’'s fixed point.

* @ee #fp

*/

private DePri Queue data

[** The poi nt around which sanples are collected */
private Fi xedPointEstimte fp

/1 ... (not shown: constructor, accessors)

/**

* Put a new Nei ghborhoodSanple in the queue if possible.
* Each Nei ghbor hoodSanpl e contains a point and its successor
* @aramitemthe Nei ghborhoodSanpl e
public void put(Nei ghborhoodSanple iten)
t hr ows TooFar AwayExcepti on {
/* Confirmthat the new sanple has high enough priority to be
* inserted into this queue. If it does, then insert it.
* |f the new sanple is a better fixed point estimte, then
* designate new sanple as the fixed point estinmate and
* reorder the queue.
*/

24

Figure 15: A controllable fixed point has stable regions, where the system tends to move towards
the fixed point, and unstable regions, where the system tends to move away. The stable and unstable
regions are identified from the linear approximation of dynamics near the fixed point. OGY control
attempts to keep the system in the stable region of the fixed point.

/1 ... (code)

2.7 Linearize Dynamics near the Fixed Point
2.7.1 Context

OGY control is carried out around fixed points that have both stable and unstable regions. When the
system state is in the stable region it will tend to move towards the fixed point in the next iteration.
In the unstable region, the system tends to move away from the fixed point. Values derived from
a linear approximation of dynamics near a fixed point are used by the OGY method to establish
and maintain control of the system. Figure 15 illustrates the type of information derived from
linearization.

The theoretical process for estimating linear dynamics has been documented in chaos control
literature[1]. It is not clear that a straightforward implementation of the process is the best for
all situations. The component will be implemented differently depending upon the criteria placed
upon the estimates. For example, there is generally a tradeoff between computational efficiency
and data efficiency. Depending upon the target computation environment, one or the other of these
criteria may have to be sacrificed.

2.7.2 Problem

How can the estimation of linear dynamics near a fixed point be carried out in a way that allows
for variation in implementation that is transparent to the rest of the system?

2.7.3 Forces

e Assuming no analytical solution to the system in question, the local dynamics must be esti-
mated from sampled data.

25

<<Interface>> OgyController ChaoticSystem
PertubationListener H
\void perturbationChanged(PerturbationEvent e) R]
/,\ void setLinearParams(LinearParams I) void setPerturbation(Real p)
<<rea|ize|f>

NeighborhoodSampler

Linearizer

Iterator getSamples(FixedPoint p)
Iterator getFixedPoints()

Figure 16: The dynamical behavior near a fixed point is estimated by the Li neari zer class. The
Li neari zer receives sample points from the Nei ghbor hoodSanpl er. The control parameter
setting is stored with the linearization around each fixed point.

e The optimal size of the neighborhood for which a linear approximation is appropriate is
system dependent, and not necessarily known at the outset.

e There is a tension between the size of the linearized neighborhood and the ability to control.
If the neighborhood is too large, the linearization will be less useful. If the neighborhood is
too small it will take too long for the system to fall into the controllable region.

2.7.4 Solution

The Li neari zer component depicted in Figure 16 encapsulates the function of linearizing the dy-
namics of the system near a fixed point. The Li neari zer gets fixed point neighborhood sample
data from the Nei ghbor hoodSanpl er. The get Fi xedPoi nt () method of Nei ghbor hood-
Sanpl er returns an | t er at or of Fi xedPoi nt objects that represent the fixed point estimates
for which neighborhood information is currently being sampled. The sampled points around a par-
ticular fixed point may be retrieved with the get Sanpl es(Fi xedPoi nt) method, which returns
an iterator of Sanpl ePai r objects. Each Sanpl ePai r object contains two Poi nt s, representing
a point falling in the neighborhood of the fixed point and the next iterate of the discrete map.

There is two-way communication between the OgyCont r ol | er and the Li neari zer. Com-
munication from the OgyCont r ol | er is performed indirectly through the Per t ur bat i onLi s-
t ener interface which is implmented by the Li neari zer. Whenever the OgyControl | er
changes the perturbation value of the Chaot i cSyst em it broadcasts an event to its Per t ur ba-
ti onLi st ener s notifying them of the change. The Li near Par ans class encapsulates the linear
dynamics information in a form useful to the OgyCont r ol | er . Because the perturbation param-
eter can change the location and the local behavior of a fixed point, the Li neari zer stores the
current perturbation value with the Li near Par ans object created for a fixed point. To obtain per-
turbation parameter change information, the Li neari zer isaPert ur bati onLi st ener.Once a
linear estimate has been produced, the Li near i zer provides the estimate to the OgyCont r ol | er
through its r ecei velLi near Par ans() method.

