Templatized Primitive Method Idiom

Bosko Zivaljevic
Cisco Systems
2302 Fox Drive, Suite A
Champaign, IL 61820

bzivalje@cisco.com

ABSTRACT

Template Method Pattern (see [5]) solves the problem of
the existence of a generic algorithm for a family of classes
that needs specialization in each and every concrete class.
It does so by implementing the algorithm in the base class
and by forwarding implementation details to (pure) virtual
functions. In terms of [5] these forwarding functions are
called primitive.

In this paper we propose an implementation of the Tem-
plate Method Pattern in C++ that addresses the question
of stronger insulation of primitive functions, in the sense of
[7], and of better conformance to the Open Closed Principle
of Bertrand Meyers (see [9]). Mixing virtual functions and
templates the Templatized Primitive Method Idiom gives an
example of mixing subtype and parametric polymorphism in
what we believe is an interesting and powerful idiom.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering—patterns

General Terms
Design

Keywords
Design patterns, Template Method Pattern, Generic pro-
gramming, Templates, C++

1. INTRODUCTION

Suppose that we are building a network management tool
that would facilitate the management of large networks. For
instance, we might be following the architecture of the Di-
rectory Enabled Networks (DEN) and Common Information
Model (CIM, see [10]). As a part of the overall design we
want to model the CLI (command line interface) of man-
aged devices (firewalls). In DEN terminology these devices
are usually called the Policy Enforcement Points (PEPs).

PLoP2002Monticello, lllinois USA

The purpose of modeling commands is to enable manipula-
tion of PEP configurations. A PEP configuration is a se-
quence of commands (in the native language of the concrete
device) that shapes the traffic passing through that device.

An important functionality we want to have is the restora-
tion of the state of a given PEP from an input stream (such
as a file or a string stream). The set of commands that have
configured a particular PEP can usually be obtained in a
text form issuing a single command such as “show config”,
in the case of, for instance, the Cisco Secure Private Internet
Exchange (PIX) firewall. The obtained configuration consist
of a sequence of records with each record representing a con-
crete command. Without getting much into the command’s
semantics, a typical configuration might look like this

nameif e0 outside secO

nameif el inside sec100

enable passwd Bob

passwd Bob

hostname lab

no failover

names

name out_addr 10.10.10.10

name in_addr 20.20.20.20

ip address outside out_addr 255.255.255.0
ip address inside in_addr 255.255.255.0

The above commands define hardware characteristics of
some of the firewall interfaces (inside and outside), their
security levels, their IP addresses etc.

To achieve our goal we need to be able to restore the state of
each command given a record (string). In what is probably a
typical approach to a similar problem, we create an interface
(abstract) base class AbstractDeviceCommand for all device
commands. The class might look as follows

class AbstractDeviceCommand
{
public :
AbstractDeviceCommand () ;
virtual “AbstractDeviceCommand() = O;

// Some interface....................

// Restoring the object from a string
// stream.
friend std::istringstream&
operator>>(std::istringstream& iss,
AbstractDeviceCommand& cmd) ;
private :

// Primitive method for operator>>....
virtual bool
In(const std::string& s) = 0;

};

The main functionality that we are interested here is the
operator>> (for the sake of simplicity we consider the string
stream only). Given any concrete command cmd and a
record s we want to parse the record and initialize the com-
mand. The operator>> is a global operator and a friend of
AbstractDeviceCommand. The friendship is granted as the
implementation is delegated to the private method
AbstractDeviceCommand: :In. In is declared as a private,
pure virtual function that has no implementation in the base
class. Rather, the base class mandates that every of its sub-
classes implements In. This is the Template Method pat-
tern from [5]. In terms of [5] the operator>> is the template
method and the member function In is its abstract primi-
tive function. Notice that the primitive function is declared
private (instead of, say, protected or public). Having the
function declared pure virtual and private signals the client
that the function is strictly used in implementation and that
no default implementation is provided for it; the client in-
herits the obligation to define the primitive function but not
its implementation. This schema (in itself a useful rule to
follow) goes under the name of the Non-Virtual Interface
Idiom (NVI, see [11]; the name Non-Virtual Interface Id-
iom is mentioned in Sutter’s reply to Scott Meyers letter
in the December 2001 issue of C/C++ Journal). The id-
iom stipulates that no public interface of a class should ever
be declared virtual (pure or not). Instead, the function is
declared as non virtual, thus stating its contract clearly to
the clients, and its implementation forwarded to a (pure)
virtual and private implementing method, thus encapsulat-
ing the implementation details (virtuality) of the concrete
method.

