
Component Interface Pattern

Ricardo Pereira e Silva Eng., M.Sc., D.Sc. Roberto Tom Price Eng., M.Sc., D.Phil*

 Federal University of Santa Catarina - Computer Science Department
Postbox 476 – Florianópolis – SC – Brazil

http://www.inf.ufsc.br/~ricardo / mailto:ricardo@inf.ufsc.br

* Federal University of Rio Grande do Sul – Informatics Institute
 Postbox 15064 – Porto Alegre – RS – Brazil

 http://si3.inf.ufrgs.br/Amadeus/Coordenador / mailto:tomprice@inf.ufrgs.br

Abstract

Component-oriented development establishes the building of software artifacts by
means of connection of a collection of components, independently produced. The
success of applying this development approach depends of the compatibility between
connected component interfaces. That compatibility includes interface structural and
behavioral features. Component Interface Pattern establishes a structure for building
component interfaces that allows to evaluate and to assure the structural and
behavioral compatibility between components to be connected.

Motivation

Component-oriented development is being stimulated by the availability of devices
allowing component interoperability, regardless of programming language, running
platform and executing location. However, the lack of efficient standards for specifying
components difficulties the search and selection, functionality understanding and
adaptation of components.

In component-oriented development approach an application is produced joining a set
of components. “A component is a unit of composition with contractually specified
interfaces and explicit context dependencies” [SZY 96]. A component can be
implemented using various technologies. So any software artifact with an interface
provided can be considered a component. An interface is “a collection of service access
points, each of them including a semantic specification” [BOS 97].

A problem related to component-oriented development approach is how to define the
external visibility of a component, that is, how to specify its interface. On the other
hand, component users need to understand a component by means of this kind of
description. So, the absence of standards to describe efficiently what a component does
and how to interact with it is an obstacle for that approach.

Usually, interface specification is used to describe a component. Approaches like
interface description languages (IDLs) describe the services provided by a component.
This is suitable for components made to supply services. Often, function signatures are
enough to establish how a client accesses the functionality. A class from a library that
implements a list is an example of a component that can be adequately described by
means of its provided services.

Components that just provide services
are not the general case in component-
oriented development. If an application
is built only with components, as
shown in figure 1, one component will
require the services from other
components. So, it is not reasonable a
component description including only
provided services. Required services
need to be specified too. So, in general
case, component interaction is bi-
directional [OLA 96].

The CORBA Component Model, CCM, part of the CORBA 3.0 specification [OMG
99], introduces an evolution to IDL view. It establishes an interface definition more
complex than the traditional view, in that not only provided services are specified, but
required services too, as well as required and supplied asynchronous events. Ports
define the interface of a component, including:

• Facets: interface views provided by the component for client interaction;
• Receptacles: connection points to required services, supplied by some external
provider;
• Event sources: connection points that emit events to one or more interested event
consumers, or to an event channel, in an Observer [GAM 94] approach;
• Event sinks: connection points where events may be pushed, in an Observer approach.

Another component feature to describe is that a component can present more then one
view.

CORBA 3.0 facets show that a component can provide more than one view for external
devices. This suggests more than one service access point. The service access point of a
component interface is called communication channel (or just channel). figure 1 shows
components with one and more than one channels in their interfaces. It is possible that
just part of required or supplied services need to be accessible at each communication
channel of a component interface. So, beside the set of provided and required services,
the structural description of a component interface must establish the accessibility of the
services at its channels. Table 1 shows an example of this kind of description. The mark
denotes the accessibility of a service (provided or required) at a channel. In Table 1
example it is possible to see that the described component will not invoke
requiredMethod1 through the channel Channel2. So, the component connected to that
channel do not need to supply that service.

