

 Copyright  2002. Miroslav Kis. Permission is granted to copy for the PLoP 2002 conference. All other rights reserved. 1

Information Security Antipatterns
in Software Requirements Engineering

Miroslav Kis, Ph.D., CISSP, Member IEEE

miroslav.kis@bmo.com

Abstract

Requirements engineering is one of the key activities in
the software development process. The rapid expansion of
e-commerce and internet applications increases the need
for adequate application security. Yet, conventional
requirements engineering methodologies rarely mention
information security aspects. The information security
community, on the other hand, has developed system
security requirements specification methodologies. These
methodologies, from the software architect’s point of
view, are often hard to understand and too general to be
applied. By following conventional methodologies and
failing to thoroughly understand the security
consequences, architects end up with inadequate
application security. This paper presents two commonly
observed cases - antipatterns. In the first case, an old and
well-known (perimeter security) model is applied in a new
context without analysis of the security requirements. In
the second case, the impact of lacking data sensitivity
classification and threat analyses is considered.

Keywords: Software Engineering, Information Security,
Requirements Engineering

1 Introduction
According to Greek mythology, Odysseus had to

navigate his ship between Scylla, a sea monster who lived
on the rocks of the Strait of Messina, and the whirlpool
Charybdis that was on the other side of the strait. Scylla, a
horrible doglike creature with six heads and twelve feet,
seized sailors from passing ships and devoured them.
Charybdis sucked in and spewed out huge amounts of
water. The whirlpools this created would pull in any ship
that happened to be nearby.

In today’s e-business era, software architects, who need
to develop secure software, have to navigate their projects
through a strait between conventional requirements
engineering methodologies and system security
specification methodologies. Conventional methodologies
barely even mention information security and offer little
or no help (e.g.[1][2][3]). Methodologies developed by
the information security specialists are often too general to

be directly applied in software development (e.g.[4][5]).
Furthermore, a substantial information security
background is needed to understand them (e.g. [6]). That
makes them unreadable and practically unusable for most
software architects.

According to the legend, Odysseus saved his ship from
being pulled by Charybdis. He lost, however, six of his
sailors to Scylla. In real life, to save projects from being
late and over budget, we avoid system security
specifications methodologies. This paper is about the
losses we incur by following conventional requirement
methodologies and failing to understand security aspects
of requirements engineering.

There are two main types of problems we face in
everyday practice related to this. First, to secure an
application without spending excessive time and effort, we
are tempted to use some known solutions like putting up a
firewall or using simple password authentication.
Applying a pattern, a solution that has already been
extensively used in practice, might seem to be a
reasonable idea. In many cases, however, a solution
applied without a thorough understanding of security
requirements does not provide adequate protection within
the specific context

The second issue is that we design the application
failing to understand the real value of data we need to
protect: we do not perform data sensitivity analysis.
Furthermore, we do not analyze if an attacker has an
interest to compromise the data processed by the
application. The consequences of not performing data
sensitivity and threat analyses are that the application
security requirements cannot be properly defined, and the
solution will not provide an adequate security. In most
cases we will waste time and effort to protect unimportant
data and, at the same time, fail to provide strong enough
protection for the most important information.

We analyze these problems using an example of a
payroll application. The application is deployed in both
mainframe and intranet environments. The two
antipatterns should help software architects and project
managers to recognize and avoid some common, security
related pitfalls.

 Copyright  2002. Miroslav Kis. Permission is granted to copy for the PLoP 2002 conference. All other rights reserved. 2

2 Requirements Antipatterns

For each antipattern in this section we present the
following elements. First, we present the description of a
problem to be solved and some relevant background
information. Next we analyze the context in which the
problem usually arises and faulty beliefs that lead to the
antipattern solution. Then we present the antipattern
solution, analyze its security impact and give advice how
to properly solve the initial problem. Finally the
symptoms that can be helpful in diagnosing the antipattern
are presented.

