
06/21/02 10:49 AM i
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Patterns of System Integration
with Enterprise Messaging

Bobby Woolf
Independent Consultant
woolf@acm.org

Kyle Brown
Sr. Technical Staff Member, IBM
brownkyl@us.ibm.com

The Pioneer Plaque by Dr. Carl Sagan, a message to extraterrestrial life forms

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM ii
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Table of Contents
1. Introduction... 1

1.1 Program-to-Program Communication... 1
1.2 Messaging Systems (MOMs).. 2
1.3 Patterns for Messaging.. 3

2. Message Channel Patterns ... 4
Messaging.. 4
Point-to-Point .. 7
Publish-Subscribe.. 8
Data Type Channel.. 10
Malformed Message Channel.. 12

3. Message Patterns ... 15
Command Message ... 15
Document Message ... 16
Event Message... 17
Reply Message .. 18
Reply Specifier.. 20
Correlation Identifier... 23
Message Sequence... 26
Message Expiration... 28

4. Message Client Patterns ... 30
Polling Consumer.. 30
Event-Driven Consumer.. 31
Message Throttle... 32
Transactional Client .. 33
Competing Consumers .. 35
Message Dispatcher... 37
Message Selector... 38

5. Messaging Application Patterns .. 41
Pipes and Filters Messaging.. 41
Message Translator ... 42
Canonical Message Data Model.. 44
Data Format Flexibility... 46
Message Router... 47
Message Bridge... 50
Message Bus.. 51

6. Conclusions .. 55
7. Bibliography .. 56

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 1 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

1. Introduction
For almost as long as developers have been writing computer programs, they’ve needed a
way for multiple programs to exchange information and work together. As computer
systems have become more sophisticated and widespread, the need to be able to integrate
individual applications into enterprise systems has grown. For example, it’s no longer
enough for an accounts-receivable program to do its job well, it must also serve the
broader enterprise by working with other applications that manage payroll, order
management, shipping and receiving, and so on. This is a paper about how to integrate
enterprise systems using a technology called messaging. Messaging is a key technology
that helps make separate applications work together as one to serve the enterprise.

1.1 Program-to-Program Communication
The general problem of program-to-program communication has been a constant and
ongoing source of research, development and heartache almost since the dawn of the
computer age. In particular, five different ways of program integration have risen to the
forefront as the most commonly implemented solutions to this problem.

1. File Transfer – This was the original means of program-to-program communication,
and is still the basis of many mainframe systems today. In it each program works on a
physical file (stored perhaps on a hard disk, a tape drive, or a stack of punched cards)
and then another program will take that file as its input and produce a new file, or
modify the file if the storage medium allows it. While this has proven effective for
solving many problems, issues of latency and resource contention have usually made
it unattractive for today’s high-speed, high-volume applications.

2. Shared Database – Another popular mechanism derived from the File transfer
mechanism is the shared database system. In this solution database software handles
some of the resource contention issues by providing mechanisms for locking and
unlocking the data appropriately, and also provides standard mechanisms for creating,
deleting, searching and updating information. However, the latency issue remains
even in this solution – before one program can use information it must be written to a
database (a physical file) by the other program.

3. Raw Data Transfer – In this scheme different programs use a mechanism like a
network data transfer protocol (like TCP/IP sockets) or a physical transfer mechanism
like Shared Memory to communicate information between different programs. The
drawback of this solution (which is again still used in millions of programs) is that it
requires synchronous communication – each program must wait on the other to
complete its request before processing a response. While it is possible to temporally
disconnect the systems, this involves adding significant complexity to the overall
system, and involves programming issues that few programmers are competent to
deal with – for instance, it is up to the programmer to decide how to guarantee that a
message is properly sent and received; the developer must provide retry logic to
handle all the cases where the network link is severed, or the request or response was
lost in transmission.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 2 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

4. RPC – The RPC (Remote Procedure Call) mechanism is a way of reducing the
complexity of the Raw Data Transfer approach by wrapping the network protocols
within a layer of code libraries such that it appears to the calling and called programs
that a normal procedure call had taken place. Again, RPC is extremely popular, and is
the basis of modern systems like CORBA, RMI and EJB. However, the basic issues
of synchronicity and guaranteed delivery still remain.