Required services Supplied services
requiredMethod1 suppliedMethod1 suppliedMethod2

Channel1 ü üChannels
Channel2 ü ü

Table 1 – structural description of a component

Besides structural features, component interface specification must describe dynamic
features. Contracts [HEL 90] constitute another approach able for describing mutual
dependencies between software components. It describes in a formal way the
participants of an interaction and its obligations. Contracts allow to describe dynamic

Figure 1 – a software artifact built
by means of component connection

dependencies between components. For example, that when a component executes a
service it needs so invoke a service supplied by other component. The main
disadvantage of this approach is to produce a description of low level of abstraction,
usually too long and hard to understand.

Reuse contract [LUC 97], an adaptation of Helm’s contracts, allows to describe
component interfaces and dynamic features of a component connection, too. It provides
a graphical notation that makes easier to understand dependencies between components.
In the example of figure 2 “Component 1” provides the service “x” and “Component 2”
provides the services “y”, “z” and “t”. In “x” running “y” can be invoked (“y” putted
between brackets on the “x” arrow).

Figure 2 – An example of reuse contract

Reuse contract describes the knowledge relationship between components and the
services required in the running of a supplied service. This approach lacks in describing
service requirement invoking order in a component architecture. For example, suppose a
component that provides two services, initializeIt and executeIt, and initializeIt must be
invoked before executeIt. This situation can not be identified in a description based on
reuse contract.

A more powerful approach to specify dynamic constraints is based on Petri nets.
Component interface pattern is based on that dynamic modeling approach, together with
a structural description like that shown in table 1 [SIL 00]. Dynamic constraint
specification by means of Petri net allowing the description of constraints related to the
order of invoking services, like that described in the example above. This kind of
dynamic constraint can not be specified with reuse contracts or with CCM approach.

In proposed approach ordinary Petri net is used It is composed by places, transitions,
arcs and an initial marking. The only extension to ordinary Petri net is an association of
the transitions with a pair channel-service. Each mark on the table that associates
channels and services (supplied or required) will correspond to one or more transitions
in the Petri net that describes the interface. Figure 3 shows the behavioral description of
the interface whose structural description is shown in table 1.

The initial marking establishes that only the transitions T2 and T3 from figure 3 can
fire. Both transitions are related to supplied service “suppliedMethod1” (one to channel
“Channel1” and other to channel “Channel2”). So, the component will not produce a
requirement of service before to receive an invocation of service “suppliedMethod1”.

Besides to specify constraints related to invocation order of required and supplied
services of a component, the approach based on Petri net allows to describe the
interaction among a collection of connected components. Based on Petri net property
analysis, it is possible to verify behavioral characteristics of the software artifact
produced from component connection, like deadlock possibility or the identification of
services that never run.

Figure 3 – Behavioral specification of a component interface based on Petri net

Figure 4 shows the behavioral specification of two components and the Petri net
produced to specify the connection and collaboration of components. The component at
the left side of the figure has one channel, “Ca”, one supplied service, “x”, accessible at
“Ca”, and one required service, “y”, accessed by means of the channel “Ca”, too. The
other component has the channel “Cb”, associated to supplied service “y” and to
required service “x”. These components can be connected through their channels, “Ca”
and “Cb”. They are structurally compatible because the service required for one is
supplied by the other. The building of the Petri net resulting from the connection
consists in to merge the pairs of transitions associated to a same method and to two
connected channels (one of each component). The Petri net at the right side of the figure
4 is the result of the connection of the two components described in that figure.
Analyzing that Petri net, it is clear that no transition can fire. In this case, the connection
of the two components structurally compatible resulted in a software artifact with a
deadlock. So, that components are behaviorally incompatible.

Figure 4 – behavioral specification of the connection of two components

If all components of a software artifact built by means of component connection are
implemented following the interface structural and behavioral constraints specified as
presented above, it will be possible to assure structural and behavioral compatibility
between components connected. That is, it is possible to verify the compatibility before

connecting components. So, the challenge is to include the specified features in the
implementation of a component interface. Component interface pattern aims to establish
a class structure for building component interfaces that allows to incorporate structural
and behavioral constraints, specified as shown above.