2.1 Perimeter security: the Maginot line of
enterprise applications

2.1.1 Problem

The statement of the problem is pretty simple: we have
to secure a typical n-tier enterprise application. Based on
this problem statement, it is natural to ask the following
question: if we are faced with a typical application,
couldn’t we simply apply a typical security solution? This
antipattern shows why a well known, typical solution from
the pre-internet time, fails when it is applied to a modern
enterprise application.

2.1.2 Background

Before the internet era, an application would be
deployed on a mainframe computer (see

Figure 1). Only a limited number of users and
administrators would have physical access to the system
terminals. Outside network connections were rare if they
existed at all. The typical security solution was to:

• Use passwords to control user access to the system

• Use firewalls to restrict and guard network
connections

The solution of using a simple password and a firewall
was adequate at pre-intranet time, because one could
make the following assumptions.

• Users access the mainframe using terminals.

• A separate wire is used to connect each terminal to
the mainframe.

• Physical access to the terminals is limited to a
small number of users and administrators.

2.1.3 Context

Yet today, when we analyze modern intranet
infrastructure, the context has changed and the following
assumptions are valid:

Firewall

Mainframe

Figure 1 Mainframe connectivity diagram

• Users access the mainframe using intelligent

terminals (desktops, laptops and workstations).

• All the intelligent terminals are connected to the
mainframe over a local area network (LAN).

• Most of the company’s employees have access to
the LAN through their computers.

• The number of potential attackers has been
increased from a small group of trusted users to
almost all employees in the company.

2.1.4 Forces

The two main forces that influence the quality of the
security solution are the above mentioned: time to market
and the difficulty with applying general system’s security
theory in software development. Let’s analyze in more
details both of them.

First, consider the time to market factor. In order to
keep competitive position on the market, companies are
forced to come up with new versions of the products as
soon as possible. In most cases, the functionality of the
product is much more important than any other quality
attribute of the product including information security.
Additionally, security of the product is hard to evaluate
and normally becomes an issue only if it is compromised.
Under these circumstances project sponsors and managers
are tempted to reduce time and effort devoted to security
design.

Second, there is a big disconnection between software
development theory and practice on one side and general
system’s security theory on the other. There are several
reasons for that disconnection. One very important reason
is that information security deals with human attackers
that can exploit a wide range of vulnerabilities:

• Technical vulnerabilities of the system. One
example of that would be when confidential data is
stored in the clear text on an unprotected, shared
network drive.

 Copyright  2002. Miroslav Kis. Permission is granted to copy for the PLoP 2002 conference. All other rights reserved. 3

• Overlooked problems in development and
maintenance processes. Implanting malicious code
into the application caused by lack of change
control would be an example of this type of
vulnerabilities.

• Human factor related problems. An example of this
type of vulnerability would be weak passwords.

Any theory that tries to model such a diverse
environment inevitably has to be complex and therefore
hard to learn and implement. Conversely, simple models
can only cover certain aspects of the overall problem and
they might not provide sufficient protection in a real life
situation. For example one of the most famous models,
Bell-LaPadula model [7], covers only confidentiality
aspects of the security. Biba model [8] on the other hand
covers integrity. Even the most complex, Common
Criteria model [6], has a whole list of the security aspects
that are not covered.

The next important factor is that significant background
knowledge in security, system’s theory, software
architecture and, software development methodologies are
needed in order to understand and apply these models.
Educational background of a typical information security
person is computer systems administration combined with
network level security. Education of a typical software
architect covers only very basic security topics. Both these
professionals need substantial additional knowledge to be
able to provide an adequate security solution for software
applications.

2.1.5 Faulty beliefs

In essence, the perimeter protection model, described
earlier, is still the dominant security architecture model.
Since the perimeter solution would normally be applied
once the application is deployed, the typical assumption
architects make is that security is a plug-in feature added
to the application once development is completed. Due to
the fast growth of the internet, applications have moved
quickly to the ‘global network.’ Yet, the understanding of
new security challenges lags behind.

