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Figure 1: The CORBA DOC computing
model

Emerging Patterns in Adaptive, Distributed Real-Time, Embedded
Middleware

Joseph P. Loyall, Paul Rubel, Richard Schantz, Michael Atighetchi, John Zinky
BBN Technologies

Abstract
Distributed real-time embedded (DRE) applications often have strict quality of service (QoS) re-

quirements and are frequently deployed in environments in which resources are severely constrained,
hostile conditions are prevalent, and resource contention is dynamic and unpredictable. For DRE ap-
plications to reliably operate in these environments, they must be able to measure the conditions of the
system and adapt to recover from undesirable situations and to best utilize available resources. This
paper presents two patterns that describe solutions appropriate to the problems of QoS adaptive ap-
plications: a QoS contract pattern for managing adaptive decisions and tradeoffs and a snapshot pat-
tern for grabbing a useful approximation of the current state of a system.

QoS Contract

The QoS Contract pattern decouples quality of service (QoS) measurement, adaptation, and manage-
ment from a functional application. It provides an architectural construct for representing the QoS
needed and available in a system.

Example

Distributed Object Computing (DOC) middleware, depicted in Figure 1 for a CORBA-based im-
plementation, has emerged and gained acceptance as the preferred paradigm for the development and
implementation of a wide variety of applications as well as within a wide variety of environments.
However, traditional DOC middleware has not supported the QoS needs of DRE applications well,
because of its feature of hiding platform, transport, and operating environment specific details behind
functional interfaces.

DOC Middleware that exposes QoS interfaces in addition to functional interfaces is starting to
emerge. For example, the Quality Objects (QuO)
[9] middleware supports adaptive quality-of-
service (QoS) specification, measurement, and
control. QuO supports distributed applications
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application to the traditional DOC model
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that can specify (1) their QoS requirements, (2) the
system elements that must be monitored and con-
trolled to measure and provide QoS, and (3) the
behavior for adapting to QoS variations that may
occur at run-time. By providing these features,
QuO opens up distributed object implementations
to control an application’s functional aspects and
implementation strategies that are encapsulated
within its functional interfaces.

The QuO framework adds the following com-
ponents to the traditional DOC model, as shown in
Figure 2:

• Contracts which specify the level of service
desired by a client, the level of service an object
expects to provide, operating regions or states
indicating possible measured QoS, and actions
to take when the level of QoS changes.

• Delegates which act as local proxies for remote
objects. Each delegate provides an interface
similar to that of the remote object stub, but
adds locally adaptive behavior in the path of the
remote method call based upon the current state
of QoS in the system, as measured by the contract.

• System condition objects which provide interfaces to resources, mechanisms, objects, and ORBs in
the system that need to be measured and controlled by QuO contracts.

QuO contracts and delegates support two means for triggering manager-level, middleware-level,
and application-level adaptation as illustrated in Figure 3. The QuO delegate supports in-band adapta-
tion whenever a client makes a method call and whenever a called method returns. The delegates (on
the client and server side) check the state of the relevant contracts and choose behaviors based upon
the state of the system. QuO contracts support out-of-band adaptation by monitoring and controlling
attributes of the system, such as system interfaces, resources, mechanisms, or managers, asynchronous
to the application method calls.

Context. A DRE system in which resource availability is dynamically changing and in which at times
there may not be enough resources to completely accommodate the desires of all activities. Competing
QoS requests need to be mediated so that the use of resources by the system as a whole provides
maximum value and is optimized. Applications must be able to operate with, or at least deal with, the
level of service that the system can provide at any given time, even if it is less than they desire. The
system must also be able to incorporate new applications and ways of moderating interactions between
the new applications and the system already in place.

Problem. DRE applications have competing QoS goals. These goals are often incompatible with one
another and need to be mediated so the system as a whole is productive. There is a recurring need in
DRE contexts for customizing general application behavior for a particular target environment or con-
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(a) QuO’s delegates provide in-band adaptation on mes-
sage call and return
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method call/return and in response to
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figuration. This includes runtime adaptation at the
local level guided by knowledge of the wider sys-
tem. This enables finer granularity tasks and appli-
cations to gracefully degrade, to relinquish re-
sources that aren't needed, and to request additional
resources when they are needed. This enables DRE
applications that can continue to run effectively
under a variety of operating conditions, are more
robust in the face of outages and failures, are more
dynamic (reducing the need for over-provisioning
of resources), and do not have a single point of
failure (the manager).

This includes the following forces:
• It is difficult to model the complete state of a

complex system, under all possible operating
conditions, and with respect to all possible pa-
rameters – computational, physical, and logical;
and internal and external. Therefore, decisions
must be able to consider conditions of interest,
while abstracting away, approximating, or ignoring other conditions.