The implementation of operator>> might look like this.
std::istringstream&

operator>>(std::istringstream& iss,
AbstractDeviceCommand& cmd)

{

if (command.In(iss.str()))

{
// Scan successful. Clear
// the stream.
iss.clear();

}

else

{

// Scan unsuccessful.
iss.setstate(std::ios_base::failbit);

return (iss);

By forwarding its implementation to the underlying primi-
tive method In the operator>> obtains, among other things,
an extra level of indirection for varying its implementation
over the whole population of commands. For instance, we
chose to set the state of the stream on failure or success al-
lowing the client to check the state of the stream. In the
future we might chose to do something else (throw/catch an
exception, introduce more error checking, pay attention to
locales etc.).

A concrete command needs to implement the In pure virtual
function. A typical implementation looks like this.

// ConcreteCommand.hpp

class ConcreteDeviceCommand :
public AbstractDeviceCommand
{
private :
bool In(const std::string& s);

};
// ConcreteDeviceCommand.cpp

bool
ConcreteDeviceCommand: : In(
const std::string& s)
{
typedef
std::vector<std::string> Container;
typedef
Container: :const_iterator Iterator;

bool status = false;

// Break string into tokens.
Container tokens = ...;

// The parser...........ccouvvunin.n
ConcreteDeviceCommandParser parser;

for (Iterator ¢ = tokens.begin();
c != tokens.end();
++c)

parser.Process (*c) ;
if (parser.IsInAcceptingState())
{

status = true;

*this = parser.CreateCommand() ;
}
else if (parser.IsInIllegalState())
{

// Throw some exception or ... 7
}
else { // No-op }

return status;

The implementation of the concrete device command
method In uses a new component
ConcreteDeviceCommandParser. The parser can process one
token at a time changing its “state”. If it reaches an accept-
ing state the string has been processed successfully and we
can retrieve the command from the parser. If an error state
is reached we can act accordingly either throwing an excep-
tion or rising some flags. Finally, the status of success or
failure is returned (used by operator>> to set the status of
the stream).

2. THE PROBLEM

So far, the design is more or less straightforward. To model
a new command one creates a class for that command in-
heriting from the common base class and implements all
of the pure virtual functions required. In particular our
In method would have to be implemented. To implement
In a new parser has to be created for that command and
the above code repeated. Satisfied, we even go further by
packaging commands in several different packages group-
ing them according to some internal logic. A package A
is responsible for one type of device configuration whereas a
package B might be responsible for some other device con-
figuration etc. AbstractDeviceCommand is placed at the
top of dependency hierarchy in a separate package T. At
least one component from every other package inherits from
AbstractDeviceCommand and thus depends on T.

After a while we realize that the number of commands we
have to handle is growing. The framework started with a few
commands distributed in a few packages to finish with more
than forty commands to model. Furthermore, in order to
avoid the complexities of monolithic class interfaces, several
C++ classes are used to model a single device command.
Now, we are talking of close to hundred classes distributed
in about a dozen of packages. For each and every command
we have to repeat the boilerplate code in the method In. Re-
peating the code in itself is not such a bad thing, one would
argue, if it happens only once. For example, Clone method
from [5]’s Prototype pattern is hand rolled because it has
a fixed, well-defined implementation that will never change
in the future. The requirements for the parsing algorithm,
however, have already changed a few times and are likely
to change (even radically) in the future. Does the string s
contain only tokens for one command or other tokens are
allowed to follow? If so, do we report an error or accept the
last successful command? The algorithm does not specify
how the string s broken into tokens. It does suggest that we
create a vector of tokens in one shut. For that we might use
the library function strtok. Is that the optimal solution?
Will the non-reentrancy of strtok hurt us at some point?
In the future we might even opt for a completely different
schema. For example, we might want to use iteration over
string tokens based upon the STL string algorithms (see [6]),
Boost tokenizer (see [4]), Boost regular expression parsing
(see [3]) or an implementation based on classical lex/yac ap-
proach. Further, the enclosing framework might maintain a
factory of commands creating a command to be initialized
from a string on a fly. The framework might require that

all parsers start from non-initial state. The other clients,
on the other hand, might not have that requirement. How
to accommodate them all? How to be ready to satisfy all
the above partially specified requirements after the code in
lower packages A, B,... has already been written?

