Validation Strategy
Matthew A. Brown
Senior Web Developer
Avery Dennison Corporation

Introduction

The Validation Strategy pattern concerns validation of an object's state with a focus on
flexibility of implementation, and modularity of the object's behavior.

Context

In today's development environments, validating an object is frequently a requirement,
regardless of software platform or language. For example, at our company, we perform
validations on Data Transfer Objects (DTO) [1], XML objects, and even files objects.
Let's use the DTO as an example. First, the DTO pattern uses a lightweight object to
transfer data between the Enterprise Java Beans (EJB) layer and the client layer, allowing
for greater performance. During our experience with DTOs, we found that we could use
DTOs for more than simple web interfaces, but also for interfacing to legacy systems, file
upload programs, and Java Messaging Services. Each one can be viewed as a different
type of client. In all of these different contexts, we may or may not require validation of
the object's state.

There are various types of validation that are used in environments today. Here is a
listing of some of the types:

Validation Type Definition Example of use

Pattern Matching Validation based on matching a Validate email address for
pattern defined by a regular "@" and ".", with ending of
expression against the data net,com,org, ect. Regular
entered. This type of validation = Expressions typically use
allows you to check for pattern matching.

predictable sequences of
characters, such as those in social
security numbers, e-mail
addresses, telephone numbers,
postal codes, and so on.

Range Checking Checks that a user's entry is We check the future date of
between specified lower and availability to make sure that
upper boundaries. You can check the date is not before today.
ranges within pairs of numbers,
alphabetic characters, and dates.

Boundaries can be expressed as
constants or as values derived
from another control.

Validation Type Definition Example of use

Comparison Compares a user's entry against a We check the value of certain

Checking constant value, a value derived fields against a list of valid
from another control, or a values defined in a properties
database value using a file.

comparison operator (less than,
equal, greater than, and so on).

Cross Checking Compares a field's value against We check in the database for
other values entered, or values in existing inventory "template"
databases/other that provides default

systems/datasources for only ainformation. @ The template
valid combination of values must exist first.
overall.

Type Checking Checks to ensure that the field's We check to make sure that
value is of a specific type, such as quantity, and numeric fields
an integer, String, character, ect. are only digit characters.

Null Checking Checks to ensure that there is a We validate that the value is
value entered. Cannot be null. not null on required fields.

Combined with many differing contexts of the object's use, we need to think about code
reuse. Fully utilizing an object's code base can be accomplished through allowing for
flexibility in the design of the object's responsibilities.

Problem
How do you automate validation of the state of an object's fields that
allows flexibility for a variety of implementations of the object?

Forces

In certain environments, modularity of code is paramount. With proper design, there
should be clean separation of the responsibilities for objects (i.e. not mixing in business
logic into the persistence objects). Normally, the state of an object, and the validation of
that state, should be encapsulated within that object. However, we found that in differing
contexts of using an object, we did not always require validation of the object's state in
the same way. We wanted to maximize code reuse. Accordingly, avoiding
implementation specific logic within DTO object is desired.

Validation of an object's state is not always required or desired. In some uses of the
object, we know that the object's state is valid, as the source of the data is trusted.
Flexibility of the validation logic implementation is required, as given different contexts
for the use of the object; logic might be different.

Solution

Encapsulate the validation logic into a separate class or object, away from the DTO and
classes that implement it. Structure the validation logic class methods to allow for
automated calls by classes using the DTO. The solution involves using the Java
reflection API to recursively call the validation methods against the "getter" methods of

the object's fields.

Structuring the validation logic class is accomplished by initially thinking of a simple
verb that describes the actions performed against a data object. Obviously this verb is the
word "validate." It is used as the prefix for each of the methods in the class that we will
be calling. The suffix will be the name of the field from the DTO object. Maintaining
this structure is the key to efficiently and automatically invoking, via the java reflection
API, the validation logic on the DTO fields.

In a class where the validation logic needs to be performed on the DTO object, we add a
method that uses the Java reflection API to call all of the "getter" methods of the DTO
fields and the corresponding methods of the validation logic class. We then match the
DTO method to the validation logic method via the naming conventions we implemented
above, using the verb prefix as a key. Using this methodology, we can automate the call
to business logic method onto the "getter" method.

