
A Software Stability Model Pattern

Ahmed Mahdy and Mohamed E. Fayad
Computer Science and Engineering Dept.

University of Nebraska-Lincoln
Lincoln, NE 68588, USA

amahdy@cse.unl.edu

Abstract

Building quality software systems has been the focus of many in the field of software
engineering. One of the most desirable quality attributes, yet hardest to achieve, is
stability [2, 8]. A stable basis provides a foundation for building quality software. The
Software Stability approach addresses this issue [6, 7]. The key contribution of this paper
is to show how the concepts behind software stability can be used to build stable models.

1. Pattern Name: Software Stability Model (SSM)

This pattern describes how a stable model is built based on the software stability criteria
and how to intelligibly present the software stability artifacts.

2. Context

The need for stable models arises in the analysis of problems affected by stability.
Model-based reuse is a good example [1]. Building stable architectures is another
instance. According to the vision behind introducing software stability, a stable model
should be a must for the modeling of any software system [6, 7].

Software Stability Model is usable whenever software stability is used to model a system.
This is true because SSM reflects the essential elements of a stable model in terms of the
concepts of software stability.

3. Problem

Given a system that needs to be modeled using software stability, how do you translate
the components of the system into stability artifacts? A SSM is partitioned into three
different levels: Enduring Business Themes (EBTs) [5], Business Objects (BOs), and
Industrial Objects (IOs). The EBTs represent elements that remain stable internally and
externally. The BOs are objects that are internally adaptable but externally stable, and
IOs are the external interface of the system [6].

These artifacts develop a hierarchal order of the system objects, from totally stable at the
EBTs level to unstable at the IOs level, through adaptable yet stable at the BOs level. The
stable objects of the system are those that do not change over time.

 2

We can also look at the problem from the perspective of tangibility. In addition to the
conceptual differences between EBTs and BOs, a BO can be distinguished from an EBT
by tangibility. While EBTs are completely intangible concepts, BOs are partially
tangible. IOs are tangible objects.

Despite the fact that stability artifacts differ by definition, recognizing them is very
arduous. The problem comes from the fact that their definitions are more conceptual than
concrete. Moreover, the terms stability and tangibility are hard to visualize, and in many
cases are relative. Consequently, people tend to misjudge whether a given element of the
system is an EBT, a BO, or an IO. A wrong assignment of an element is directly reflected
in the correctness of the model. Figure 1 shows an imaginary picture of how the stability
artifacts interlace at the boundaries. SSM aims at resolving the confusion of how to
distinguish the EBTs, BOs, and IOs from one another.

4. Forces

SSM needs to ensure stability. To achieve this goal, SSM should capture the core
knowledge of the system so that a stable core can be built. Among the three artifacts of
stability, EBTs and BOs reveal the core knowledge. Consequently, the distinction
between the EBTs and BOs from one side and IOs from the other side and between EBTs

Figure 1. Stability Artifacts Interlacing

 3

and BOs should be maximized in order to avoid drawing a cloudy image of the system
core.

The interrelations between the EBTs, BOs, and IOs are hard to realize by nature. This is
because the three levels conceptually differ. How an EBT could interact with a BO? Or
what is the relation between a BO and an IO? This type of questions needs to be
addressed.

Software stability aims at accomplishing system reusability [3]. In fact, the way stable
models are built should guarantee reusability [1]. Software stability provides a stable core
that can serve applications sharing similar core structure [4]. SSM needs to realize what
objects of the stable model to be reused and show how to present them.

In addition to the stability and reusability characteristics, SSM needs to distinguish the
system components according to the tangibility level. SSM has to resolve these
characteristics and ensure consistency. A contradiction between any of these
characteristics results in a flawed model.

For a system to be reusable, a level of abstraction at which the EBTs, BOs, and IOs are
identified has to be configured. Otherwise, the objects of the different levels would
interchange positions to result in a non-reusable system. The system would be non-
reusable because the modeled core encompasses non-stable elements or/and non-
structural components represented by the IOs of the system.

5. Solution

To better visualize SSM, we show first a figure representing the architecture of a stable
model according to the stability and tangibility properties of its components. As shown in
Figure 2, the EBTs represent the nucleus of the model as they reflect the enduring
concepts of the system, while the IOs portray the surface of the system. The BOs lay in
between. Intuitively, the further the objects are placed from the interface the more stable
and intangible they are.

 4

5.1 Participants

EBTs

• Represent the enduring themes of the system.
• Comprise the stable and intangible objects of the system.
• Describe the major goals of the systems.

BOs

• Comprise the partially tangible objects.
• Comprise the internally unstable though externally stable objects.

IOs

• Depict the surface of the system.
• Represent the physical objects.
• Comprise the unstable objects.

