
Validation Strategy
Matthew A. Brown

Senior Web Developer
Avery Dennison Corporation

Introduction
The Validation Strategy pattern concerns validation of an object's state with a focus on
flexibility of implementation, and modularity of the object's behavior.

Context
In today's development environments, validating an object is frequently a requirement,
regardless of software platform or language. For example, at our company, we perform
validations on Data Transfer Objects (DTO) [1], XML objects, and even files objects.
Let's use the DTO as an example. First, the DTO pattern uses a lightweight object to
transfer data between the Enterprise Java Beans (EJB) layer and the client layer, allowing
for greater performance. During our experience with DTOs, we found that we could use
DTOs for more than simple web interfaces, but also for interfacing to legacy systems, file
upload programs, and Java Messaging Services. Each one can be viewed as a different
type of client. In all of these different contexts, we may or may not require validation of
the object's state.

There are various types of validation that are used in environments today. Here is a
listing of some of the types:
Validation Type Definition Example of use
Pattern Matching Validation based on matching a

pattern defined by a regular
expression against the data
entered. This type of validation
allows you to check for
predictable sequences of
characters, such as those in social
security numbers, e-mail
addresses, telephone numbers,
postal codes, and so on.

Validate email address for
"@" and ".", with ending of
net,com,org, ect. Regular
Expressions typically use
pattern matching.

Range Checking Checks that a user's entry is
between specified lower and
upper boundaries. You can check
ranges within pairs of numbers,
alphabetic characters, and dates.
Boundaries can be expressed as
constants or as values derived
from another control.

We check the future date of
availability to make sure that
the date is not before today.

Validation Type Definition Example of use
Comparison
Checking

Compares a user's entry against a
constant value, a value derived
from another control, or a
database value using a
comparison operator (less than,
equal, greater than, and so on).

We check the value of certain
fields against a list of valid
values defined in a properties
file.

Cross Checking Compares a field's value against
other values entered, or values in
databases/other
systems/datasources for only a
valid combination of values
overall.

We check in the database for
existing inventory "template"
that provides default
information. The template
must exist first.

Type Checking Checks to ensure that the field's
value is of a specific type, such as
an integer, String, character, ect.

We check to make sure that
quantity, and numeric fields
are only digit characters.

Null Checking Checks to ensure that there is a
value entered. Cannot be null.

We validate that the value is
not null on required fields.

Combined with many differing contexts of the object's use, we need to think about code
reuse. Fully utilizing an object's code base can be accomplished through allowing for
flexibility in the design of the object's responsibilities.

Problem
How do you automate validation of the state of an object's fields that
allows flexibility for a variety of implementations of the object?

Forces
In certain environments, modularity of code is paramount. With proper design, there
should be clean separation of the responsibilities for objects (i.e. not mixing in business
logic into the persistence objects). Normally, the state of an object, and the validation of
that state, should be encapsulated within that object. However, we found that in differing
contexts of using an object, we did not always require validation of the object's state in
the same way. We wanted to maximize code reuse. Accordingly, avoiding
implementation specific logic within DTO object is desired.

Validation of an object's state is not always required or desired. In some uses of the
object, we know that the object's state is valid, as the source of the data is trusted.
Flexibility of the validation logic implementation is required, as given different contexts
for the use of the object; logic might be different.

Solution
Encapsulate the validation logic into a separate class or object, away from the DTO and
classes that implement it. Structure the validation logic class methods to allow for
automated calls by classes using the DTO. The solution involves using the Java
reflection API to recursively call the validation methods against the "getter" methods of

the object's fields.

Structuring the validation logic class is accomplished by initially thinking of a simple
verb that describes the actions performed against a data object. Obviously this verb is the
word "validate." It is used as the prefix for each of the methods in the class that we will
be calling. The suffix will be the name of the field from the DTO object. Maintaining
this structure is the key to efficiently and automatically invoking, via the java reflection
API, the validation logic on the DTO fields.