• The conditions of interest and the system states that they define might be related or orthogonal.
Therefore the decision must be able to consider combinations of states, such as hierarchies or
compositions.

• Adding information directly into each application about the whole system and the reactions to take
increases tight coupling and makes the system as a whole more difficult to extend.

• Functional behavior and applications need to be configured and customized to use them in differ-
ent environments.

• Implementing monitoring and response directly within each application tends to be at a lower level
and therefore harder to re-use.

Solution. Apply the middleware-based QoS contract pattern to create a distributed decision, resource
management, and control engine. This splits the decision making from the actions that implement the
decisions. The contract takes care of receiving inputs, deciding what trade-offs should be made, and
triggering adaptive behavior when appropriate.

Contracts should be able to be distributed, have many instances associated with varying granulari-
ties of objects, components, or clusters of objects and components; should be able to make decisions
based on local or global information; and should be able to cooperate with other contracts in making
distributed decisions.

Structure. Figure 4 illustrates a UML diagram of the QoS contract pattern. The contract describes a
set of operating regions (or states), a set of transitions between regions, and predicates over system
conditions (see the snapshot pattern next) that define the regions or transitions. Predicates can be as-
sociated with regions, defining the conditions under which a contract is in particular regions, or with
transitions, defining the conditions under which a contract should transition between states.

Figure 4: Object diagram for the QoS
Contract Pattern
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Dynamics. The evaluation of a QoS contract to measure and/or affect the state of a system includes
the following dynamics:
1. Grab a snapshot of the relevant system state (see the Snapshot pattern). This is important so that

evaluation of all predicates is based upon the same values of system information.
2. If predicates are associated with regions, determine the current region (state) of the contract by

evaluating the predicates to determine which are true (possibly starting with the last true one based
upon the contract implementation).

3. If predicates are associated with transitions, start at the current state and evaluate the predicates to
determine which transitions to follow.

4. If there was a transition, i.e., the current region or state is different from the last one, trigger any
behavior associated with the transition.

Consequences.
• Separating actions from the process of deciding to use actions allows them to change independ-

ently.
• Separating contracts from the applications that they mediate and from the system conditions that

they measure and control limit the extent to which applications need to be modified.
• Control may move from an application to the contract if a proactive contract is used, further sepa-

rating application functionality from system QoS.
• Separating the collecting of data from actions to take promotes the creation of system conditions

that are designed from the beginning to be reusable.
• Contracts can be supported via common middleware.

Related Patterns.
• Mediator [3]
• Strategy [3]
• Statecharts [8]

Snapshot

The Snapshot pattern provides a useful approximation of a consistent view of a system’s state, with
respect to the attributes of interest, at a given point in time. It is a pattern that facilitates runtime adap-
tive decisions.

Example. Making a decision affecting adaptive behavior in a system requires a reasonably accurate
view of the system state at decision time with regard to relevant system QoS parameters and condi-
tions. This often requires gathering and aggregating information from throughout the system, similar
to the distributed snapshot problem documented in [1]. Examples of this type of information include
the current state of resource availability and capacity or the current value of system or application pa-
rameters.
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Context. Distributed systems, including both wide-
area and embedded systems, have constituent parts
that might be remote from one another, whose loca-
tion might be unpredictable, and whose state might
be available only through constrained resources.
State information might similarly be widely dis-
tributed, available only through narrow pipes of
resources, or available only at certain times.

Problem. An adaptive distributed system needs to
have a reasonably accurate view of the relevant dis-
tributed system state available in a timely manner.
This entails the following forces:
• The view of the system state should be avail-

able in a predictable, bounded amount of time
once it is requested, in order for it to be useful
in making a decision. This means that the call
to assess the state of the system must return ei-
ther immediately or with only minor, bounded
calculation time.

• The snapshot should be a useful approximation
of a consistent view of the system state, meaning that it should be composed of measurements
gathered, calculated, or predicted no later than a small threshold of time ago and within a small
threshold of time from one another.

• A loose snapshot of the system state may contain inconsistencies if it utilizes more than one meas-
urement derived from a common system parameter and that parameter changes while the snapshot
is being produced. A transactional snapshot prevents this by prohibiting system parameters from
changing while a snapshot is being produced, but requires transactional control of system state and
typically introduces additional delay.

• Multiple, distributed, consumers may be interested in the same data for different purposes and
need not be aware of each other.

• Gathering and aggregating data should be disjoint from making it available.
• A snapshot of the system state will frequently include several values of system parameters with

different properties. Some will change infrequently while others – such as a system clock – will
change frequently. Some will be simple measures to collect, while others might take some proc-
essing or calculation to reach.