2.1.6 Antipattern solution

The antipattern solution applies perimeter security
model to the modern enterprise application architecture
(see Figure 2). The application logic may still be
implemented on a mainframe computer as a legacy
application or it can be implemented on a separate
application server. In both cases the communication
between the presentation and business logic tiers goes
over the local area network (LAN).

2.1.7 Consequences

To better understand the security consequences of
avoiding security requirements analysis and implementing
the perimeter security concept in the wrong context, we
will analyze an example of a payroll application initially
implemented on a mainframe computer (Figure 1) and
then used in an intranet environment (Figure 2).

Ethernet

Computer Laptop

Server

Workstation

Mainframe

Firewall

Internet

Figure 2 Intranet connectivity diagram

Any communication between users and the mainframe
in the intranet environment (Figure 2) can be easily
observed and altered by an attacker. By starting a simple
‘sniffer’ program on his computer, the attacker can
monitor traffic on the LAN, including passwords sent in
the clear. In the original scenario (Figure 1), it was a
significantly more difficult task to achieve the same:
physical access and a separate wiretap for each and every
connection line were needed.

Firewalls provide only partial access control to the
resources they are protecting. By checking the source and
destination addresses of the packets, they can limit the
number of computers that can access the mainframe. The
source address of an IP packet can be, however, easily
changed in any text editor. That way an attacker can spoof
the packet original address. While some firewalls can do
slightly more advanced analyses, they still cannot help at
all in protecting data confidentiality, integrity and
authenticity.

The perimeter security model proves, therefore, to be
the Maginot line of the information security in internet /
intranet era. The Maginot line was built in the 1930s,
based on assumptions valid in the First World War. It
failed badly to protect France from defeat in the beginning
of the Second World War. In the same way, the perimeter
security model, based on the assumptions valid in the

 Copyright  2002. Miroslav Kis. Permission is granted to copy for the PLoP 2002 conference. All other rights reserved. 4

mainframe era, fails to protect an enterprise application
from the new threats related to the internet / intranet
environment. More specifically, the perimeter security
model does not provide data confidentiality and cannot
protect from an attack originating from the local area
network within the company.

2.1.8 Symptoms

A good indication that this antipattern has impacted
architects’ decisions is that security requirements
specification is postponed until the late phases of
application development, and sometimes avoided
altogether.

A question usually asked by project teams with
mainframe development background: ‘Why is that
solution not acceptable when it was fine before?’ also
shows its presence.

2.1.9 Refactored solution

The problem is that without proper security
requirements analysis we cannot be sure that the perimeter
concept, applicable in one context, provides adequate
protection within a new context. That analysis should be
performed in every case since a solution that provides an
adequate level of security in one context can be entirely
useless in a seemingly similar context. Without thorough
analysis we cannot determine if the contexts are similar to
the extent that the same solution would be adequate for
both cases.

The second point is that an information security
solution, added after an application is developed, in the
majority of cases is not effective. This assertion is valid
for all quality attributes of an application and information
security is not an exception to that rule. Security of an
application is impacted by all aspects of the application.
Security analysis and design should go hand in hand with
the analysis, design and deployment of the application.

We should also mention the common misconception
that encryption of all the traffic on the LAN could resolve
all the security issues. Without going into the details of all
the aspects of this misconception, for the purpose of this
analysis it is sufficient to note that all the employees
would still have to have access to that encrypted
communication channel. It is obvious that it does not in
any way protect from the internal attack.

And last but not least: the root cause of the problem we
are facing is disconnection between software development
theory and practice on one side and general system’s
security theory on the other. The question is how to bridge
that gap?

The key piece of the solution would be to integrate
general system security theory into the existing software

development methodologies. System security should be
presented there from the perspective of the people that
design and implement the system: software architects and
developers.

The second important factor is that both software
developers and security assessors need to have knowledge
of software architectures, development methodologies and
information security methodologies. Otherwise it is very
difficult to communicate between people who only know
their side of the story, and cooperation is often
disappointing since they do not talk the same language.

2.2 Security design without assessment of the
business value of the data – Clausewitz
syndrome

2.2.1 Problem

The problem we have to solve is the security of
enterprise software application.