Applicability

Component interface pattern allows building a component with an interface precisely
specified by means of the structural and behavioral viewpoints described in previous
section. This is useful to produce a component that:

• will be connected to other components with interface structures built using
component interface pattern;

• will be connected to other components with interface structures built by means of
anther approach;

• will be inserted in a software artifact not based on component-oriented approach
(similar to reuse a class from a library)

Component interface pattern supplies a complete solution to build a component
interface because its structure encloses structural and behavioral constraints. It frees the
developer of the need of defining how to implement component interfaces. The
disadvantage of the use of this pattern is that the resulting interface is a structure more
complex than a Facade [GAM 94]. If the component performance is critically affected
the pattern application will not be suitable. In Participants section is discussed the need
of a structure more complex than Gamma’s Facade.

Structure

Figure 5 – Component interface pattern structure

Participants

In the following participant description, the subclasses of ComponentInterface,
InterfaceChannel and Outbox was defined according to the interface specification from
table 1 and figure 3 - so, with figure 5 class structure, too. This means that in general
case, an interface implementation will include those three classes as they are here
described and their subclasses will be produced according to a specific interface
specification. That is, according to its structure (channels and services) and behavioral
constraints. The class InterfacePetriNet is included without changes.

ComponentInterface

ComponentInterface is an abstract class that defines part of component interaction
protocol. It implements the external view; that is, it corresponds to a Facade of a
component.

At run time a component is produced generating an instance of a concrete subclass of
ComponentInterface (see Collaborations section for details about component creation).
So, a specific component will have exactly one concrete subclass of this class. A
concrete subclass will foresee reference maintenance for the interface channels
(attributes that point instances of InterfaceChannel subclasses) and will implement
component internal structure building.

This class is pointed to the generation of concrete subclasses with specific interface
specifications, as well as specific component internal structure.

InterfaceChannel

InterfaceChannel is an abstract class that defines the communication channel, part of
the interface. An instance of ComponentInterface subclass will aggregate one instance
of InterfaceChannel subclass for each communication channel. This class is responsible
for allowing the access to component supplied services.

It foresees a structure to keep reference to the implementor of each component supplied
service (from the component internal structure). Besides that, it has a procedure for
establishing the link between a channel and the internal implementor of each component
supplied service.

It keeps reference of an outbox (instance of Outbox subclass) as an instance attribute –
this is useful just for channels that access required services.

It has a procedure for connecting components, that is, for defining the external interface
component channel to be connected to it (to send service requirements).

Outbox

Outbox corresponds to a Proxy [GAM 94] for component required services. It
establishes the link between the component internal element that requires a service and
the component that implements it (see Collaborations section for details about
component connection). It is the part of a channel responsible for sending service
requirements to a connected interface channel (from other component). Outbox
subclasses will implement component required services in a Proxy approach.

So, often in run time, each channel of an interface is composed by an instance of an
InterfaceChannel subclass that aggregates an instance of Outbox subclass. This does not

occur in all cases. As Outbox is responsible for sending service requirements, it is not
necessary in channels that do not access required services.

The need of two classes related to each channel is due the possibility of a component
presents required and supplied services with equal signatures – what it is not possible to
insert in a single class.

ConcreteComponentInterface

It is a specialization of ComponentInterface.

It must have a specific initialization procedure (overriding the inherited abstract method
initialize). For details of the initialization, see collaborations.

It must have a specific procedure to build the component internal structure and to define
what internal elements are responsible for implementing the services supplied by the
component. This is done in the method defineImplementors (overriding the inherited
abstract method).

It keeps reference of all interface channels (instances of InterfaceChannel subclasses) as
instance attributes.

It must have a specific procedure to notify the implementor (from internal structure) of
each component supplied service for the interface channels. This is done in method
setImplementor (overriding the inherited abstract method).

ConcreteChannel1, ConcreteChannel2

They are specializations of InterfaceChannel. A subclass of InterfaceChannel is created
to each channel foreseen in an interface specification. In run time each interface
(ComponentInterface subclass instance) will aggregate exactly one instance of each
class that implements each one of its interface channels.