Solution. Apply the snapshot pattern to create a set of system condition objects and an aggregator. A
system condition object is an object with a getValue interface through which its value can be accessed.
This value can be any piece of system state that may be useful. The aggregator is responsible for gath-
ering all these pieces of data and consolidating them into a view of the system.

Structure. The snapshot pattern, shown in Figure 5, is composed of two main classes, a collection of
system condition objects representing state, and an aggregator which collects the values held by the
system condition objects into a snapshot of the state of the system.

Figure 5: Object diagram for the Snap-
shot Pattern
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Dynamics. Grabbing a snapshot consists of the
following dynamics:

1. Query each system condition object for its
current value

2. Collecting the values and transforming
them into an aggregate snapshot collection
(e.g., a list or array).

When getValue is called on a system condi-
tion, the system condition returns a value im-
mediately or within a small, bounded measure
of time. The implementation of the system
condition object can be arbitrarily complicated,
as long as a value is always ready to be re-
turned and as long as replacing the system
condition object’s value is an atomic action. A system condition may cache values so that it is always
ready with a response that can be returned in a timely manner. If loose snapshots are used the fact that
some extra processing might yield a more up to date answer is tolerated in exchange for an expedient
answer. A transactional snapshot may also support cached values but only if all other participants are
also using the “stale” data to compute their values.

A design and implementation tradeoff must be made to decide whether it is more appropriate to
place system condition objects on the same host as the aggregator or on the host of the system parame-
ter they are measuring, when these are remotely distributed. The decision should consider which
placement provides a more accurate and timely snapshot of system state.

When asked for state via the getSnapshot method, the aggregator queries the system condition(s) it
is watching, in series or parallel, and returns the relevant system state.

Figure 6 illustrates examples of different kinds of system condition objects. From left to right they
are:
• A simple value, something that just maintains a value set by a client or some other entity.
• A measured value, e.g., network throughput or a system's load average.
• A composed value, which may aggregate a value from a number of sources, which might also be

system condition objects.
• A calculated or processed value
• A status value, maintained or collected elsewhere such as in the ORB, OS or other source.
• A predicted value based on past behavior.

Consequences.
• By separating the tasks of calculating system state from querying the value of the state new aggre-

gators can be added easily and efficiently.
• The system condition interface allows new system conditions to be measured in a consistent way

regardless of differences in their data format, availability, and other characteristics.
• State may be calculated needlessly, if no one is interested in it.
• The snapshot of system state is by necessity only accurate within a threshold of time.
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Figure 6: Different kinds of system condition
objects
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• Transactional snapshots are often more costly than loose snapshots. They may require extra com-
munication overhead that a loose snapshot does not need. However, a loose snapshot’s view of the
system may not always be consistent.

• The snapshot provides a visible focus on the conditions that affect system behavior.

Related Patterns.
• Observer [3]
• Reactor [7]

Known Uses

Dynamic Mission Planning In an Avionics Platform

As part of a collaborative research effort, we have
been using QuO as part of a dynamic mission plan-
ning avionics application, described in [2, 6]. The
application, illustrated in Figure 7, consists of a
command and control (C2) aircraft and a fighter air-
craft collaborating during flight to redirect the
fighter’s mission parameters. The C2 aircraft sends
virtual target folders (VTFs), consisting of image
data, to the fighter aircraft, where they are processed
to update the fighter’s mission.

Because of the constrained nature of the wireless
link between the C2 and fighter nodes and because
of the contention for resources with the other, more flight and mission critical, tasks on the aircraft,
there are not always going to be enough resources to meet all the needs. The collaboration task needs

to measure the resources avail-
able to it and adapt to effectively
use the available resources for
continuing to accomplish its
goal under varying conditions.

This application uses QuO for
in-band and out-of-band meas-
urement and adaptation on the
fighter side, as illustrated in
Figure 8. During VTF image
download QuO manages the
tradeoffs of timeliness versus
image quality. This is accom-
plished through image compres-
sion, image tiling, processor re-
source management, and net-
work resource management.
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When the fighter node requests an image from
the C2 node, a QuO delegate breaks the image
request into a sequence of smaller tile requests.
The number of tiles that the delegate requests is
based upon the image size while the compression
level of an individual tile is based upon the dead-
line for receiving the full image and the expected
download time for the tile. During image down-
loading a QuO contract, which is an implementa-
tion of the QoS contract pattern, monitors the
progress of receiving the tiles and influences the
compression level of subsequent tiles based upon
whether the image is behind schedule, on sched-
ule, or ahead of schedule. System condition ob-
jects are used to monitor the image download progress and to grab a snapshot of the state of the image
download.