3. SOLUTIONS

Being able to state our problem clearly enabled us to come
up with a half of the solution, already. We have to imple-
ment the method In in a generic fashion. Low-level packages
and components will implement the method only once with-
out ever modifying it. At the same time we have to be able
to change the parsing implementation at any point and be
ready to accommodate new client’s requirements that may
come along painlessly. We want to allow a seamless refac-
toring.

Bertrand Meyers (see [9]) expressed the ability of a software
module to be open for extension and closed for modification
as an Open Closed Principle. Our low level components
implementing the concrete device commands as well as the
base class component have to be closed for modification and
yet open for extension and improvement. Looking from that
perspective, we have to find a solution to our problem that
would conform to the OCP in the strongest possible manner.

Another equally important principle we want to follow is
the separation of the implementation and the declaration
of our classes, known as the insulation (see [7]). We say
that the implementation of a particular feature is insulating
if any further change in that feature’s implementation will
not force the client’s recompilation (thus, the insulation is
stronger than the encapsulation). Therefore, whatever the
future change in the implementation of the operator>> is
going to be its effect on the rest of the system should be
minimal; only the classes that directly depend on the change
and only those should be recompiled.

We shall investigate several ways of solving the above prob-
lem, starting with sticking to subtype polymorphism,
through the use of policy classes to finish with function
templates. We shall argue that an idiom we call here Tem-
platized Primitive Method is the only solution that strictly
conforms to the above stated principles and that is the right
solution to our problem.

3.1 Using Dynamic Template Method Pattern
We have already used Template Method Pattern in imple-
menting the operator>>. Let’s try to use the same pattern
to implement the method In.

We can implement the parsing algorithm in the base class
delegating all the specific implementation details to the sub-
classes.

virtual bool
AbstractDeviceCommand: : In(
const std::string& s)
{
typedef
std::vector<std::string>
Container;

typedef
Container::const_iterator
Iterator;

bool status = false;

// Break string into tokens.
Container tokens = ...;

// The parser............coovvunnnn.

typedef

std::auto_ptr<
AbstractDeviceCommandParser

>

ParserHandle;

ParserHandle parser =
this->CreateParser();

for (Iterator c¢ = tokens.begin();

c != tokens.end();
++c)
{
parser->Process (*c) ;
if (parser->IsInAcceptingState())
{
typedef
std::auto_ptr<
AbstractDeviceCommand
>
CommandHandle;
status = true;
this->AssignFrom(
*CommandHandle (
parser->CreateCommand ()
)
)
}
else if (parser->IsInIllegalState())
{
// Throw some exception or ... 7
}
else { // No-op }
}

return status;

The new implementation is only slightly different form the
one presented in the ConcreteCommand. We were able to
keep the same logic of feeding tokens into the parser and
checking for accepting and illegal states, taking the appro-
priate actions on both. Only two new pure virtual functions
playing the role of primitive methods from Template Method
Pattern had to be added to AbstractDeviceCommand. First,
we need to construct the correct parser using CreateParser.
Second, we need to polymorphically assign abstract com-
mand to a concrete command AssignFrom. This leads to
the following declaration.

class AbstractDeviceCommand
{
public :

private :

// Primitive method for operator>>....
virtual bool
In(const std::string& s) = 0;

// Primitive method for creating the

// correct parser.

virtual AbstractCommandParser*
CreateParser() const = 0;

// Primitive method for assigning
// from an abstract command.
virtual void
AssignFrom(
const AbstractDeviceCommand& cmd
) = 0;
};

Also, we had to create an abstract base class for all parsers,
say, AbstractPixCommandParser. The class has to have a
few methods that will enable us to implement the algorithm
in the base class. These are CreateComamnd,
IsInAcceptingState, IsInIllegalState and
ProcessToken. By following Non-Virtual Public Interface
idiom all of these forward their implementation to corre-
sponding Do methods.

class AbstractDeviceCommandParser
{
public :

AbstractDeviceCommandParser() ;

virtual

~“AbstractDeviceCommandParser () = 0;
public :

// Create the command.........