5. Messaging – Messaging provides high-speed, asynchronous, program-to-program
communication with guaranteed delivery. This particular solution is often
implemented as a layer of software called Message Oriented Middleware (MOM).
The design of systems to use messaging is the subject of this set of patterns.

As compared to the other four communication mechanisms, relatively few developers
have had exposure to messaging and MOM’s, and developers in general are not familiar
with the idioms and peculiarities of this communications platform. As a result, we have
seen many programmers try to use messaging in an inappropriate way, or to develop
systems that do not take advantage of the capabilities and strengths of messaging.

1.2 Messaging Systems (MOMs)
A simple way to understand what messaging does is to consider voice mail (as well as
answering machines) for phone calls. Before voice mail, when someone called, if the
receiver could not answer, the caller hung up and had to call back later to see if the
receiver would answer at that time. With voice mail, when the receiver does not answer,
the caller can leave him a message; later the receiver (at his convenience) can listen to the
messages queued in his mailbox. Voice mail enables the caller to leave a message now so
that the receiver can listen to it later, which is often a lot easier than trying to get the
caller and the receiver on the phone at the same time. Voice mail bundles (at least part of)
a phone call into a message and queues it for later; this is essentially how messaging
works.

In enterprise computing, messaging makes communication between processes reliable,
even when the processes and the connection between them are not so reliable. There are
two reasons processes may need to communicate:

1. One process has data that needs to be transmitted to another process.

2. One process needs to remotely invoke a procedure in another process.

There are two main defacto messaging standards for enterprise computing:

1. The Java 2 Platform, Enterprise Edition (J2EE) includes the Java Message Service
API (JMS). [JMS-1]

2. The Microsoft .NET Framework SDK (.NET) includes the System.Messaging
namespace for accessing MSMQ (see below). [NET-1]

There are a number of products available for embedding messaging into and between
applications:

1. One of the oldest and best-known messaging products is IBM’s MQSeries.
[MQS-1] Its Java client implements the JMS API. [MQS-3]

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 3 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

2. Besides MQSeries, many other products implement the JMS API. [JMS-2]

3. Microsoft’s messaging product is Microsoft Message Queuing (MSMQ), which is
built into Windows 2000 and later releases. [MSMQ-1]

1.3 Patterns for Messaging
The patterns in this pattern language describe some of the fundamental decisions that go
into architecting a system to use messaging. The pattern language is split into three
sections:

1. Message Channel Patterns describe those patterns that are implemented by most
commercial messaging systems; they describe the fundamental attributes of a
messaging system, and describe how the different features interrelate. Not all
MOM systems implement all of these patterns, however, these patterns all share
the same level of abstraction in that they are more “infrastructural” than
application-level.

2. Message Patterns describe those patterns that describe the form and content of the
messages that the messaging systems carry. Some of these patterns may be
features implemented by a messaging system, while others refer to generic
message formats that implementers of a messaging system will implement.

3. Messaging Application Patterns describes those patterns that are used by systems
designers in architecting messaging systems. Commercial “add-on” products for
messaging systems implement many of them, but just as often developers building
their own software using messaging systems implement them.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 4 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

2. Message Channel Patterns
The central pattern in our pattern language is Messaging, which describes a technique
programs can use to reliably exchange information under unreliable circumstances.
Messaging comes in two forms: Point-to-Point, which transmits a message that should
only be consumed once by one consumer; and Publish-Subscribe, which transmits copies
of a message to all interested consumers. Data Type Channel shows how a sender can
transmit different types of data to a receiver such that the receiver will know what each
type’s data is. When a single channel may carry several types of messages, a Message
Selector can be used to find only those messages that meet specific criteria. Finally, a
Malformed Message Channel allows sets of communicating programs to gracefully
handle messages that are incorrectly formed or misdirected.