An InterfaceChannel subclass implements all the component supplied services
accessible at the respective channel. The implementation of a supplied service in a
channel consists in a Proxy procedure: to pass the invocation to the respective internal
implementor.

In building an InterfaceChannel subclass, the inherited method initialize must be
overridden. This procedure (specific for each channel) is responsible for composing the
reference structure for pointing internal implementors of the component supplied
services and for referring the external reference (an instance of an Outbox subclass).
Only channels that give access for supplied services need that last functionality in
initialize method. For details, see Code section.

ConcreteChannel1Outbox

It implements all required services accessible in a specific channel. Similar to supplied
services, implementation of required services consists in Proxy procedures: to pass the
invocation from the internal requirer to the respective external implementor, that is, a
channel of a connected component.

InterfacePetriNet

InterfacePetriNet is a concrete class that can hold a Petri net topology and allows
proceeding net state evolution by means of transition firing. Its attributes are pointed to
store:

• A collection of places, with its respective token number (that is, the net state);
• A collection of transitions;
• A collection of arcs, connecting places and transitions (that is, the net topology).

The fire method (with a transition as argument) will update the net state and return true
if the firing is possible and, otherwise, false (without changing the state, in this case).

In run time; all instances of InterfaceChannel and Outbox subclasses will point an only
instance of InterfacePetriNet. The fire method will be invoked to each service
requirement (required or supplied). The passing of the invocation is conditioned to a
true return (see Collaborations).

Collaborations

The following collaboration description takes into consideration the class structure from
figure 5 and the comments in the beginning of last section. So, the collaborations bellow
describe the general case of interaction by means of component interface pattern, but
supplied and required services, as well as the interface channels, are defined for each
interface specification.

Creating a component

The sequence diagram bellow (figure 6) describes the building of the interface shown in
Structure section (with two channels).

 Figure 6 – Component building

The first action of the initialize method (ConcreteInterfaceComponent) is to create a
Petri net (see Code section). After, the channels are instanced. The building of a channel
includes the instancing of its outbox. This can be seen in channel1 creation (figure 6).
The building of channel2 does not include instancing an outbox because this channel
does not give access to any required method.

Besides channel building, the initialize method starts the building of the component
internal structure, what is done by the method defineImplementors, to be overridden in a
ConcreteInterfaceComponent subclass. This method is responsible for generating the
remaining component objects, too (the objects that are not part of the interface). Its
implementation is specific for each component and is outside the scope of component
interface pattern. Component developer is the responsible for defining the component
internal elements, that is, the component functionality and how to implement it. The
method setImplementor communicates to each channel, the implementor of its methods;
that is, the component supplied methods accessible in each channel (see its
implementation in Code section).

After initialize running, a component is built, that is, the objects of the interface and of
the internal structure are instanced and the channels are linked to internal implementors
of supplied methods. In this state a component is ready to be connected to other
components.

Connecting component channels

Figure 7 shows the connection of two components, Component1 and Component2, to
the channels of a component, cannel1 and channel2, respectively. The connection of
Component1 to the channel channel1 of the component described at the diagram starts
with the obtaining of channel reference. Component1 will invoke connectTo method
from that object. For keeping the external reference (to can invoke required methods)
channel1 invokes externalReference method of outbox1 (the outbox of the channel
channel1), with the connected channel from Component1 as argument.

Figure 7 – Component connection

The connection of the component Component2 to the channel channel2 is similar, but it
does not occur the interaction with an outbox, because channel2 does not present an
outbox.

Sending a service requirement

Figure 8 shows the sending of a requirement from a described component to another
component, Component1. The start is a requirement from an internal object sent to an
outbox. The outbox invokes the fire method from interface Petri net. The request will be
sent to Component1 only if fire method returns true.

Figure 8 – A component sending a method requirement to another component

Receiving a service requirement

Figure 9 shows the receiving of a supplied method requirement to a described
component, from another component, Component2. The start is a requirement from
Component2 to a channel. The channel invokes the fire method from the Petri net of the
interface. The request will sent to the internal implementor, internalObject1, only if fire
method returns true.