In a class where the validation logic needs to be performed on the DTO object, we add a
method that uses the Java reflection API to call all of the "getter" methods of the DTO
fields and the corresponding methods of the validation logic class. We then match the
DTO method to the validation logic method via the naming conventions we implemented
above, using the verb prefix as a key. Using this methodology, we can automate the call
to business logic method onto the "getter" method.

The following are examples of how we can instantiate the Validator Class using a
variety of interfaces:

With all of the above scenarios an EJB is created if there is a success on the validation of the DTO. This
way, we don't need to be concerned with rollback of transactions, or invoking an EJB "remove" method on
the EJBs to clean up.

Applicability
Use the Validation Strategy when:
− You want to use an object in a variety of implementations, with differing states of the

object. Validation behavior can be unique in each state of the object.
You want to automate the validation of an object's state.

Consequences
The following benefits were derived:
− Flexibility

We can easily customize the implementation of an object. We can simply add a
class that extends the existing validation logic class, and override the methods
that we want to change. This ensures that we do not have duplicate code. In
addition, if we do not need to validate an object's state, this design does not force
us to do so. Furthermore, if we want to only validate certain fields, but not others
(for example a "comments field"), we can do so easily.

− Automation
Method calls were automated via the reflection API.

The following weaknesses occur with this pattern:
− Limitations on Reflection API

The java reflection API has certain limitations; such as difficulty finding methods
that are overloaded. Furthermore, this pattern depends on this API for the
automated calls. Other languages will need to find other ways to call the methods
against each other.

− Method is tightly coupled to implementation class
The method where the validation is called could be removed from the
implementation class and placed in a "proxy" class of some type.

− Performance
Method calls using reflection are slower than calling the methods directly.

− Cross Checking Validation
Cross checking validation will be difficult to perform.

Implementation
Implementation of this pattern is relatively straight forward, an example of which is in
the Appendix. There were several issues encountered during implementation.
− Reflection based method calls to execute; we needed to be careful with the spelling

and capitalization of each of the methods.

− Finding the methods is sometimes tricky. Reflection API will try and return back the
first instance of a method found dynamically. If methods are overloaded, it is
difficult to find the exact method with the given arguments.

Known Uses
In the August, 2002 edition of Java Pro, Mark Nadelson and Marina Evenstein,
developed an architecture for automating the testing of code. Mark's framework is used
to validate an object's state during testing. Rather than using a validation class as we do
in this pattern, he uses serialized XML objects to perform the validation against a
previously created XML "template", and recursively calls down the XML tree to validate
the fields of the newly created object. When asked how he would describe the
framework, he said, "I would call it the "Matching Template Object Validation
Pattern."[2]

Another known use is that the pattern is similar to the old NextStep NSValidation
interface, which lives on in Apple's WebObjects. See
http://developer.apple.com/techpubs/webobjects/Reference/Javadoc/com/webobjects/fou
ndation/NSValidation.html. In short, objects that implement the interface must
implement a generic validateValueForKey (value, propertyName) method, which returns
the validated value (which might have been coerced) or throws a ValidationException. It
does this by calling the appropriate, optional, validate[Key] method if it exists. So you
write the validateKey methods for each property you want to validate; the rest are
considered valid by default.[4]

Related Patterns
Strategy Pattern:Validation Strategy uses the same type of structure as the Strategy
Pattern. The Strategy Pattern allows a class to have different sets of behavior[3].
References
[1]Floyd Marinescu, EJB Design Patterns, The MiddleWare Company, 2002.
[2]Mark Nadelson and Marina Evenstein, "Undaunted Testing", Java Pro, vol. 6, No8,
August 2002, 18-31.
[3] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns,
Addison-Wesley, 1995.
[4]Ray Schnitzler, Validation of Data Transfer Objects Pattern-by Matthew A. Brown,
response by Ray Schnitzler,
http://www.theserverside.com/patterns/thread.jsp?thread_id=13571

Appendix
At our company we use the Data Transfer Object (DTO) pattern for moving large
amounts of data between the client and the EJB. We use IBM's Websphere Command
Framework for taking requests from Java server pages (jsps) and other sources. We were
writing long methods for validating the DTO's state, which resulted in less than
maintainable code. We have a heterogeneous interface into our applications, including
the web container (jsps and servlets); MQ Series messages, XML messaging, and file
upload programs. Consequently, JavaScript does not provide the tools for validating data
outside of web pages. The XML can be validated via DTD's but only to a limited extent.
We wanted to standardize the way our data is validated and eliminate duplication of
code. We used this pattern to perform the procedure of validating all of the fields.