DTOClass ValidationClass
-field
-attribute
*SB["_IE‘IE’I::I +'~IH|:I+|'I'E|dlf:I . {Unﬁpecjﬁed}
: ; +yalice, oo s)
HgetField() | <unspecified= whinds I
HyalidateDTOs() shinds i
[

wimplementation classs
InvokingClass

valdateD T 0s|)

EXAMPLE: INVENTORY
DTO WITH INVENTORY

EJB
InventoryDTO

rice - doubls ValidatelnventaryDTO
-parthumber
+getPrice) | <unspecified= +validatePartfumber(} : bool
+yalidateOTO() +ualidateDTON)
+galPrica() +\ra;|:;ind;rica|{] : bool
+getPartMumben) o
tsetPartNumber() «hinds i]

I

N, A I

e ol
wimplementation classs
InventoryLoader

+validateDTO() : bool

The following are examples of how we can instantiate the Validator Class using a

variety of interfaces:

MQ Message Interface

MoMessage Parser
onhdessage method

receives MO
Message

Result-Pass back |
success o failure.

parsehessage- via
Siring tokenizer
and assigns values
it OTO fields

Imvoke validator

File Upload Interface

B S il

i 4

File 4

Multipart Request

class one

File object is

» checked for

Serviet-creates file
object

Resuli-Pass back

general syntax

h

For each row in the
ile, 8 OTO object is
created, for each
column, a DTO

'y

Web Interface

success or failure.

Serviet Parses HTTP
request -puts values
inio DTO fields

field iz populated.
Invoke validator |
class two T
| Invioke Validator
L2 class three

Result-Fass back

=
success or failure. |

With all of the above scenarios an EJB is created if there is a success on the validation of the DTO. This
way, we don't need to be concerned with rollback of transactions, or invoking an EJB "remove" method on
the EJBs to clean up.

Applicability

Use the Validation Strategy when:

— You want to use an object in a variety of implementations, with differing states of the
object. Validation behavior can be unique in each state of the object.

You want to automate the validation of an object's state.

Consequences

The following benefits were derived:

— Flexibility
We can easily customize the implementation of an object. We can simply add a
class that extends the existing validation logic class, and override the methods
that we want to change. This ensures that we do not have duplicate code. In
addition, if we do not need to validate an object's state, this design does not force
us to do so. Furthermore, if we want to only validate certain fields, but not others
(for example a "comments field"), we can do so easily.

— Automation
Method calls were automated via the reflection APIL

The following weaknesses occur with this pattern:

— Limitations on Reflection API
The java reflection API has certain limitations; such as difficulty finding methods
that are overloaded. Furthermore, this pattern depends on this API for the
automated calls. Other languages will need to find other ways to call the methods
against each other.

— Method is tightly coupled to implementation class
The method where the validation is called could be removed from the
implementation class and placed in a "proxy" class of some type.

— Performance
Method calls using reflection are slower than calling the methods directly.

— Cross Checking Validation
Cross checking validation will be difficult to perform.

Implementation

Implementation of this pattern is relatively straight forward, an example of which is in

the Appendix. There were several issues encountered during implementation.

— Reflection based method calls to execute; we needed to be careful with the spelling
and capitalization of each of the methods.

— Finding the methods is sometimes tricky. Reflection API will try and return back the
first instance of a method found dynamically. If methods are overloaded, it is
difficult to find the exact method with the given arguments.

Known Uses

In the August, 2002 edition of Java Pro, Mark Nadelson and Marina Evenstein,
developed an architecture for automating the testing of code. Mark's framework is used
to validate an object's state during testing. Rather than using a validation class as we do
in this pattern, he uses serialized XML objects to perform the validation against a
previously created XML "template", and recursively calls down the XML tree to validate
the fields of the newly created object. When asked how he would describe the
framework, he said, "I would call it the "Matching Template Object Validation
Pattern."[2]

Another known use is that the pattern is similar to the old NextStep NSValidation
interface, which lives on in Apple's WebObjects. See
http://developer.apple.com/techpubs/webobjects/Reference/Javadoc/com/webobjects/fou
ndation/NSValidation.html. In short, objects that implement the interface must
implement a generic validateValueForKey (value, propertyName) method, which returns
the validated value (which might have been coerced) or throws a ValidationException. It
does this by calling the appropriate, optional, validate[Key] method if it exists. So you
write the validateKey methods for each property you want to validate; the rest are
considered valid by default.[4]

Related Patterns

Strategy Pattern:Validation Strategy uses the same type of structure as the Strategy
Pattern. The Strategy Pattern allows a class to have different sets of behavior[3].

References

[1]Floyd Marinescu, EJB Design Patterns, The MiddleWare Company, 2002.

[2]Mark Nadelson and Marina Evenstein, "Undaunted Testing", Java Pro, vol. 6, No8,
August 2002, 18-31.

[3] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns,
Addison-Wesley, 1995.