2.7.5 Example Code

public class Linearizer inplenments PerturbationListener {

26

private OgyController controller
private Nei ghbor hoodSanpl er sanpl er;
private double perturb

public Linearizer(QOgyController c, NeighborhoodSampler s) {
controller = c; sanpler = s; }

/**

* Changi ng the perturbation changes the dynam cal behavior, so
* get the sanples collected under the previous perturbation

* value and estinmate fixed point nei ghborhood dynami cs.

* @arame event notifying of change in perturbation val ue.

* The Perturbati onEvent object contains the new val ue
* of the perturbation paraneter.

* @ee java.util.Event Qbject

*/

public void perturbationChanged(Perturbati onEvent e) {
doubl e newPerturb = e.getPerturbation();
Iterator fplt = sanpl er. getFi xedPoi nts();
while (fplt.hasNext()) {
Fi xedPoint fp = (FixedPoint)fplt.next();
Iterator sanplelt = sanpler.getSanpl es(fp);
Vector v = new Vector();
while (sanplelt.hasNext()) v.add(sanplelt.next());
Li nearParans | p = linearizeNei ghborhood(fp, v, perturb);
control |l er.setLinearParans(lp);

}
perturb = newPert urb;

}

/** Cal cul ates val ues representing the |linear characterization
* of behavior around the fixed point based on sanpl es.
* @eturn the paranmeters
*/
private LinearParans |inearizeNei ghborhood(
Fi xedPoi nt fp, Vector v, double perturb) {
Li near Parans | p = new Li near Parans();
/1 ... (calculate paraneters and populate |p with them
return | p;

2.8 Track Fixed Point Migration
2.8.1 Context

When the system falls within the controllable region of a fixed point, the OgyCont r ol | er perturbs
the Chaot i cSyst emcontrol parameter in such a way that system state will tend to fall in the con-
trollable region of the fixed point on the next iteration. The OgyCont r ol | er obtains information
about the location of the stable and unstable regions around a fixed point from the Li near i zer for
a particular setting of the perturbation parameter. By perturbing the Chaot i cSyst enis control
paramter When the chaotic system state lands near a fixed point for which the OgyCont rol | er
has control information, the OgyCont r ol | er attempts to keep the state in the neighborhood of

27

OgyController

<<Interface>>

PerturbationListener < _<>

void setPurturbation(Real p)
/I\ lvoid setFixedPointTrack(TrackParameters tp)

<<realize»> \I/
1

FixedPointTracker NeighborhoodSampler ChaoticSystem

Iterator getFixedPoints() \void setPerturbation(Real p)

Figure 17: The Fi xedPoi nt Tr acker obtains fixed point estimate values from the Nei ghbor -
hoodSanpl er, then contacts the OgyCont r ol | er to change the control parameter value for a
new round of sampling. After finding the fixed points of the perturbed system, fixed point migration
parameters are calculated and sent to the OgyContr ol | er.

the fixed point on succeeding iterations. If the state is in the unstable region of the fixed point the
state will move away from the fixed point. In such a case, the OgyCont r ol | er will perturb the
Chaot i cSyst emso that the current state is in the stable region of the perturbed system’s fixed
point, thereby achieving the desired control.

2.8.2 Problem

How can one predict the movement of a fixed point under perturbation?

2.8.3 Forces

e The fixed point is assumed to move smoothly with respect to small changes to the control
parameter.

e Chaotic systems can change drastically with minute perturbations. For example, if the pa-
rameter is moved past a bifurcation point for the system, the fixed point may become a
two-cycle. It is better to avoid such situations.

e The notion of what is a small perturbation change varies with each chaotic system. The range
of safe parameter change values must be determined through experience with the chaotic
system of interest.

2.8.4 Solution

Once afixed point is located in the unperturbed system, a small perturbation is applied to the system
and the fixed points of the perturbed system are located. To track the movement of the fixed point
of interest, it is matched with the nearest fixed point of the perturbed system. To characterize the
movement of the fixed point under perturbation, a linear interpolation between the two fixed point
locations is calculated. The OGY method uses this linear interpolation along with the information
provided by the Li neari zer to calculate the amount of perturbation to apply.