Figure 9 – A component receiving a method requirement from another component

Implementation

Issues to be considered when implementing Component Interface Pattern.

1. Implementing Component Interface Pattern without a Petri net. The instance of
InterfacePetriNet class included in an interface structure avoids improper
requirement sending (according to interface behavioral constraints). This occurs
because only proper supplied method invocations are passed to internal
implementors and only proper required method invocations are made by a
component (improper invocations from internal structure, due some error, are not
sent). Otherwise, it is possible to implement a component interface without a Petri
net (and without its capacity of avoiding improper interaction). In this case tests for
requirement passing will not occur, so it increases the performance of the interface
(performance increasing is a justification for this option).

2. Referring subclasses of Outbox and InterfaceChannel. A feature of Component
Interface Pattern is the need of defining new methods, when creating subclasses of
Outbox and InterfaceChannel, that is, methods not foreseen in superclass interface.
This will not be a problem if the implementation is done with Smalltalk. Otherwise,
that pattern feature is a problem in languages, as C++, in which a variable can refer
an object of a subclass of its type, but can not know a method defined only in that
subclass – what requires, in this case, a type redefinition in run time. This requires
some care when defining the types of elements (attributes, parameters and variables)
that refer instances of subclasses of Outbox and InterfaceChannel.

3. Heterogeneous systems . Component Interface Pattern can be used to implement the
interface of components that will interact with software artifacts made without this
pattern using (components or other artifacts like objects, if a component is part of a
program). In this case, the attribute externalReference (from Outbox class) can refer
an object that is not an instance of an InterfaceChannel subclass. It is necessary the
same care above described for its type definition.

4. Temporary reference. An application based on component approach can be
different of a collection of components linked by means of permanent references. A
component can need to change the component referred (by means of its attribute
externalReference). A possible situation for this is when a component interacts with
one component of a collection. Another attribute can be provided in an Outbox
subclass to refer a collection of components (one of then is referred by the attribute
externalReference).

5. Broadcasting. Broadcasting is a kind of communication that can occur in
component-based software. In this case a component will not be connected to just
other component. So, it needs refer more than one component and it can send
messages to all of them. For implementing this situation, the attribute
externalReference of Outbox must keep reference for a collection of objects, instead
of just one, and the implementation of required methods in Outbox subclasses must
pass method invocations to all objects referred. This kind of communication
between components is similar to event sending of CCM, as well as to Observer
design pattern. In this case, the sender acts as the subject and the receivers as the
observers.

6. A component interface implemented as a framework. When an interface
specification is useful for more than one component (a component family, with
equal interfaces) it can be implemented as an object-oriented framework1. After, the
framework can be used for building different components. In a framework that
implements an interface component, procedures pointed to build the internal
structure are kept abstract. So, the subclass of ComponentInterface of an interface
will not override the inherited method defineImplementors, that is, it will be an
abstract class. The overriding will occur in framework using. SEA environment
supports the automatic creation of a framework from an interface component
specification, as described in Known use section [SIL 00].

1 About object-oriented frameworks, see [FAY 99] [WIA 91] [WIR 90] [JOH 93] [LEW 95].

Code

An implementation of the classes ComponentInterface, InterfaceChannel, Outbox and
InterfacePetriNet in Smalltalk programming language can be obtained in the address
http://www.inf.ufsc.br/~ricardo/download/cip.zip. Next, are discussed some details from
their implementation (including their subclasses).