AbstractDeviceCommand*

CreateCommand () const;

// Accepting state query.....
bool IsInAcceptingState() const;

// Illegal state query........
bool IsInIllegalState() const;

// Process a token............
void Process(const std::string& s)

public :

// Primitive methods for the above
// public interfaces. We follow NVI.

virtual AbstractDeviceCommand#*
DoCreateCommand() const = 0;

virtual bool

DoIsInAcceptingState() const = 0;
virtual bool

DoIsInIllegalState() const = 0;
virtual void

DoProcess(const std::string& s) = 0;

};

Creating a new command has to be dynamically dispatched
so we needed pure virtual DoCreateCommand. The same is
true for queries for the accepting and illegal states. In ad-
dition, we need a pure virtual method for processing to-
kens. Finally, our algorithm needed some king of dynamic
memory management in the local scope; thus the use of
std: :auto_ptr. The situation does not seem so bad at all.
With a little lack our framework could survive a long time.

Looking back at our design, however, we notice a few ap-
parently small details that starts bothering us.

First, the dynamic allocation. In the method
CreateCommand we had to require the allocation of
AbstractDeviceCommand on the heap and in the method
CreateParser we had to do the same with the class
AbstractDeviceCommandParser. Dynamic allocation is ex-
pensive and, (although, as they say, we should not think
about the performance so early in the design) we are left
we a certain degree of uneasiness. We might address the
dynamic allocation of these object later in the design; cre-
ate some custom-made memory management for the parser;
maybe even a Clone base factory for it, etc.

Second, we had to assign an abstract command in
AssignFrom. Let see how we can implement this.

// Assign from another concrete
// command.
void
ConcreteDeviceCommand: :AssignFrom(
const AbstractDeviceCommand& cmd)
{
// Check if the source is of the
// correct type.
if (std::typeid(*this)

std: :typeid(cmd))

*this =
dynamic_cast<
ConcreteDeviceCommand&
>(cmd) ;
}
else { // Now what?... }

We first check if the assignee is of the same type as the
assigned command. If it is, we dynamically cast to the con-
crete command type and call the concrete command assign-
ment operator. But what should we do if the argument
command is not of the same type as the caller’s command?
Do we do nothing or do we need to throw an exception?
Assigning from a different type should have been a compi-
lation error in the first place! The dynamic cast is also a
weak point. First, we have to pay for it in CPU cycles, and
then we have to worry if it fails. One can argue that the
cast should not fail; we have just checked that the argument
type is the right one. Still, we could have typed in a different
AbstractDeviceCommand’s child and the compiler would not
warn us about that. A little better implementation could
just check for the right type once.

// Assign from another concrete
// command.
void
ConcreteDeviceCommand: :AssignFrom(

const AbstractDeviceCommand& cmd)
{

ConcreteDeviceCommand* p
= dynamic_cast<
const ConcreteDeviceCommand*
>(&cmd) ;

// Check if the source is of the
// correct type.
if (p !'=0)
{
*this = *p;
}
else { // Now what?...}

We do the dynamic cast first and if we succeed we continue
with the assignment. However, we pay the CPU price of
casting even in the case when the simple typeid would de-
tect mismatch types. Another thing is that the code has to
be repeated in each and every of our concrete commands. It
would be nice if we did not have to polymorphically assign
the object in the first place.

How resilient is our design to the change? Our algorithm is
implemented in one place only. It seem that we can accom-
modate any new requirement easily. For instance, we can
chose to process the tokens until we reach the first accepting
state instead of the last (command’s parser can go through
more than one accepting state scanning a single command),
or we can decide to process the whole record using the lastly
accepted input etc. The big question is what if we decide
to improve our parser component? In fact we can decide at
some point to eliminate hand rolled parser completely and
use some third party solution. Suddenly we realize that our
declaration of AbstractDeviceCommand has a member func-
tion CreateParser, albeit private, which returns a pointer to
AbstractDeviceCommandParser. To change that we have to
modify the header file where the command was declared! Fi-
nally, we realize that the schema with the parser components

is to be used exclusively in the method In’s implementa-
tion and should not be exposed as a part of the command
interface (again, in spite of the fact that that interface is
private). Ideally, header files should not contain the infor-
mation about the implementation details of the classes, at
all.