Figure 17 illustrates class relationships for the Fi xedPoi nt Tr acker class, which calculates
parameters for estimating the migration of fixed points under control parameter perturbation. The

28

Fi xedPoi nt Tr acker obtains fixed point estimates of the unperturbed system from the Nei gh-
bor hoodSanpl er, then requests that the Ogy Cont r ol | er apply a perturbation to the Chaot i c-
Syst em It implements the Per t ur bat i onLi st ener interface to ensure that the starting After a
period of sampling the perturbed system, the FixedPointTracker obtains new fixed point estimates
from the NeighborhoodSampler, matches them up with fixed points of the unperturbed system, then
calculates linear interpolation parameters for estimating the movement of each fixed point with
respect to the control parameter. These parameters are communicated to the OgyCont rol | er in
a Tr ackPar anet er s object. The Tr ackPar anet er s class encapsulates the linear interpolation
parameters in the form used in the OgyControl | er.

2.85 Example Code

public class Fi xedPoi nt Tracker inpl enents PerturbationListener {

private OgyController controller

private Nei ghbor hoodSanpl er sanpl er;

private double perturb

/**

* Stores fixed point estimates along with the perturbation
* val ues at which they were encountered.

*/

private Collection fpHistory;

publ i c Fi xedPoi nt Tracker (OgyControl | er c, Nei ghbor hoodSanpl er s) {
controller = c; sanpler = s; }

*

Get the fixed point estimtes fromthe Nei ghborhoodSanpl er
These pertain to the previous perturbation value. |If possible,
calculate fixed point nmigration paraneters and pass them
to the OgyController.
@aram e event notifying of change in perturbation val ue.

The Perturbati onEvent object contains the new val ue

of the perturbation paraneter.
©@ee java. util.Event Obj ect

I T A T

~

public void perturbati onChanged(PerturbationEvent e) {
doubl e newPerturb = e.getPerturbation();
Iterator fplt = sanpl er. getFi xedPoi nts();
while (fplt.hasNext()) {
TrackParaneters tp;
tp = trackFp((Fi xedPoi nt)fplt.next(), perturb);
control | er. setFi xedPoi nt Track(tp);
/* Hstoryltemis a class that stores a Fi xedPoi nt
* value and a perturbation val ue.
*/
fpH story.add(new Hi storylten(fp, perturb));

}
perturb = newPerturb;
}

/**

* Deternines the novenment of a fixed point with respect

29

* to the perturbation paraneter.
* @eturn an object characterizing the novenent of the
* fixed point.
*/
private TrackParaneters trackFp(Fi xedPoi nt fp, double p) {
TrackParaneters tp = new TrackParaneters();
/* Get all fixed points fromfpHi story for a perturbation
* value near p. Match fp with the nearest of these fixed
* points. Populate tp with paraneters estinating the
* movenent of fp with respect to p.

*/
/1 ... (code)
return tp;

3 Conclusion

The pattern language described here provides the basis for a flexible software architecture for
working with chaotic systems. Since OGY control operates on general principles of chaotic sys-
tems, the language includes patterns that separate application specific code from the more general
code applicable to all chaotic dynamical systems. Having accomplished such a separation, it is
possible to develop general OGY control code that may be applied without modification to a vari-
ety of chaotic systems. In doing so it becomes possible to study the OGY code independent of the
system being controlled.

The OGY control procedure has been further subdivided into data transformation, information
gathering, and processing patterns. The data transformation patterns, Time Series Data Filter; Em-
bed the Time Series; and Apply a Poincaré Map, serve to separate the details of a particular chaotic
system from the core of the OGY method. The information gathering patterns, Find Periodic Be-
havior in Chaos; and Sample the Fixed Point Neighborhood, provide the raw information that the
OGY method requires for control. The processing patterns, Linearize Dynamics near the Fixed
Point; Track Fixed Point Migration; and Control a Chaotic System, take the collected information,
compute the parameters for OGY control, and initiate the perturbations to the chaotic system to
establish control.

The relative independence of each of these patterns allows for loose coupling between the
components implementing them. This loose coupling in turn allows for easy modification or re-
placement of components, which is advantageous in an experimental environment where different
techniques for implementing a pattern are to be tested. In addition to facilitating component re-
placement, loose coupling allows flexibility in the linkage between components leading to possible
parallel execution.