2.2.2 Background

The main conclusion of the previous pattern is that
without thorough security requirements analysis we cannot
determine if a solution provides adequate protection for
the application. The next question we have to ask is what
we mean by thorough analysis. At minimum, we have to
determine the key elements of such an analysis. In this
antipattern we analyze the significance of the business
value of the data we are protecting.

Two key indicators that show the business value of the
data are data sensitivity and threat analyses. The data
sensitivity analysis describes the business impact if data is
observed or altered by an unauthorized person as well as
the impact of data being unavailable to the legitimate user.
The threat analysis, on the other hand, is concerned with a
likelihood of somebody attacking the system under
consideration.

2.2.3 Context

The context in which this pattern occurs is requirements
gathering phase of the software development process.
Information security requirements are needed to design a
solution that would protect the information processed by
the application.

2.2.4 Forces

The same forces that influenced solution in the
previous antipattern: time to market and problems with
applying general system’s security theory in software
development, are present in this case too.

 Copyright  2002. Miroslav Kis. Permission is granted to copy for the PLoP 2002 conference. All other rights reserved. 5

2.2.5 Faulty beliefs

While technology alone cannot solve the problem, in
most cases technology is indeed a very important part of a
solution. It has to be recognized, however, that technology
is just a tool to implement a solution. The problems exist
in the business domain and we have to understand these
problems and find the solutions before we can use any
tool.

Another faulty belief is that business customers and
users do not know what they need related to information
security. While business people might not know about the
technology, any business person capable of staying in
business is well aware of the value of the information in
his possession. In most cases, the problem is how efficient
are our techniques for eliciting that knowledge.

2.2.6 Antipattern solution

In the vast majority of cases, any kind of business
analysis of information security requirements is skipped.
Consequently, a uniform protection of all the resources in
the application is implemented. The other possible case is
that some security solutions that are perceived as ‘strong’
are arbitrarily used within the application (e.g. usage of a
strong encryption algorithm without real understanding
why).

2.2.7 Consequences

The lack of data sensitivity and threat analyses leads
toward inadequate protection of the resources we have to
protect: some sensitive data might not be protected well
enough, while we might spend unnecessary effort and
money to protect data that does not need strong
protection.

Furthermore, the severity and magnitude of the
business impact also help to set an upper limit on the scale
of costs that might be acceptable to invest in protection.

2.2.8 Symptoms

Generally in cases like this, project team understands
that security aspects should be addressed. They even do
some security analysis, but the architectural solution is
based solely on the technical analysis of the problem. The
key indicator of the existence of this antipattern is that
customer and users are not involved in requirements
gathering process: the technical part of the project team
defines the requirements.

The statements that you can often hear in the situation
like that are:

• “We will encrypt everything”

• “Customer does not know what he needs”

• “We will use the latest version of the security
product xyz”

2.2.9 Refactored solution

In order to understand how to estimate the business
value of the data, let us go back to our payroll example
from the previous antipattern. We will also show on that
example how the lack of understanding of data sensitivity
and possible threats can influence the security solution.

A high-level version of data sensitivity analysis would
identify the following data groups1:

• Employee name, phone number, and address (I)

• Department and position (I)

• Salary amount (C,I)

• Social Security Number (C,I)

The first idea that comes to mind when we process
payroll data is to protect everything in the same way since
this is a payroll. Yet, as we take a closer look at the actual
content, it is easy to see that employee Social Security
Numbers are highly confidential, and can be used to steal
a person’s identity. The telephone number, on the other
hand, does not have to be hidden, since it is usually
publicly known information. It is obvious that not all the
data has to be protected in the same way. A more detailed
analysis shows the following:

• For the name, telephone number, address,
department and position, our only problem is to
make sure that no unauthorized changes are made.

• Individual position and the employee’s department
are not secret. Aggregated information about the
whole company which shows organizational
structure, however, is normally kept secret.

• Salary level is considered confidential, and should
be protected from unauthorized change. The rules
related to who can view or change this information
can be pretty complicated, reflecting a company’s
business rules.