Further, the algorithm in the base class is “do all or noth-
ing”. If a concrete command has to parse itself radically
differently from the rest of the commands it would have to
override the In method completely. For example, in the
middle of the development we realize that some commands
should keep a special environment of maps between IP ad-
dresses and their aliases and take those into account when
parsing. The change demands radical modification of the
parsing algorithm. Yet, the number of commands to be
parsed with the environment is about a half of the total
number of commands. For one half we have a nice algo-
rithm in the base class and for the other we have to override
the method In repeating the same code; exactly the problem
we wanted to avoid. We can try to continue to play on the
card of subtype polymorphism by introducing some more
intermediate classes (and/or virtual methods), resolving the
new parsing algorithm by applying Template Method Pat-
tern again. Indeed, that sounds plausible, assuming, again,
that the change does not happen too often. Alas, soon we
discover that some negative forms of commands (every com-
mand more or less can be negated by inserting “no” in front
of it) have to be parsed differently than their positive coun-
terparts. Now we have to take into account two types of
deviations from the general algorithm that can both inter-
act with each other.

The problem is that we are not insulated enough from the
implementation details of the primitive method In (for the
discussion of insulation again see [7]) and that the base class
is still trying to do too much without knowing the specifics
of the children classes.

3.2 Writing a policy class

Rejecting the Template Method Pattern and dynamic poly-
morphism we realize that the implementation of the method
In has to “magically” appear in each and every concrete
command with the appropriate parameters, such as the
parser and the concrete command, replaced with the correct
types. The right way to achieve this is to use templates. Our
first attempt is to templetize the class
AbstractDeviceCommand with the parser and command
types. In fact, we could not do exactly that because the
parser instances differ from one command to another and
we would loose the common base class for all commands. In-
stead, we mneed an intermediate templated class
ParsingPolicy.

template <typename COMMAND,
typename PARSER>
class ParsingPolicy

{
public :

private :

// The implementation for In........
COMMAND InImpl(const std::string& s);
s

ParsingPolicy is templetized with the parser and the con-
crete command. The declaration of a concrete command
now looks as follows

class ConcereteDeviceCommand :
public AbstractDeviceCommand,
private ParsingPolicy<
ConcreteDeviceCommand,
ConcereDeviceParser

In addition to inheriting publicly from the
AbstractDeviceCommand we inherit privately from the pars-
ing policy class instantiated with the command parser and
the concrete device command class we are declaring. This
last technique is a well know parametric inheritance idiom
used in several places in the last decade staring with [2] and
lately and more extensively by Alexandrescu (see [1]) in his
design of policy classes.

The abstract policy base class has a method InImpl that im-
plements the method In. It is very similar to the original In
method with the only difference that we do not assign this
object but merely return the newly created command (other-
wise, the ghost of polymorphic assignment would reappear).

template <typenema COMMAND,
typename PARSER>
COMMAND
ParsingPolicy<COMMAND, PARSER>::InImpl(
const std::string& s)
{
typedef
std::vector<std::string> Container;
typedef
Container: :const_iterator Iterator;

// Break string into tokens.
Container tokens = ...;

// The parser............couvvunin..
PARSER parser;

// The command.........coovuueennnn.
COMMAND cmd;

for (Iterator ¢ = tokens.begin();
c != tokens.end();
++c)

parser.Process (*c) ;
if (parser.IsInAcceptingState())

{

cmd = parser.CreateCommand() ;
}
else if (parser.IsInIllegalState())
{

// Throw some exception or ... ?
}

else { // No-op }
}

return cmd;

The implementation of a concrete command method In now
looks like this.

ConcreteDeviceCommand: : In(
const std::string& s)

{
*this =
this->InImpl<
ConcreteDeviceCommandParser,
ConcreteDeviceCommand
>3
}

Inheriting from a properly instantiated policy base class we
inject the proper functionality, namely the method InImpl
into the host class, and simply use it in the implementation
of In.

Notice that we could also defined InImpl as a template mem-
ber function of AbstractDeviceCommand. However, there
are several problems with that decision implied, more or less,
by the rift between the current state of standard C++ imple-
mentation and our desire to write properly insulated classes.
First, not all compilers support the template member func-
tions. Second, even if a particular compiler supports tem-
plate member functions the implementation is more likely
than not, an intrusive one. The C++ standard stipulates
that there should be two models of compilation of templates

the inclusion and the separation model. The inclusion
model, supported by all of the current compilers, expends
templates inline. The separation model allows the separa-
tion of the template definitions and template declarations.
Now days, the inclusion model is almost the only one sup-
ported in practice. Furthermore, if we write a template
member function for an otherwise non-templetized class,
more likely than not the class itself would had to be written
inline (at least this is the case with most popular Microsoft
C++ compiler). That means that our base class for all
commands would be forced to be inlined thus completely
non-insulating. For a large project that we have at hand
that’s probably not acceptable.