3.1 Future Work

The pattern language described here lays the foundation for the development of a fully autonomous
OGY controller. To reach this goal, further elaboration of the Embed the Time Series; Apply a
Poincaré Map; and Track Fixed Point Migration patterns is necessary since these patterns state
what needs to be done but are vague on how to actually do it. Each of these patterns has aspects

30

which tend to reduce its tractability in an unsupervised mode.

In the case of Embed the Time Series, two variables must be calculated. First, the number of
dimensions in which to embed the time series must be calculated. It is necessary to provide enough
dimensions so that the state space behavior is faithfully reconstructed. While on the one hand the
problem of embedding is to make the number of dimensions sufficiently large, it is also important
to minimize the number of dimensions as much as possible to minimize the complexity of later
calculations. In a noiseless environment, it would be sufficient to choose the lowest number of
dimensions in which the embedded trajectory does not cross itself. Since noise is an ever present
component of real world systems and a chaotic trajectory will pass arbitrarily close to itself, an
embedded trajectory may appear to cross itself due to noise interference. Therefore a calculation
of embedding must accept some amount of trajectory intersection. The second variable affecting
the embedding is the time delay between coordinates of the embedded system. This is the T" value
of Equation 4. It has the effect of warping the reconstructed trajectory, and a well chosen T can
aid in the calculation of embedding dimension.

A well placed Poincaré map makes the job of locating fixed points easier. It should be placed
so that it is transverse to the flow and so that the flow passing through it contains unstable periodic
trajectories that may be used for control.

Tracking fixed point migration with respect to parameter perturbations involves application of
a small perturbation to the system, locating the fixed points of the perturbed system, and matching
them up with those of the unperturbed system. It is necessary for an unsupervised system to
calculate what is meant by “small.” One may base the size of the perturbation on the diameter of
the sampled fixed point neighborhood. Depending upon the sensitivity of a particular system to
the perturbation parameter, other heuristic rules may be more appropriate. The OGY method tends
to assume that manipulation of the perturbation parameter merely deforms the chaotic attractor.
However, a perturbation may result in bifurcation of a fixed point or more profound change in
dynamical behavior. An unsupervised controller must be able to take these factors into account
while tuning the range of perturbations to the chaotic system.

With the advent of computing clusters built from commaodity PCs, parallel execution is an in-
creasingly viable approach to accomplishing all necessary processing in the short time interval be-
tween samples. Using the mechanism introduced in Time Series Data Filter for inserting process-
ing steps in the chain of communication, it is possible to provide a type of filter that communicates
between distributed processes. By using technologies such as CORBA or Java Remote Method
Invocation, procedure calls across a network link may be accomplished transparently through the
interface of the target class. Components need not be aware of the distributed nature of their
environment.

4 Acknowledgements

The author wishes to thank Jeff McGough of SDSMT for many stimulating discussions and helpful
suggestions regarding this paper. Thanks to Troy McVay for nice cyclic behavior examples on the
Lorenz attractor.

31

References

[1] S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, and D. Maza. The control of chaos: Theory
and applications. Physics Reports, 329:103-197, 2000.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[3] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems and Bifurcations
of Vector Fields, volume 42 of Applied Mathematical Sciences. Springer Verlag, New York,
1983.

[4] M. Henon. On the numerical computation of Poincaré maps. Physica D, 5:412-414, 1982.

[5] E. N. Lorenz. Deterministic nonperiodic flow. Jorunal of the Atmospheric Sciences, 20:130—
141, March 1963.

[6] E. Ott, C. Grebogi, and J. A. Yorke. Controlling chaos. Physical Review Letters, 64(11):1196—
1199, 1990.

[7] G. T. Stubbendieck. Numerical Methods for the Control of Chaos. PhD thesis, Texas Tech
University, Lubbock, TX, 1993.

[8] F. Takens. Detecting strange attractors in turbulence. In D. Rand and L.-S. Young, editors,
Dynamical systems and turbulence, pages 366-381, Berlin, 1981. University of Warwick,
Springer-Verlag.

[9] J. A. Yorke and T. Y. Li. Period three implies chaos. Amer. Math. Monthly, 82:985-992, 1975.

32

