
CONTEXT

Masao Tomono

Jul 22, 2002

Dialogue is so essential to our life, that almost everyday, we have a dialogue with others. Here are some small examples;

“Hello. Please help me. I’ve lost my credit card.”
“Please give me your card number and name.”
“My card number is xxxx-xxxx-xxxx-xxxx. Masao Tomono.”
“OK. Wait a second… When did you use the card last?”
“Well, last Friday, I bought a bicycle. That was the last time I used it.”
“How was the trip?”
“Trip? To where?”
“Of course, to Okinawa. You told me last month.”
“Oh, I cancelled that plan because my little daughter had a serious illness.”
What is a dialogue made of? A dialogue contains utterances. When someone is talking, the other is receiving the utterance. However, these are not enough. How can a credit card company staff and a customer concentrate on a matter of one card? How can one who is in the second dialogue identify the theme of it? This is a context. Let’s take a closer look into a context. What is a context made of? First of all, we can see there are facts shared between a talker and a listener; i.e. card number or a plan one told to the other. What if the customer in the first scenario spoke the words in a sneering manner? You would take another meaning from the scenario. And what if the staff could understand only Japanese? The scenario should have become quite different. A context contains such rich information.

It is quite natural to express a human-machine interaction as dialogue. But unfortunately, sometimes we face quite a strange situation;

“Hello. Please help me. I’ve lost my credit card.”
“Please give me your card number and name.”
“My card number is xxxx-xxxx-xxxx-xxxx. Masao Tomono.”
“OK. Wait a second… When did you use the card last? And what is your card number?”
“Well, last Friday, I bought a bicycle. That was the last time I used it. And my card number is…”
This is ridiculous. Generally, a dialogue cannot stand without a context. It is intolerably cumbersome to explain the context each time you speak. The context should sit quietly behind the dialog. This is also the same for the dialogue between a man and a computer system or between computer systems. We seldom see such a poor user interface, but quite a lot of module interfaces inside systems still suffer from this kind of confusion. This is because our programming languages cannot handle a context in a natural way, and are prone to express concerns about a context as cross-cutting concerns.

The theme of this pattern language is to provide the design policy that helps to realize desirable contexts for dialogue with computer systems, and leads to a primitive form of AOSD (aspect-oriented software design)‎[3], a discipline focused on eliminating cross-cutting concerns, where a concern becomes a context for another concern.
To make the point clear, I use a Shared Information System as an example, where the information produced by the dialogue is shared among users.

Here is the structure graph of this pattern language.

[image: image1.emf]ｫｻ ｫｻ

Context Object

ｫｻ ｫｻ

Request with

Context

ｫｻ ｫｻ

Context Switching

ｫｻ ｫｻ

Context Proxy

ｫｻ ｫｻ

Context

Interceptor

ｫｻ ｫｻ

Thread Singleton

ｫｻ ｫｻ

Leased Context

1) Context Object

Example:

Let’s assume a system is providing several functions and the users have different access privileges. The system could prevent unauthorized access by requesting account and password, each time a user accesses a function, but nobody would want to have such a cumbersome system. And how do you think if a function of the system has its own states, which take a lengthy transition, and its user has to restart from the beginning whenever he revisits the function.
Context:

You are planning to build up a system which has a side-effect, which should last after an operation has completed.
Problem:

It is painful for a user or programmer to explain the context explicitly each time he/she invokes a request to the system.

Forces:
(1) A context of a dialogue is just a background, not the main theme.

(2) A context is formed in a dialogue.

(3) A dialogue does not always stay in a single context.

(4) A dialogue is affected by its context. The response to a statement differs depending on the context.

Solution:
Create an object that corresponds to the context and map the matters concerned with context to it. Let the system use it during the dialogue.

Resulting Context:

We can store the result of the user authentication (i.e. credential) or the current state of a lengthy function in a context object. Then the system can check the access authority of the functions with the result of the user authentication, thus there remains no need to ask the user about the proof of access authority again. Since the system can tell the state in which the function was when the user accessed it last, the user can resume the dialogue directly from the point he left the function last.

If the system is involved in multiple dialogues at the same time, the system have to know which context object corresponds to each dialogue. To solve this problem, see ‘Request with Context’ or ‘Context Switching’.

Known Uses:

This pattern can be seen on a wide variety of systems such as, cookies on a web, file descriptors, JDBC’s database connections, and so on.

2) Request with Context

Context:

A system is shared by multiple users.

Problem:

When the system receives a request, it has to know in which context a user invokes a request.

Forces:

(1) The system has to deal with multiple dialogues.

(2) A dialogue has its own context.

Solution：

Let the user manage the ‘Context Object’ itself or a keyword that designates it. And let the system request it next time he/she accesses the system. When providing it, let the user know that it is requested on the next access.

Resulting Context：

The system is informed of the proper ‘Context Object’ when it receives a request.
If it can be assumed that a user uses at most one context, the authentication result (i.e. credential) itself can be considered as a context object.