3.3 Writing a function template - The Tem-

platized Primitive Method Idiom
The policy based solution of the previous section is perfectly
fine. We have achieved the things that ordinary Template

Method Pattern could not. We have insulated the base class
of all commands from implementation details of the method
In. Still, we can do a little better. The problem is that we
used inheritance to implement a policy. Inheritance, as the
strongest dependency relationship we can have between the
classes, has its price. What if we decide to change the im-
plementation of our algorithm? As each command inherits
from the policy class the command header files are affected.
That means recompiling all of the components that depend
on the command classes declarations. This might not be
acceptable, especially if it can be avoided.

A better solution in our case is not to use the inheritance
at all. We can formulate the parsing policy in an ordinary
function template.

template <tyepnema PARSER,
typename COMMAND>
COMMAND Scan(const std::string& s)
{
typedef
std::vector<std::string> Container;
typedef
Container: :const_iterator Iterator;

// Break string into tokens.
Container tokens = ...;

// The parser.............coovvunen..
PARSER parser;

// The command..........oovuueunnnn.
COMMAND cmd;

for (Iterator ¢ = tokens.begin();
c != tokens.end();
++c)

parser.Process(*c);
if (parser.IsInAcceptingState())

{

cmd = parser.CreateCommand() ;
}
else if (parser.IsInIllegalState())
{

// Throw some exception or ... 7
}
else { // No-op }

}

return cmd;

The implementation of every concrete command method In
is as before.

ConcreteDeviceCommand: : In(
const std::string& s)
{
*this =
Scan<ConcreteDeviceCommandParser,
ConcreteDeviceCommand>;

We have finally reached a kind of a solution we were looking
for. Let’s see how it addresses the problems we had with
the Template Method Pattern.

First, all the benefits of having the algorithm in one place,
found in Template Method Pattern, remain. To implement
new requirements we modify only the template Scan. Our
design is open for extension. Second, we do not need to
modify any of our command component to achieve this. Our
design is closed. Third, we have a completely insulated solu-
tion. The only components that have to be recompiled when
a new algorithm arrives are only the ones that implement
the commands itself and only those. Fourth, the variety of
algorithms painlessly scale in an open-closed fashion. If a
number of commands have to implement a radically new al-
gorithm for parsing all we need to do is to come up with a
new Scan template and use it. For example, earlier we had
a problem with commands that need to be implemented us-
ing an environment. Assuming that we have created the
appropriate algorithm defined in a new templated function
ScanWithEnvironment we implement the In method satisfy-
ing the Open-Closed Principle as usual.

ConcreteDeviceCommand: : In(
const std::string& s)

{
*this =
ScanWithEnvironment<
ConcreteDeviceCommandParser,
ConcreteDeviceCommand
>
}

How do we deal with the problem of negated commands
that parse differently than their positive form? All we need
a new parser NoConcreteDeviceCommandParser for negated
commands and some kind of dispatching between the two
cases.

ConcreteDeviceCommand: : In(
const std::string& s)

{
if (this->IsNegated())
{
*this =
Scan<
NoConcreteDeviceCommandParser,
ConcreteDeviceCommand
>3
}
else
{
*this =
Scan<
ConcreteDeviceCommandParser,
ConcreteDeviceCommand
>3
}
}

Furthermore, a powerful tool of function template specializa-
tion is at our disposal. By specializing the implementation of
the Scan for concrete commands and concrete parser we can
change the implementation of the method In and ultimately
operator>> without even touching the source files where the
concrete command is implemented (provided that the spe-
cialization is “visible” to the concrete command component,
e.g., if it resides in a header file that included the definition
of the initial algorithm). Everybody would agree that this
is an ultimate form of Meyer’s Open closed Principle.

4. THE TEMPLATIZED PRIMITIVE

METHOD PATTERN

We shall now formulate the Templatized Primitive Method
Idiom in a form a pattern formalizing the actors, specifying
its applicability and discussing its usage.

4.1 Context

As described in [5], the Template Method Pattern de-
fines a skeleton of an algorithm deferring some steps sub-
classes. The steps are implemented by primitive methods.

4.2 Intent
Define the primitive methods of the Template Method
Pattern using free standing template functions.

4.3 Motivation

The standard implementation of the primitive functions
in the Template Method Pattern as dynamically dis-
patched methods can sometimes be too rigid and cumber-
some. Better compliance to the Open Closed Principle and
better insulation is sometimes needed (see Introduction).