In addition to the in-band adaptation of tiling and compression, QuO provides out-of-band adapta-
tion in conjunction with the processor resource manager and dynamic scheduler components of the
system. The processor resource manager selects task event rates from the ranges available for different
tasks to more effectively utilize the CPU. The QoS contract monitors the progress of the image down-
load by grabbing a snapshot through system condition objects interfacing to the network and CPU
monitors. If the processing of the image tiles falls behind schedule, the contract prompts the processor
resource manager to attempt to adjust the rates to allocate more CPU cycles to the decompression rou-
tine. This is in addition to, and orthogonal to, the in-band adaptation to adjust the compression level of
the next tile.

If these adaptation attempts are not successful the QuO middleware triggers application adaptation.
The application adjusts its timeliness or image quality requirements, by requesting longer deadlines or
lower image resolution to reduce the urgency or amount of processing needed. Figure 9 illustrates the
regions of the contract and the available adaptation options when the contract indicates that image re-
ceipt is early or late.

Video Dissemination in a Simulated UAV Context

Under DARPA’s Program Composition for Embedded Systems (PCES) program and for the US
Navy, we have been developing a simulated Unmanned Air Vehicle (UAV) system. The application,
described in [4, 5] concentrates on the delivery of video imagery captured by a UAV to distributed
control stations and the delivery of control signals back to the UAV. Figure 10 illustrates the architec-
ture of the demonstration system. It is a three-stage pipeline, with multiple UAV sending video (in
multiple formats, e.g., compressed MPEG and uncompressed PPM) to video distribution processes.
The UAVs are simulated in our application by processes that continuously read video files and by live
camera feeds, some of which are attached to robot vehicles. We have wireless and wired Ethernet con-
nections to enable experimentation with a variety of network resource conditions. The target control
stations and video displays will have different mission requirements: some require low latency video,
others require high resolution, while another – serving an automated target recognition (ATR) process
– requires important video content.
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QuO adaptation is used
as part of an overall system
concept to provide load-
invariant performance. The
video displays of the dis-
tributed control stations
must display images with
acceptable timeliness and
fidelity, regardless of the
network and host load, in
order for the UAV opera-
tors to achieve their mis-
sions (e.g., flying a UAV or
tracking a target). To ac-
complish this, there are
QoS contracts throughout
the system, as illustrated in
Figure 10, managing bandwidth (using RSVP, DiffServ, and application adaptation), throughput
(managing video frame rate), the video source (managing filtering, scaling, and compression), and
control signals (responding to ATR alerts). To support this, there are system condition objects that
monitor the frame rate, host load, ATR status, network load, etc. and that the various contracts use to
grab a snapshot of the relevant system state to drive the adaptations illustrated in Figure 11.

See Also

In addition to the emerging patterns described above, the adaptive DRE applications that we are
developing using QuO middleware use a number of instantiations of, or variations of, previously
documented patterns. The QuO kernel is a factory [3] object that instantiates contracts, system condi-
tion objects, and callback objects.

System condition objects come in two flavors, observed and non-observed. Changes in the values
measured by observed system conditions trigger contract evaluation, possibly resulting in region tran-
sitions and engaging out-of-
band adaptive behavior. Non-
observed system condition ob-
jects represent the current value
of whatever condition they are
measuring, but do not trigger an
event whenever the value
changes. Instead, they provide
the value upon demand when-
ever the contract is next evalu-
ated. Observed system condi-
tion objects are implemented
using the observer pattern [3] in
contracts, although the observer
does more than just update val-
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ues in the contract. It also triggers evaluation of the contract. This could have alternatively been im-
plemented using the reactor pattern [7]. For DRE systems like the avionics system in Figure 6, in
which the number of threads and processes are strictly controlled to maintain the real-time constraint
behavior, observed system condition objects can be used to evaluate the contract in the thread of the
other tasks.

The QuO delegate is similar in many respects and may be an instance of the Proxy pattern [3]. It
provides the same interface as the remote object stub, or the local class that it is representing, but it
adds adaptive behavior and callouts to external QuO contracts and system condition objects. The QuO
delegate supports in-band adaptation whenever a client makes a method call and whenever a called
method returns. The delegates (on the client and server side) check the state of the relevant contracts
and choose appropriate behaviors based upon the state of the system. These behaviors can include
shaping or filtering the method data, choosing alternate methods or server objects, performing local
functionality, and so on.

System condition objects are instantiations of the wrapper façade pattern [7]. They provide a con-
sistent set of object based interfaces to lower level mechanisms, managers, and resources, which may
or may not have object interfaces themselves. These interfaces are suitable for use in QuO contracts,
delegates, applications, other system condition objects, and external interfaces. They support the intro-
duction of additional functionality, higher level views of low level information, and data fusion,
smoothing, etc.
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