It is still itchy for a user because he/she has to bring around the context object. You can find one of its solutions in ‘Context Switching’. To solve this problem, you should visit ‘Context Proxy’, ‘Context Interceptor’, or ‘Thread Singleton’.
Known Uses：

We can see this kind of system using the display sharing such as VNC or TIMBUCKTU.

3) Context Switching

Context:

A system is shared by multiple users.. A dialogue with a user consists of continuous interaction.

Problem:

When the system receives a request, it has to know in which context a user invokes a request.
Forces:

(1) The system has to deal with multiple dialogues.

(2) A dialogue has its own context.

(3) A user does not like to input the keyword each time he/she invokes a request to the system.

Solution：

Dedicate a system agent to each active dialogue and have them share necessary data. A system agent owns a set of proper ‘Context Objects’ to handle with. Let the OS to switch between the agents to match with its dialogue. This switching is usually called ‘Context Switching’.

Resulting Context：

Users do not need to input the keyword after a dialogue begins.

If the number of dialogues handled by a system rises up high, the system is populated with many system agents and its power is deprived by context switching rather than the users’ requests. To solve this problem, you should visit ‘Context Proxy’.

Rationale：

If the dialogue lasts a long time and the intervals between the requests are also long (that is to say, the dialogue cannot be finished in a single sitting), It is not realistic to keep such system agent active while the interval. In such case, it is reasonable to ask the keyword when he resumes dialogue, because the user also needs to recall the context.

Known Uses：

The implementation of this pattern is widely seen. A UNIX box with multiple terminals or a time-sharing system on a host computer is an example of this. Also, a classical FTP client-server is a kind of this. It forks an exclusive server when a user accesses through his/her exclusive client (i.e. an exclusive server and an exclusive client pair is an agent). And embedded SQL on C (e. g., Pro C) hides the database connection under the preprocessed code using this pattern.

4) Context Proxy
Context:

You have applied ‘Context Switching’. As the number of users increases, the response time of the system becomes slow. Monitoring the processing profile, we see that the memory is used up by the agents and so often thrashing happens. A lot of CPU time is consumed by the OS and not enough is available for processing user requests. The number of users is increasing. Each user accesses the system via his/her own computer.

Problem:

The number of users increases but we have to keep an acceptable response time.

Forces:

(1) When the number of system agents increases, the OS consumes more CPU time in order to switch from one system agent to another (i.e. context switch).

(2) We want to save investigation in the system hardware. So to do that, it is essential to try to make use of all the power hardware can provide.

(3) A user consumes much longer processing time compared to that of computer. That is, the requests user invokes to the system are relatively sparse in its dialogue.

Solution：

Put agents around a shared systems and dedicate each one of them for each user . Let a shared system handle a given kind of dialogue. And let all agents share it. Then let the user access the shared system only through his agent. An agent holds and sends a ‘Context Object’ or the keyword that designates it to the shared systems. Each agent is a proxy of the shared systems and it provides a view which is limited to a context for a dialogue.
Resulting Context：

Putting an agent which stands for a client system on each user’s computer and the shared systems on a shared computer, the shared system can handle a request with a smaller number of context switching and smaller memory image. This way, we make use of ‘Request with Context’ pattern on the interaction between a client and a shared system. At the same time, we are using the ‘Context Switching’ pattern on the interaction between the client and its user. This keeps user from clumsy context handling.
However, this pattern premises the shared system have to be aware of the ‘Context Object’ at its interface. This is not usually the case. To handle the situation where the peer of the shared system does not care about a ‘Context Object’, see ‘Context Interceptor’ or ‘Thread Singleton’.
Known Uses：

We can see this kind of system using OLTP, Web servers and ORBs. On a web system, the Client is a web browser and the keyword can be held in the browser using techniques such as Cookie, URL Rewrite, and Hidden tag.

5) Context Interceptor

Context:

You are applying ‘Request with Context’ to the interface of a component. The signature of an operation becomes dependent on the mechanism that maps a request to a context. These mechanisms are often specific to their system.
Problem:

You want to separate system dependent ‘Context Objects’ from the interface of those components.
Forces:

(1) A caller of a method holds a ‘Context Object’ and sends it to the method along with each request.

(2) Changes in the interface often cause wide spread changes in the code of the system.

Solution:
Allow a messaging mechanism (e.g. simple method call, request broker, or HTTP request) to access the ‘Context Object’ owned by the caller so to let the messaging mechanism carry it to the system along with each request.

Implementation:

If we use CORBA2.0 or later compliant ORB as the messaging mechanism, we have an interface called Interceptor that can be used to implement such a mechanism. If we use set of servlets as the messaging mechanism, we can implement such a mechanism in a servlet generally called a ‘Front Controller’ ‎[1], which receives all the requests and dispatches the control to the desired servlet. Generally in Java, AspectJ can be used to implement this mechanism.

Resulting Context:

Now, we can eliminate the context information parameter from the interface of the operation.

However, not the all of messaging mechanisms are equipped with such an interceptor mechanism. In such case, see ‘Thread Singleton’.

Known Uses：

We can see this pattern in the session mechanism of a servlet engine that uses cookies. And some kind of security system that watches the person who is using the system can be considered as an instance of this pattern.