4.4 Participants
The following are the participants in the Templatized Prim-
itive Method Pattern.

e The base class Base.

e The “skeleton” member function Base: : Algorithm (in our
case the algorithm was operator>>.

e A set of primitive, member functions DoWork.1,...,
DoWork n that implement the Algorithm (in our case we have
the method In as a single primitive functions).

e The concrete class Concrete that is a child of the Base and
that implements the primitive methods DoWork_i (the role
played by ConcreteDeviceCommand in our introduction).

e The templated free functions DO_-WORK_1, ..., DO_WORK_n
that implement the primitive functions DoWork-1,...,
DoWork.n (this corresponds to our Scan template from the
introduction).

e The parameter classes P_1,...,P k of the templated func-
tions DO_WORK_i (in our case ConcreteDeviceParser).

4.5 Collaborations

The “skeleton” method Base: :Algorithmis implemented by
combining the primitive functions DoWork_i just like in the
standard Template Method Pattern.

ReturnType

Base::Algorithm(Type_1 p_1,...,Type_k p_k)

{
this->DoWork_1(p_1,..., p_k);
this->DoWork_n(p_1,..., p_k);

}

The primitive functions DoWork_i are implemented in each
and every subclass by instantiating the template functions
DO_WORK_i with appropriate, concrete types.

ReturnType
Concrete: :DoWork_i(Type_1 p_1,..., Type_k p_k)
{

return DO_WORK_i(p_1, ., p_k);
}

4.6 Applicability

One can say that in the case of i = 1, i.e., when only one
primitive function participates in the algorithm implemen-
tation, the Templatized Primitive Method Pattern is just a
dynamically dispatched templated function. The template
functions DO_WORK_1 might as well had been used stand-
alone. If one needs a dynamic dispatch, as it was the case
in our case, or when more than one primitive function is in-
volved, then the combination of the two was the right thing
to do.

The pattern is applicable in any situation where no special
private access is needed from both the Concrete class and
parameter classes. If the algorithm needs access to private
interface of either Concrete or parameter classes the pattern
cannot be applied (it is not possible to grant friendship to
template functions). The danger of this is that one might
be tempted to declare some of the interfaces of the base,
child and/or parameter classes public in order to make them
accessible for the algorithm, thus braking the encapsulation.

4.7 Known Uses

Angelika Langer and Klaus Kreft used the pattern (without
naming it) to produce a generic implementations of inserters
and extractors (see [8], page 170). They isolated the com-
mon parts of operator<< and operator>> in two template
functions g_inserter and g_extractor which are called in
the operators implementations. In turn, those call concrete,
dynamically dispatched methods that do actually extract-
ing/inserting work. If we apply this approach to our intro-
ductory example we would obtain an interesting “nested”
mix between the subtype and parametric polymorphism.

The Cisco Secure Policy Manager for PIX used the pattern
to define the extractors for PIX commands (as described in
the introduction).

5. ACKNOWLEDGMENTS

I am grateful to Toni Marinucci for thorough reading of the
paper and for many useful suggestions and remarks.

6. REFERENCES

[1]

[10]

[11]

A. Alexandrescu. Modern C++ Design : generic
programming and design patterns applied. Addison
Wesley, Reading, Massachusetts, 2001.

J. Barton and L. Nackman. Scientific and Engineering
C++. Addison Wesley, Reading, Massachusetts, 1994.

Boost. http://www.boost.org/libs/regex/index.htm.
Boost. http://www.boost.orq/libs/tokenizer/index.him.

E. Gamma, R. Helms, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, Reading,
Massachusetts, 1995.

J. Hyslop and H. Sutter. Conversations :
Al-go-rithms. C/C++ Users Journal, Ezperts Forum,
http://www.cuj.com/experts/, October 2001.

J. Lakos. Large Scale C++ Software Development.
Addison Wesley, Reading, Massachusetts, 1996.

A. Langer and K. Kreft. Standard C++ IOStreams
and Locales. Addison Wesley, Reading, Massachusetts,
1999.

B. Meyers. Object-Oriented Software Construction.
Prentice Hall, Upper Saddle River, NJ, 1998.

J. Strassner. Directory Enabled Networks. Macmillan
Technical Publishing, Indianapolis, IN, 1999.

H. Sutter. Virtuality. C/C++ Users Journal, pages
53-58, September 2001.