[4]Ray Schnitzler, Validation of Data Transfer Objects Pattern-by Matthew A. Brown,
response by Ray Schnitzler,

http://www.theserverside.com/patterns/thread.jsp?thread id=13571

Appendix

At our company we use the Data Transfer Object (DTO) pattern for moving large
amounts of data between the client and the EJB. We use IBM's Websphere Command
Framework for taking requests from Java server pages (jsps) and other sources. We were
writing long methods for validating the DTO's state, which resulted in less than
maintainable code. We have a heterogeneous interface into our applications, including
the web container (jsps and servlets); MQ Series messages, XML messaging, and file
upload programs. Consequently, JavaScript does not provide the tools for validating data
outside of web pages. The XML can be validated via DTD's but only to a limited extent.
We wanted to standardize the way our data is validated and eliminate duplication of
code. We used this pattern to perform the procedure of validating all of the fields.

DTO Class

package com patterns. datatransfer;

i mport java.io.Serializable;

i mport java.sql. Ti nestanp;

i nport java.text.DateFornat;

i mport java.text.Sinpl eDateFormat;
i mport java.util.Conparator;

public class InventoryltenDat aBean
i mpl enents Serializable, Conparator
{ private int catentryld;
private int nmenberld;
private String catentTypeld;
private String partNunber;
private String nfPartNunber;
private String nfNane;

public InventoryltenDataBean()
{}

public int getCatentryld()
{return catentryld;

}

public String get Catent Typel d()
{return catent Typel d;

}

public int getMenberld()
{return nmenberld;

}

public String get M Nanme()
{return nfNane;

}

public String get M PartNunber ()
{return nfPart Nunber;

}

public void setCatentryld(int newCatentryld)
{catentryld = newCatentryl d;

}

public

public void setCatentTypeld(String newCat ent Typel d)

{
cat ent Typel d = newCat ent Typel d;

}
public void setMenmberld(int newienberl d)
{menberld = newMenberl d;

}

public void set MNanme(String newM Nane)
{nf Nane = newM Nane;

}

public void set M PartNunber (String newM Part Nunber)
{nf Part Nunber = newM Part Nunber;

}

public void setPartNunber(String newPart Nunber)
{part Nunber = newPart Nunber ;
}
I nvent oryl tenDat aBean(Stri ng argSortFi el dNane)
{sortFi el dName = argSortFi el dNane;
}
public int conpare((hject ol, Cbject 02)
{ return O;

private String sortFi el dNane;}

Validation Logic Class

packag

i mport
i mport
i mport
i mport
i mport
i mport
i mport

public
{

e com patterns.validator;

java.io. Serializable;

j ava. sql . Ti nest anp;

j ava. t ext . Dat eFor mat ;

j ava. text. Si npl eDat eFor nat ;
java.util . Conparator;
java.util.*;

java.io.*;

class I nventoryltenDataVali dat or
private int nenberld;
private String catentTypeld;
private String partNunber;
private String nfPart Nunber;
private String nfNane;

public bool ean validateCatentryld(int argCatent)
{ return String.valueO (argCatent). |l ength() <5;

}

public bool ean val i dat eCat ent Typel d(Stri ng ar gCat ent Type)
{ return argCatent Type. equal s("ItenBean");

}

publ i c bool ean validateMenberld(int argMenberld)
{return true;

}

publ i c bool ean val i dateM Part Nunber (String argM Part Number)
{

return (! (argM Part Nunber == null));
}

public bool ean val i dat ePart Nunber (Stri ng argpart nunber)
{return true;

}
public InventoryltenDataValidator()

{}
}

Method to initiate validation logic

1. Pass the validator and validatee classes to the method, along with the Actual DTO
object.

2. Create an array of all methods for InventoryltemDataBean Data Transfer Object.

Filters out the "getter" methods.

4. Create an array of all of the methods of the InventoryltemDataBeanValidator that
start with "validate".

5. Manipulate the name of the method validation method to see if the field name suffix
matches the field name suffix of the InventoryltemDataBean "getter" method.