• The Social Security Number is here as the
employee identifier. Access to this information
should be strictly controlled.

• Most likely, availability of the whole system is
critical the day before pay day, so that pay checks
are issued on time. At any other time, if the system
is not available it will not significantly impact any
business activity.

1 Note: the letters in brackets show which security
attributes of the data group are important to protect (C –
confidentiality, I – integrity).

 Copyright  2002. Miroslav Kis. Permission is granted to copy for the PLoP 2002 conference. All other rights reserved. 6

Now we can better understand the significance of all
the pieces of data processed by the application. The next
question would be whether that is enough to design the
system. And the answer is no, it is not!

The analyses we performed so far have actually
determined only the damage that would happen in case an
attacker gets hold of the data. We could, based on this
analysis, proceed and do the design. The design, however,
would not provide an adequate security solution. The
reason for that is simple. We have not analyzed the threat:
are there people that are interested in attacking the
application?

Let us go back to our example to clarify how practically
that analysis can be performed. Additionally, we will
analyze two cases where this application is deployed. The
first case is a small startup company that wanted to
automate their payroll system so they do not have to
employ an additional person to do that job. The second
case is a large corporation that has thousands of
employees. So let us do a brief threat analysis for the
startup company:

• It is highly unlikely that somebody would try to
alter telephone number, address, department and
employee position files for a small company.

• The organizational structure of a small startup is
usually quite simple, and can be easily guessed
without using the payroll application.

• Some current employees and prospective
candidates might be interested to know salaries.

• Misuse of someone’s Social Security Number is a
criminal act. In most cases, only criminals outside
the company would be interested to obtain them.

• Even an unfair competitor would not try to make
the payroll system of the startup company
unavailable. No significant harm could be made,
nor any gain for the competition.

Now, let us analyze the threats in the case of a large
corporation:

• Disgruntled employees or an unfair competitor
might want to portray the corporation as
incompetent, which can influence customer’s
confidence. Delaying pay checks for a day by
altering employees’ personal information can cause
a huge problem that can become publicly known.
The same motive can be behind an action to make
the application unavailable.

• The organizational structure of a large corporation
might reflect their intention to develop a new
product. The size of their R&D department may
help their competition to understand it.

• Both the employees and competitors could be
interested to know salaries for several reasons.

• As in the case of the small company, criminals
outside of the corporation would be interested to
obtain Social Security Numbers.

From the analysis, it is obvious that in both cases salary
levels should not be sent in the clear and Social Security
Numbers should be protected with stronger encryption.
Apart from these common elements, the other components
of the solutions will be significantly different.

The large corporation would make sure the system is
available whenever it is needed, so they would have one
or more redundant servers. Aggregated information about
the corporation and salary ranges should also be specially
protected in the large corporation.

The small company would most likely define manual
procedure to write checks to all the employees in case the
application is down.

In reality we would take into consideration some more
details. The role of the example above, however, is to
show how the security solution for the same application
can be dramatically different, depending on the business
impact. This conclusion takes us back to our initial
statement that avoiding the data sensitivity and threat
analyses can impact a company because of either
overspending (e.g. small company unnecessarily installs
three servers) or lost customer confidence (e.g.
prematurely released information of a new product
development etc.).

3 Conclusion
Application security is a difficult problem to solve. In

the past, only software architects engaged in military
application development had to learn complex security
methodologies. The rapid expansion of e-commerce and
internet applications increases the need for an adequate
application security for practically all the enterprise
applications. The software architects of enterprise
applications are faced with a difficult choice.

The first option is to make a significant effort to
understand and implement complex security models. The
time needed to do it can excessively increase time to
market and impact the development company’s business.

The second option is to implement a solution failing to
understand even the security requirements for the
application. This approach, on a short term, might give an
impression that the application security problems are
solved. Yet the two antipatterns presented in this paper
clearly show the negative impact of such an approach on
company’s business and security.