The interactions between the EBTs and BOs form a crucial part of the system. The
transition from a conceptual theme to a business-driven object has a great influence on
the whole system. An inappropriate transition might diminish one or more of the system
objectives, which results in a defective system. These transitions are hard to realize as the
EBTs and BOs share the intangibility properties of the system components, the EBTs are
fully intangible while the BOs are partially intangible. Such commonality hazes the

Figure 2. Stable Models Architecture

EBTs

BOs
IOs

Less Stable/More Tangible

 5

distinction between them. On the other hand, direct interactions between the EBTs and
IOs are inappropriate. They interact through the BOs. The IOs embody the BOs as they
become totally tangible.

5.2 Structure

In addition to the object model, the process of building a stable model can be summarized
as follows:

• To find the EBTs, one needs to answer the question “ What is this system for?”
• The BOs are the answer to “ What is the representation of the intangible

conceptual themes into more concrete objects?”
• The IOs answer “ What is the physical representation of the BOs?”
• The object model is partitioned into three columns; each column is dedicated to

one of the artifacts (i.e. EBTs, BOs, and IOs). Each column encloses the object of
its level. This way makes it easier to realize the different components of the
system especially in the case of reusing the model to build a new system. Another
benefit is avoiding the inappropriate associations among the objects of each level
(i.e. an association between an EBT and an IO).

Figure 3. Software Stability Model Pattern

EBTs

IOsBOs

concrete

embody

0..*

0..*
0..* 0..*

 6

5.3 Collaborations

• The BOs map the conceptual themes of the EBTs into objects.
• The IOs physically represent the BOs.

6. Example

This case models a generic simulator. We follow the SSM process of building stable
models. Consequently, we need to answer the three questions in order to identify the
EBTs, BOs, and IOs of the system.

• What is this system for?
This system is to model the chemical reactions behavior in order to simulate
and/or experiment specific instances. Therefore, the EBTs are modeling,
simulating, and experimenting.

• What is the representation of the intangible conceptual themes into more concrete

objects?
The modeling theme conceptually refers to a model. Experimenting needs some
criterion to make it alive. To simulate the function of that model according to this
criterion, a test should follow a procedure. Accordingly, the BOs are model,
criterion, test, and procedure.

• What is the physical representation of the BOs?

A model could be either a mathematical model or a computer-based model. A
procedure is represented in terms of a hypothetical or an actual scenario, a
predetermined accuracy, and a set of conditions. A test is represented in terms of
its results, which take the form of graphs or/and text.

Figure 4 shows a stable model of this example.

 7

The above example shows how SSM builds a stable model. In the following, we present
three case studies to illustrate how SSM insures reusability among applications with
similar cores; these case studies are introduced in [1]. The core knowledge is represented
by the EBTs and BOs. Thus, systems sharing the core knowledge should share also the
EBTs and BOs, and this is what these cases show.

Case I: Computers Trading

This case demonstrates trading computers through a bidding process. One entity specifies
its needs; another entity places a bid on such specifications. A negotiation process takes
place until a deal/impasse is reached. The process of building a stable model is similar to
that of the generic simulator. Figure 5 shows a stable model.

Figure 4. Simulation Stable Model

EBTs BOs IOs

Simulating

Modeling

Experimenting Criterion

Mathematical

Computer
Model

Test Simulation
Result

Graphical

Textual

Experiment
Condition

Accuracy

ExperimentProcedure

Scenario

Actual

Hypothetical

1..*

1..*

1..*

1..*

1..*

1..*1..*

1..*

1.. *

1.. *

build

simulate

simulate

run on

generate

develop

set

output

imitate

tolerate

1..*

1..*

based on

 8

Case II: Buying a House

This case depicts a system for buying houses through bidding too. Case I and Case II
look different though buying a house involve bidding, negotiation, trading… etc. In fact,
both case studies share the same core. Thus, the answers to the first and second questions
of the SSM process are the same. Figure 6 presents a stable model.

Figure 5. Computers Trading Stable Model

EBTs BOs IOs

Individual

ComputerShop

Accessories

Packages

Computers

Peripherals

Bidregulate

negotiate

deal

trade agree

bid

*

1..*

2..*1..*

1..*
1..*

1.. *

1..*

2..*

0..*Bidding

Negotiation User

Trading

Inspection Features

*

modify

Agreement

addendum

 9

Case III: Bidding on a Football Team

Again, this case study appears different from the other two case studies but it shares the
core with them. When you buy a football team, you are trading, negotiating, and bidding.
So buying a football team is not that different from buying a computer. Thus, the EBTs
and BOs are the same. Figure 7 shows a stable model of this case.