The implementation of a Petri net in an interface is very simple. Places are couples that
the first element is the place id (a string) and the second, the place marking (an integer).
The transitions are strings (just transition id). The arcs are couples with two strings:
origin id (transition or place) and target id (transition or place). Bellow is presented the
implementation of the method createPetriNet of a ComponentInterface subclass
(according to figure 3 behavior specification). The methods addPlace and
addTransition check duplicity (InterfacePetriNet class). The method addArc
(InterfacePetriNet class) checks if the origin and target are different kinds of object
(never from a transition to a transition nor from a place to a place) and if they are
contained in the Petri net.

createPetriNet
| pnVariable |
pnVariable := InterfacePetriNet new.
pnVariable addPlace: 'P1' with: 1.
pnVariable addPlace: 'P2' with: 0.
pnVariable addTransition: 'T1'.
pnVariable addTransition: 'T2'.
pnVariable addTransition: 'T3'.
pnVariable addTransition: 'T4'.
pnVariable addArc: 'P1' with: 'T2'.
pnVariable addArc: 'P1' with: 'T3'.
pnVariable addArc: 'T3' with: 'P2'.
pnVariable addArc: 'P2' with: 'T4'.
pnVariable addArc: 'T4' with: 'P2'.
pnVariable addArc: 'T2' with: 'P2'.
pnVariable addArc: 'P2' with: 'T1'.
pnVariable addArc: 'T1' with: 'P1'.
^pnVariable.

Below is presented the implementation of Petri net firing from class InterfacePetriNet

fire: aTransition
|inputPlaces outputPlaces fireCondition |
inputPlaces := List new.
outputPlaces := List new.
fireCondition := true.
(self arcs) do: [:anArray | "determine input places and output places"

((anArray at: 1) = aTransition) ifTrue: [outputPlaces add: (anArray at: 2)].
((anArray at: 2) = aTransition) ifTrue: [inputPlaces add: (anArray at: 1)]].

inputPlaces do: [:aPlace | "do all input places have token ? (firing condition)"
(self places) do: [:aPlaceArray |

(((aPlaceArray at: 1) = aPlace) & ((aPlaceArray at: 2) < 1))
ifTrue: [fireCondition := false]]].

fireCondition "yes, fireCondition = true; else, false"

ifTrue: [inputPlaces do: [:aPlace | "remove a token from each input place"
(self places) do: [:aPlaceArray |
 ((aPlaceArray at: 1) = aPlace)
 ifTrue: [aPlaceArray at: 2 put: ((aPlaceArray at: 2) - 1)]]].

outputPlaces do: [:aPlace | "add a token to each output place"
(self places) do: [:aPlaceArray |
 ((aPlaceArray at: 1) = aPlace)
 ifTrue: [aPlaceArray at: 2 put: ((aPlaceArray at: 2) + 1)]]]].

^fireCondition "return fireCondition"

In the creation of an instance of a ComponentInterface subclass (constructor method
new – see Collaborations), the method initialize is invoked for the Petri net and the
channels. An example of implementation of initialize is presented bellow.

initialize
| pnVariable |
pnVariable := self createPetriNet.
channelConcreteChannel2 := ConcreteChannel2 new: pnVariable.
channelConcreteChannel1 := ConcreteChannel1 new: pnVariable.
After initialize running, the method defineImplementos is invoked. This method creates
the internal structure objects, it notifies the requirers the external reference and invokes
setImplementor for linking interface channels to internal implementors of supplied
methods. An example of implementation of defineImplementors is presented bellow.

defineImplementors
| refChannel1 channel1Outbox internalObjectA internalObjectB |
refChannel1:= self channelConcreteChannel1.
channel1Outbox := refChannel1 output.
internalObjectA := InternalClassA newWith: channel1Outbox. “internal structure”
internalObjectB := InternalClassB newWith: internalObjectA. “internal structure”
self setImplementor: internalObjectA with: 'suppliedMethod1' with: 0.
self setImplementor: internalObjectB with: 'suppliedMethod2' with: 0.

The method setImplementor in a ComponentInterface subclass just pass the requirement
to all its channels. An example of setImplementor implementation from a
ComponentInterface subclass is presented bellow.

setImplementor: anObject with: methName with: methParameterListLength
channelConcreteChannel2 setImplementor: anObject with: methName with:
methParameterListLength.
channelConcreteChannel1 setImplementor: anObject with: methName with:
methParameterListLength.