DTO Class

package com.patterns.datatransfer;

import java.io.Serializable;
import java.sql.Timestamp;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Comparator;

public class InventoryItemDataBean
implements Serializable, Comparator

{ private int catentryId;
private int memberId;
private String catentTypeId;
private String partNumber;
private String mfPartNumber;
private String mfName;

public InventoryItemDataBean()
{}
public int getCatentryId()
{return catentryId;
}
public String getCatentTypeId()
{return catentTypeId;
}
public int getMemberId()
{return memberId;
}
public String getMfName()
{return mfName;
}
public String getMfPartNumber()
{return mfPartNumber;
}
public void setCatentryId(int newCatentryId)
{catentryId = newCatentryId;
}

public void setCatentTypeId(String newCatentTypeId)
{
catentTypeId = newCatentTypeId;
}
public void setMemberId(int newMemberId)
{memberId = newMemberId;
}

public void setMfName(String newMfName)
{mfName = newMfName;
}

public void setMfPartNumber(String newMfPartNumber)
{mfPartNumber = newMfPartNumber;
}

public void setPartNumber(String newPartNumber)
{partNumber = newPartNumber;
}

public InventoryItemDataBean(String argSortFieldName)
{sortFieldName = argSortFieldName;
}
public int compare(Object o1, Object o2)
{ return 0;

}
private String sortFieldName;}

Validation Logic Class
package com.patterns.validator;

import java.io.Serializable;
import java.sql.Timestamp;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Comparator;
import java.util.*;
import java.io.*;

public class InventoryItemDataValidator
{ private int memberId;

private String catentTypeId;
private String partNumber;
private String mfPartNumber;
private String mfName;

public boolean validateCatentryId(int argCatent)
{ return String.valueOf(argCatent).length() <5;

}

public boolean validateCatentTypeId(String argCatentType)
{ return argCatentType.equals("ItemBean");

}

public boolean validateMemberId(int argMemberId)
{return true;
}

public boolean validateMfPartNumber(String argMfPartNumber)
{

return (!(argMfPartNumber == null));
}

public boolean validatePartNumber(String argpartnumber)
{return true;
}
public InventoryItemDataValidator()
{}

}
Method to initiate validation logic

1. Pass the validator and validatee classes to the method, along with the Actual DTO
object.

2. Create an array of all methods for InventoryItemDataBean Data Transfer Object.
3. Filters out the "getter" methods.
4. Create an array of all of the methods of the InventoryItemDataBeanValidator that

start with "validate".
5. Manipulate the name of the method validation method to see if the field name suffix

matches the field name suffix of the InventoryItemDataBean "getter" method.
6. Where method prefixes, or fieldnames match, the field is validated via the reflection

API.
7. For instances where validation fails, it logs a message that is returned to the

requesting interface.

package com.patterns.facade;

import java.lang.reflect.*;
import com.patterns.validator.*;
import com.patterns.datatransfer.*;
import com.patterns.constants.ItemValidatorConstants;
/**
 * Insert the type's description here.
 * Creation date: (09/10/2002 11:49:53 PM)
 * @author: Matthew A.Brown
 */
public class InventoryItemValidatorService {

private StringBuffer errors;