6) Thread Singleton

Context:

Inside a shared system implementation, you cannot use an interceptor mechanism by any reason, but the implementation is divided into many methods and only limited part of them need ‘Context Object’.
Problem:

We want to eliminate the handling of ‘Context Object’ from intermediate methods or objects.
Forces:

(1) There are intermediate methods between the peer interface of a component and a method which needs the ‘Context Object’.
(2) It is difficult to use an interceptor for each intermediate methods.
(3) Usually, it is not appropriate to let the programmer use an object which is not related to his/her concern.

(4) Changes in the interface often cause wide spread changes in the code of the system.

Solution:

See the thread that runs the processing of a request as a representation of the request itself, Map the thread and the context in the system and hide it behind a ‘Singleton’ interface of ‘Context Object’. If possible, let the mechanism in ‘Context Interceptor’ do the mapping.

Limit the use of this ‘Singleton’ to the code that interprets the ‘Context Object’ to the things meaningful to the main part of the operation and separates the code by providing them proper interfaces, for example, a code that maps the context and database connection or a code that checks the user privilege for a function.

Resulting Context:

We can limit the code part which uses the context information that is system dependent.

Here is a sample Java code.

import java.util.*;

class ContextObject

{

 static HashMap threadMap = new HashMap();

 static ContextObject instance()

 {

 return (ContextObject)threadMap.get(Thread.currentThread());

 }

 static void map(ContextObject context)

 {

 threadMap.put(Thread.currentThread(), context)

 }

}

Or you can use java.lang.ThreadLocal in Java2 environment.

If a dialogue contains multiple interactions with a user and a thread that handles each request is not the same, you can still use this pattern combined with ‘Context Interceptor’. In this case, let the interceptor of the request set ‘Context Object’ to the ‘Thread Singleton’.
Though this pattern may work fine when combined with ‘Context Interceptor’, this is still useful without it. In that case, the part of codes that becomes dependent of the ‘Context Object’ is limited to the request peers.

This pattern requires system to hold all ‘Context Objects’. To maintain them, see ‘Leased Context’.

Rationale:

Here are rationales for this pattern:

(1) A thread of a request processing cannot be shared by multiple dialogues at the same time. And a request processing needs at least one thread.

(2) The thread in which the program runs can be determined anywhere in the program.

There may be disagreement over whether this can be called a ‘Singleton’ according to the GoF book or not. My point is that the ‘Singleton’ in the GoF book is not complete; because what the pattern ensures is that the class has one instance “in a single runtime image”. The ‘Singleton’ pattern has its own scope. By putting the emphasis on its interface rather than its scope, there would be no problem in calling this a ‘Singleton’, in my opinion.

7) Leased Context

Context:

Using ‘Thread Singleton’ and running in production for a long time, the memory of the system is consumed up by a hundred thousands of ‘Context Objects’ and it caused the system down. We found that only a hundred of them were created in the last hour, though a user usually finishes his dialogue in five minutes.

Problem:

The system is eventually crowded with needless contexts which are left by their users.

Forces:

(1) The system can guide users how they should behave, but cannot control their actions.

(2) While the system is waiting for a user’s action, it cannot know whether the user is working or has already left the system behind and forgets about it.

Solution:
Lease a context for a limited period and allow the user to update the lease until it expires. If the user updates the lease, set a new period of leasing.

Any access from the user can be looked up as an update application. If the period is long enough (a week or a month), the system can notify the user that the expiration date is close, for example, via e-mail.

It is desirable to notice a user about leasing policy before starting a dialogue.

Resulting Context:

Now, the system can clear up the contexts of no need and can continue running longer.

Related Patterns:

This pattern is an application of ‘Leasing’ ‎[2].

Acknowledgement

This pattern language cannot be current state without an enthusiastic shepherding of Ralph Johnson. Many thanks go to those who attended at MensorePLoP 2001 Conference who welcomed me in a heart-warming association and encouraged me greatly. Also thanks go to the members of Nirai group: Mari, Rossana, Kentaro, Michihiko, Shinji, Mimpei, Terry and Linda who workshopped and every one of you gave me invaluable feedbacks. Especially Linda, you gave me an annotated memo that points out exactly the important things which promoted profound changes in my writing. Mimpei, you kept encourage me to finish this pattern from the early dates of this pattern. I will never forget your enthusiasm in this domain. And Terry, may I call you later? No word is enough for the inspiring talk with you round ‘bout midnight.

Reference

[1] Sun Microsystems, Inc. “Front Controller”. http://java.sun.com/blueprints/patterns/j2ee_patterns/front_controller/index.html
[2] Jain, Prashant & Michael Kircher. “Leasing”. http://jerry.cs.uiuc.edu/plop/plop2k/proceedings/Jain-Kircher/Jain-Kircher.pdf
[3] Heilpern, Brent & Peri L. Tarr. “Software Engineer for Web Service: A Focus on Separation of Concerns”. http://www.research.ibm.com/people/b/bth/OOWS2001/RC22184.pdf

PAGE
8
Copyright © 2002, Masao Tomono. Permission is granted to copy for the PLoP 2002 conference and its proceedings. All other rights reserved.

_1088760635.vsd