At the first moment, when a channel runs setImplementor, it verifies if the method
identifier (a string with the method name and the parameter list length of the method) is
contained in the key collection of its reference structure (a dictionary). In positive case,
the object passed is included in the reference structure, using its respective key. The
implementation of setImplementor from InterfaceChannel class is presented bellow.

setImplementor: anObject with: methName with: methParameterListLength
((referenceStructure keys) includes: (methName, (methParameterListLength printString)))

 ifTrue: [referenceStructure
at: (methName, (methParameterListLength printString))
put: anObject].

The implementation of a supplied method in an InterfaceChannel subclass consists of
obtaining the reference of the respective internal implementor object in its reference
structure and of passing the invoking to this object. The implementation of an example
of a supplied method (suppliedMethod1) from an InterfaceChannel subclass is
presented bellow.

suppliedMethod1
| auxVariable runningCondition transitionName |
transitionName := 'T2'.
runningCondition := petriNet fire: transitionName.
(runningCondition) ifTrue: [auxVariable := referenceStructure at: 'suppliedMethod10'.

 auxVariable suppliedMethod1].

The implementation of a required method in an Outbox subclass consists of passing the
invoking to external reference. The implementation of an example of a required method
(requiredMethod1) from an Outbox subclass is presented bellow.

requiredMethod1
| auxVariable runningCondition transitionName |
transitionName := 'T1'.
runningCondition := petriNet fire: transitionName.
(runningCondition) ifTrue: [auxVariable := self externalReference.

auxVariable requiredMethod1].

Known use

Component Interface Pattern is used in SEA, an environment that supports the
development and use of frameworks and components [SIL 00]. The development of a
framework, a component or an application in this environment consists of first building
the artifact design specification using UML [RUM 98] [OMG 02] (with extensions),
and then checking its consistency and translating it into code, automatically. All UML
models of this paper were produced in SEA environment.

In SEA, component-based software development is split into three phases. The first
phase is the specification of component interface. The structure is specified defining the
channels, the supplied and required methods and the accessibility of each method at the
channels, like shown in table 1. The behavioral specification is done by means Petri net,
as described in Motivation section. Figure 3 shows a Petri net and the respective SEA
editor.

The second phase of component-based software development is the specification of the
component, using UML. The environment supports automatic conversion of an interface
specification in a UML specification that models the interface in an object-oriented
approach. The conversion process takes into consideration the classes of Component
Interface Pattern. The UML specification produced includes the algorithm of all
concrete methods, by means a proper model, what possibly automatic code generation,
later. SEA supports the insertion of the interface classes in a component specification,
as well as, the automatic building of a framework that implements the interface and, as

described in Implementation section, can be used for component building. For both
possibilities, Petri net class can be included, or not.

In the third phase, components with compatible interfaces are linked, resulting in
component architecture specifications. SEA design specifications includes method body
definition and, as the environment has a code generator, the specifications can be
converted into code. At this moment SEA has only a Smalltalk generator, but it is not
difficult to produce code generator for other object-oriented programming languages.
Figure 10 shows some model editors from SEA environment.

Figure 10 – Some SEA editors

SEA functionality described above shows that is possible to automate the translation of
an interface specification into code. Although this, it is not essential this kind of tool
support for the pattern application.

Related patterns

Facade. Facade is applied in Component Interface Pattern. Concrete subclasses of
ComponentInterface are facades of specific components.

Proxy. The passing of messages from inside as well as to outside of a component is
done in a Proxy approach. Concrete subclasses of InterfaceChannel define proxies
between external elements and internal implementors of component supplied methods.

Equally, concrete subclasses of Outbox define proxies between internal requirers and
external elements that implement component required methods.

Observer. In broadcasting (see Implementation section) the component that sends a
message to a collection of components acts as a subject of Observer design pattern. The
receivers act as observers.