6. Where method prefixes, or fieldnames match, the field is validated via the reflection
APL.

7. For instances where validation fails, it logs a message that is returned to the
requesting interface.

[98)

package com patterns. facade;

i mport java.lang.reflect.*;
i mport com patterns.validator.*;
i mport com patterns.datatransfer.*;
i mport com patterns.constants. |tenValidatorConstants;
/**
* Insert the type's description here.
* Creation date: (09/10/2002 11:49:53 PM
* @ut hor: WNMatthew A. Brown
*/
public class InventoryltenmvalidatorService {
private StringBuffer errors;

/**
* I nventoryValidator constructor conment.
*/
private InventoryltenValidatorService() {
super();

}

public static InventoryltenValidatorService
createl nventoryltenValidatorService() {
return new I nventoryltenVvalidatorService();

}
/**
* |nsert the nmethod's description here.
* Creation date: (09/10/2002 11:58:02 PM
* @aram param java.lang. String
* %
/
private void errorlt(String param {
errors. append(param ;

}

/**

* Insert the nmethod' s description here.
* Creation date: (09/11/2002 12:01:44 AM
* @eturn java.lang. String

*/
public String getErrors() {
if(errors !'= null)
return errors.toString();
el se
return "
}

private bool ean validate(com patterns. datatransfer.|nventoryltenDataBean
argdb, Class arg Validator) {
bool ean is_ok = true;

try {

I nventoryl tenDat aVal i dator div =
(I'nventoryltenDataVal i dat or) Cl ass. for Nane("com patterns. validator.|nvent
oryl tenDat aVal i dator") . newl nstance();

java.lang. d ass Inventoryltem =
Cl ass. forName("com patterns. datatransfer.|lnventoryltem');

java.lang. C ass inventoryvalidate = arg_Val i dator

java.lang.refl ect.Method I nventoryltem nethods[] =
I nventoryltem get Met hods() ;

java.lang.refl ect.Method i nventoryval i date_nethods[] =

i nvent oryval i dat e. get Met hods() ;

for (int k = 0; k < Inventoryltem nethods.|ength; k++) {
Met hod tenmp = I nventoryltem nethods[K];
String nethod_name = tenp. get Name();
i f (nmethod_nane.startsWth("get")) {
for (int I =0; | <
i nventoryval i date_net hods. | ength; | ++) {

Met hod val i dator =
i nventoryval i date_net hods[I];
String validator_nane =
val i dat or. get Nare() ;
if (validator_name.startsWth("validate"))
{
String validate_reformat =
"get" +
val i dat or _nane. substring(8, validator_nane.length());
i f
(et hod_nane. equal sl gnoreCase(val i date reformat)) ({
ohject[] enmpty_stuff = new
oj ect[0];
oj ect[] stuff = new Qbject][]
{tenp.invoke(argdb, enmpty stuff)};
Bool ean b = (Bool ean)
val i dat or. i nvoke(div, stuff);
System out . printl n(b. bool eanVa
lue());
if (!(b.booleanValue())) {
is_ok = fal se;
String results =
("1 NVENTORY | TEM
W TH SPEC NUMBER: "

+
ar gdb. get M Par t Nunber ()
+
VALI DI DATI ON TEST RESULTS: nethod cal ling:"
+
nmet hod_nane
"
val idator calling:"
+
val i dat or _nane
s
Resul t Of Test :
+ b
+ "
\n");
System out. println(resul
ts);
errorlt(results);
return false;
} /T E
} //1F METHOD
} //1F VALI DATOR
}
}
}
} catch (Exception e) {
System out. println(e);
}

return is_ok;

}
/**
Insert the nethod's description here.

* Creation date: (09/11/2002 12:17:11 AM
* @eturn java.lang. String
*/
publ i c bool ean validatelten(lnventoryltenDataBean arg_i nventory_item
int arg_interface) {

bool ean validated = fal se;

try{

if(arg_interface ==
(com patterns. constants. |tenmval i dat or Const ants. FI LE | NTERFACE))
val idated =
(validate(arg_inventory item d ass. forName("com patterns.validator.|nven
toryltenDataVal i datorForFiles")));
else if(arg_interface ==
(com patterns. constants. |tenVal i dat or Const ants. JVM5 | NTERFACE))
val idated =
(validate(arg_inventory item Cl ass.forNane("com patterns.validator.|nven
toryl tenDat aVal i dat or ForJMS"))) ;
el se
val idated =

(validate(arg_inventory item Cl ass.forNane("com patterns.validator.|nven
toryltenDat aVal i dat or For Web"))) ;
}cat ch(Exception e){

e.printStackTrace();

}
return val i dat ed;
}

}

Constants

package com patterns.constants;

/**

* |nsert the type's description here.
* Creation date: (09/11/2002 12:20:25 AM
* @ut hor: Matthew A Brown
*/
public class ItenValidatorConstants {
public final static int JMS_ | NTERFACE = O;
public final static int WEB | NTERFACE = 1;
public final static int FILE | NTERFACE = 2;
/**
* |temval i dat or Constants constructor conment.
*/
public ItenValidatorConstants() {
super();
}
}