Figure 6. Buying a House Stable Model

EBTs BOs IOs

Individual

Broker

House

Bid

Inspection

regulate

negotiate

deal

trade agree

bid

*

1..*

2..* 1..*

1..*

2..* Contractor

0..* Bidding

Negotiation

Trading

User

Features

Agreement
addendum

*
modify

 10

Although the three case studies deal with different types of trading, the inner core is the
same among these applications. Recognizing this fact results from how software stability
approaches the problem domain. Identifying the system EBTs directly reflects the goals
of the application. If different applications share the same goals, it would be easy to
determine their similarities by following the stability approach. Moreover, the BOs will
generally be the same. The only differences appear at the IOs level. In our case studies,
the three applications have the same EBTs and BOs. Figure 8 plots the three stable
models on top of each other to show their similarities.

The way SSM builds stable models assures reusability among common-core applications.
The answers to the first and second questions reveal the core knowledge of the system.
As a result, the systems with similar cores must have similar answers. Without these
questions it is hard to figure out how similar these systems are. As a consequence, SSM
maintains the reusability properties of the software stability approach. More important is
how the collaborations between the EBTs and BOs recur. The three case studies show
how the interrelations remain the same as long as the core remains stable.

Figure 7. Bidding on a Football Team Stable Model

EBTs BOs IOs

Individual

Sponsor

Bidregulate

negotiate

deal

t rade agree

bid

*

1..*

2..*1..*

1..*
1..*

2..*

MemberInspection Team

Equipment Field

Properties

Player Manager Staff

Bidding

Negotiation

Trading

User

0..*

Features

modify

*

Agreement

addendum

 11

7. Consequences

SSM attains stability as it exposes the core knowledge of the system by modeling the
EBTs and BOs of the system. Thus, a stable core composed of these artifacts is built. The
way SSM identifies the EBTs and BOs through the proposed questions establishes a clear
cut between the EBTs and BOs. Hence, confusions between them seldom happen.

SSM ensures the reusability feature of the stable models by building the right core of the
system, which is done through the well recognition of the EBTs and BOs. Common-core
systems may look different, but in fact, the only differences lay on the surface (i.e. IOs).

Figure 8. Combined Stable Models

EBTs BOs IOs

Individual

Sponsor

regulate

negotiate

trade
agree

bid

*

1..*

2..*1..*

1..*
1..*

2..*

Player Manager Staff

ComputerShop

Broker

deal

Contractor

1..*

Bid

FieldEquipment

Inspection Team

Properties

House

Member

Computers Properties

Accessories
1..*

1..*
1..*

Peripherals
 1..*

Bidding

User

Features

0..*

*

addendum

Agreement

modify

Negotiation

Trading

 12

If these systems have a common internal structure, it suffices to develop one system for
all of these similar applications to be extracted from. At this point, the importance of
stable models reusability becomes apparent. The more the systems share, the less will
need to be changed [4]. Changes will be made to the IOs, the EBTs and BOs need not be
touched. Therefore, the EBTs and BOs can be reused among those applications if they are
well recognized.

SSM maintains the consistency between the stability and tangibility of the objects. The
tangible objects reflect an essential property of the IOs. According to SSM, an intangible
object cannot be an IO, which agrees with the definition of stability. Similarly, the EBTs
and BOs are defined in terms of tangibility.

SSM proposes a clear differentiation between the BOs and IOs. The BOs belong to the
reusable part of the system, while the IOs are entirely non-reusable. Accordingly, when
modeling another system sharing the core knowledge, it is easy to figure out what
elements to reuse and what not to. This accomplishes a level of abstraction, which
prevents the confusion between the BOs and IOs.

Acknowledgement

We are very grateful to Brad Appleton who shepherded this paper for the help and effort
he provided. Thank you, Brad!

References

[1] A. Mahdy, M.E. Fayad, H. Hamza, and P. Tugnawat, “ Stable and Reusable

Model-Based Architectures” 12th Workshop on Model-based Software Reuse, 16th
ECOOP 2002, Malaga, Spain.

[2] D.L. Parnas, “ Software Aging” , Proceedings of the 16th International Conference
on Software Engineering, May 1994, pp 279-287.

[3] G. Arango, “ A brief Introduction to Domain Analysis” , Proceedings of the ACM

Symposium on Applied Computing, April 1994, pp 42-46.

[4] J. Coplien, D. Hoffman, D. Weiss, “ Commonality and Variability in Software
Engineering” , IEEE Software, Vol. 15, No. 6, Nov. 1998, pp 37-45.

[5] M. Cline and M. Girou, “ Enduring Business Themes” , Communications of the

ACM, Vol. 43, No. 5, May 2000, pp. 101-106.

[6] M.E. Fayad, “ Accomplishing Software Stability” , Communications of the ACM,

Vol. 45, No. 1, January 2001, pp 95-98.

 13

[7] M.E. Fayad, and A. Altman, “ Introduction to Software Stability” ,
Communications of the ACM, Vol. 44, No. 9, September 2001, pp 95-98.

[8] R.C. Martin, “ Stability” , C++ Report, Feb. 1997.