Conclusion

This paper presents Component Interface Pattern, a design pattern pointed to solve
problems related to the building software components with interfaces specified
structurally and behaviorally. It implements a specific approach of defining component
interfaces. In that approach interface structure corresponds to the supplied and required
methods, the channels and the accessibility of each method at each channel. The
behavioral description adopts Petri net for establishing constraints in method invocation
order (component supplied and required methods). The proposed pattern is strongly
related to that approach of specifying a component interface and aims to define a direct
way of implementing a structure that embodies the specified structural and behavioral
constraints.

Component Interface Pattern was adopted in SEA, an environment that supports the
development and use of components and object-oriented frameworks, as well as,
application development. SEA supports interface specification and the automatic
building of the interface of a component by means of translating an interface
specification. Otherwise, SEA support is not essential for using component interface
pattern.

References
[BOS 97] BOSCH, J. et al. Summary of the Second International Workshop on

Component-Oriented Programming. In: INTERNATIONAL WORKSHOP
ON COMPONENT-ORIENTED PROGRAMMING, (WCOP), 2., 1997,
Jyväskylä. Proceedings... Jyväskylä: [s.n.], 1997.

[FAY 99] FAYAD, M. et al. Building application frameworks - object-oriented foundations
of framework design. [S.l.]: John Wiley & Sons, 1999.

[GAM 94] GAMMA, E. Design patterns : elements of reusable object-oriented
 software. Reading: Addison-Wesley, 1994.

[HEL 90] HELM, R. et al. Contracts : specifying behaviour composition in object-oriented
systems. SIGPLAN Notices, New York, v.25, n.10, Oct.1990. OOPSLA, 1990

[JOH 93] JOHNSON, R. E. How to design frameworks. 1993. Anonymous FTP in
st.cs.uiuc.edu.

[LEW 95] LEWIS, T. et al. Object-oriented application frameworks. Greenwich: Manning,
1995.

[LUC 97] LUCAS, C. Documenting reuse and evolution with reuse contracts. Vrije:
Universiteit Brussel, 1997. PhD thesis.

[OLA 96] ÓLAFSSON, A.; DOUG, B. On the need for "required interfaces" of
components . In Special Issues in Object-Oriented Programming, Workshop of
the ECOOP, 1996, Linz. Proceedings... Linz: [s.n.], 1996.

[OMG 99] OMG. CORBA components. V.1. 1999. (file orbos99-07-01.pdf, available in
www.omg.org)

[OMG 02] OMG. OMG Unified Modeling Language specification – action semantics. 2002.
(file uml02-01-09.pdf, available in www.omg.org)

[PRE 94] PREE, W. Design patterns for object oriented software development. Reading:
Addison-Wesley, 1994.

[RUM 98] RUMBAUGH, J. et al. The Unified Modeling Language reference manual. [S.l.]:
Addison-Wesley, 1998.

[SIL 00] SILVA, R. Suporte ao desenvolvimento e uso de frameworks e componentes2.
Porto Alegre: UFRGS/II/PPGC, mar. 2000. PhD thesis.

[SZY 96] SZYPERSKI, C. et al. First International Workshop on Component-Oriented
Programming WCOP’96. In: INTERNATIONAL WORKSHOP ON
COMPONENT-ORIENTED PROGRAMMING, (WCOP), 1., 1996, Linz.
Proceedings... Linz: [s.n.], 1996.

[WIR 90] WIRFS-BROCK, R.; JOHNSON, R. E. Surveying current research in object-
oriented design. Communications of the ACM, New York, v.33, n.9, Sept.
1990.

[WIA 91] WIRFS-BROCK, A. et al. Designing reusable designs: Experiences designing
object-oriented frameworks. In: OBJECT-ORIENTED PROGRAMMING
SYSTEMS, LANGUAGES AND APPLICATIONS CONFERENCE;
EUROPEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING,
1991, Ottawa. Addendum to the proceedings... Ottawa: [s.n.], 1991.

2 Thesis written in Portuguese. Title in English: SUPPORT FOR THE DEVELOPMENT AND USE OF
FRAMEWORKS AND COMPONENTS