 Copyright  2002. Miroslav Kis. Permission is granted to copy for the PLoP 2002 conference. All other rights reserved. 7

The first antipattern shows that security cannot be
treated as a feature to be added once the application
development is completed. The main reason for the
misconception is that the perimeter security model,
predominant in pre-internet time, would have been applied
after the application development was completed. The
perimeter security model proves, however, to be a
Maginot line of information security in internet / intranet
era. Perimeter security model fails to protect an enterprise
application from the new threats related to the internet /
intranet environment. More specifically, the perimeter
security model does not provide data confidentiality or
integrity. In addition to that, it cannot protect from an
attack originating from the local area network within the
company.

The second antipattern presented in the paper shows the
impact of the data sensitivity and threat analyses on the
security solution. The common misconception is that an
adequate security solution for the application can be
developed without thorough understanding of the business
environment. The analysis, however, shows that the lack
of data sensitivity and threat analyses leads to inadequate
protection: some sensitive data might not be protected
well enough, while we might spend unnecessary effort and
time to protect data that does not need strong protection.

The famous German theoretician of war Carl von
Clausewitz concluded that war is not just about the
fighting and arms, but also about the politics. Similarly,
the conclusion of this paper, and a common denominator
for both antipatterns presented, is that we have to
recognize and implement in everyday software
development practice that application security is not just
about firewalls and passwords. Application security is
much more about the business context within which the
application is implemented.

Acknowledgements

The author would like to thank his colleagues and
friends from Information Security Bank of Montreal for
their support while writing this paper. Martin Green,
Milena Jelich, Daniel Jones, Vivek Khindria and Marla
Nystrom-Smith have reviewed several versions of the
paper. Long discussions with all of them helped me to
better understand the security problems analyzed in this
paper and also to improve the clarity of presentation.

Special thanks to Alejandra Garrido, the Plop 2002
reviewer of the paper. Her excellent comments inspired
me to do more research and significantly improve the
quality of the paper.

References

[1] Michael Jackson, ‘Problem Frames and Methods:
Structuring and Analyzing Software Development
Problems’, Addison Wesley Professional, 2000

[2] Daryl Kulak, Eamonn Guiney, Erin Lavkulich, ‘Use
Cases: Requirements in Context’, Addison-Wesley
Pub Comp., 2000

[3] John Wordsworth, ‘Software Development With Z: A
Practical Approach to Formal Methods in Software
Engineering’, Addison-Wesley Pub Comp., July 1992

[4] Dieter Gollmann, ‘Computer Security’, John Wiley &
Son Ltd, 1999

[5] Charles P. Pfleeger, ‘Security in Computing’,
Prentice Hall PTR, 2nd edition, 1996

[6] ‘Common Criteria’ Version 2.1 / ISO IS 15408,
http://csrc.nist.gov/cc/ccv20/ccv2list.htm

[7] D. Bell and L. LaPadula. ‘Secure computer systems:
Mathematical foundations and model’ MITRE Report,
MTR 2547 v2, Nov 1973

[8] K. Biba. ‘Integrity considerations for secure computer
systems’ Technical Report 76-372, U. S. Air Force
Electronic Systems Division, 1977

Miroslav Kis received his BS degree in Electronics
and Telecommunications from the University of Belgrade
in 1980. He received his MSc degree in 1985 and PhD in
1991 in Computer Science from the same university. He is
a Certified Information Systems Security Professional and
a member of IEEE Computer Society.

Dr Kis is a senior advisor for Bank of Montreal and
manager of the Strategy and Technology group within the
Information Security department. Before joining the Bank,
he held a senior staff engineer position in Motorola
Internet and Networking Group. There, he was the
architect of Security Association Management (SAM), a
Virtual Private Network protocol, implemented on
Motorola Vanguard routers, before IPSEC was fully
developed. He was also the architect of Vanguard
ConfigWizard, an expert system for configuring networks.

Dr Kis is coauthor of BSDP, a speech recognition
algorithm, and the architect of a speech recognition device
developed based on that algorithm. His current research
interests include system and software security
methodologies, security aspects of software development
processes, and biometrics authentication systems’ theory
and applications.