/**
 * InventoryValidator constructor comment.
 */
private InventoryItemValidatorService() {

super();
}

 public static InventoryItemValidatorService
createInventoryItemValidatorService() {
 return new InventoryItemValidatorService();
 }
/**
 * Insert the method's description here.
 * Creation date: (09/10/2002 11:58:02 PM)
 * @param param java.lang.String
 **/
private void errorIt(String param) {

errors.append(param);
}

/**
 * Insert the method's description here.
 * Creation date: (09/11/2002 12:01:44 AM)
 * @return java.lang.String
 */
public String getErrors() {

if(errors != null)
return errors.toString();
else
return "";

}
private boolean validate(com.patterns.datatransfer.InventoryItemDataBean
argdb, Class arg_Validator) {
boolean is_ok = true;

try {
InventoryItemDataValidator div =

(InventoryItemDataValidator)Class.forName("com.patterns.validator.Invent
oryItemDataValidator").newInstance();

java.lang.Class InventoryItem =
Class.forName("com.patterns.datatransfer.InventoryItem");

java.lang.Class inventoryvalidate = arg_Validator;
java.lang.reflect.Method InventoryItem_methods[] =

InventoryItem.getMethods();
java.lang.reflect.Method inventoryvalidate_methods[] =

inventoryvalidate.getMethods();

for (int k = 0; k < InventoryItem_methods.length; k++) {
Method temp = InventoryItem_methods[k];
String method_name = temp.getName();
if (method_name.startsWith("get")) {

for (int l = 0; l <
inventoryvalidate_methods.length; l++) {

Method validator =
inventoryvalidate_methods[l];

String validator_name =
validator.getName();

if (validator_name.startsWith("validate"))
{

String validate_reformat =
"get" +

validator_name.substring(8, validator_name.length());
if

(method_name.equalsIgnoreCase(validate_reformat)) {
Object[] empty_stuff = new

Object[0];
Object[] stuff = new Object[]

{temp.invoke(argdb, empty_stuff)};
Boolean b = (Boolean)

validator.invoke(div, stuff);
System.out.println(b.booleanVa

lue());
if (!(b.booleanValue())) {

is_ok = false;
String results =

("INVENTORY ITEM
WITH SPEC NUMBER:"

+
argdb.getMfPartNumber()

+ "
VALIDIDATION TEST RESULTS: method calling:"

+
method_name

+ "
validator calling:"

+
validator_name

+ "
ResultOfTest: "

+ b
+ "
\n");

System.out.println(resul
ts);

errorIt(results);
return false;

} //IF
} //IF METHOD

} //IF VALIDATOR
}

}
}

} catch (Exception e) {
System.out.println(e);

 }
return is_ok;

}
/**
 * Insert the method's description here.
 * Creation date: (09/11/2002 12:17:11 AM)
 * @return java.lang.String
 */
public boolean validateItem(InventoryItemDataBean arg_inventory_item,
int arg_interface) {

boolean validated = false;
try{
 if(arg_interface ==

(com.patterns.constants.ItemValidatorConstants.FILE_INTERFACE))
 validated =

(validate(arg_inventory_item,Class.forName("com.patterns.validator.Inven
toryItemDataValidatorForFiles")));

 else if(arg_interface ==
(com.patterns.constants.ItemValidatorConstants.JMS_INTERFACE))

 validated =
(validate(arg_inventory_item,Class.forName("com.patterns.validator.Inven
toryItemDataValidatorForJMS")));

 else
 validated =

(validate(arg_inventory_item,Class.forName("com.patterns.validator.Inven
toryItemDataValidatorForWeb")));

}catch(Exception e){
e.printStackTrace();

}
return validated;
}

}
Constants
package com.patterns.constants;

/**
 * Insert the type's description here.
 * Creation date: (09/11/2002 12:20:25 AM)
 * @author: Matthew A. Brown
 */
public class ItemValidatorConstants {

public final static int JMS_INTERFACE = 0;
public final static int WEB_INTERFACE = 1;
public final static int FILE_INTERFACE = 2;

/**
 * ItemValidatorConstants constructor comment.
 */
public ItemValidatorConstants() {

super();
}
}