Messaging
My application is distributed among separate processes that communicate via remote
procedure calls (RPC’s). However, RPC’s sometimes fail because of communication
problems between the processes.

How can we communicate between programs reliably even when neither the
network nor the receiver are reliable?

The simplicity of RPC’s is that they’re synchronous; a call happens all at once, the caller
blocking while the receiver processes. But this is also the shortcoming of an RPC; if
anything goes wrong, the whole thing fails. What might go wrong? An RPC consists of
three participants, the caller process, the receiving process, and the network connecting
the two processes (see Figure 1: Successful RPC).

doSomething(“12345”) void doSomething(String uid) {

 …}

doSomething(“12345”)

Figure 1: Successful RPC

All three participants have to be working properly, and all at the same time, for the RPC
to work and invoke the procedure remotely. When the caller is ready to make the call, the
receiver may not be ready (or able) to respond or the network may not be functioning
reliably. If anything goes wrong, the RPC fails and is therefore not reliable (see Figure 2:
RPC problems).

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 5 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

doSomething(“12345”) La de da…

RemoteException!?!

doSomething(“12345”)

Figure 2: RPC problems

The caller can try to make up for an unreliable RPC by using a retry loop. Whenever an
RPC fails, the caller retries it until it works. However, continuously retrying a call that
has already failed repeatedly quickly becomes futile. After some number of retries,
perhaps the caller should pause for a while before retrying again, in hopes that the
problem will be fixed during the pause. But how will the source remember what RPC to
try after the pause? It will need to somehow queue up the RPC, and then retry the queued
RPC’s periodically. And still, no matter how many times the caller pauses and retries the
RPC, the call will only work if the caller, network, and receiver are all working when the
call is made.

What if the call could be made even when the network and/or the receiver were not
ready? Instead of queuing the RPC on the caller and retrying it repeatedly, what if the
queued RPC call could be moved to the receiver and retried locally? This would make the
call asynchronous, in that the caller would not know when the call actually got invoked
on the receiver, just that it would happen eventually. The advantage would be that the call
could be queued when the caller was ready, moved from the caller to the receiver when
the network was ready, and invoked on the receiver when it was ready, even if the three
parts were never ready at the same time.

Therefore:

Use messaging to make intra-program communication reliable, even when
the network and the receiver program cannot be relied upon.

By packaging the call as a message, the caller can queue the call to be delivered to and
invoked on the receiver as soon as possible, whenever that may be. If delivery fails, it can
be retried until it succeeds (or times out). This is illustrated in Figure 3: Queued
communication.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 6 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

doSomething

doSomething

doSomething

Figure 3: Queued communication

When an application uses messaging, the communication between the processes is made
more reliable, and in addition, programs do not have to pause (or hang, thus occupying
processor time in a useless “wait” loop) nor have to repeatedly call the receiver, again a
futile and time-wasting exercise when either the network or receiver process are not
ready. However, in this situation, the program will have to become a bit more complex.
More importantly, the program may have to deal with asynchronicity, since the time
between the original message transmission and reply receipt may be quite long – too long
to wait for in a “busy loop”.

Although you could probably write your own messaging system, there are many
commercial ones already available. One of the oldest and best-known messaging products
is IBM’s MQSeries. Many messaging products (including the MQSeries Java client)
implement the Java Message Service API (JMS). The .NET SDK contains the
System.Messaging namespace, which provides access to Microsoft Message Queuing
(MSMQ), the messaging product built into Windows.

JMS provides two modes for messaging, persistent and non-persistent. A message sent
persistently receives the highest quality of service. When a persistent message is sent, the
send action is not complete until the messaging system has stored the message in a non-
volatile store (e.g., a database) so that the message will survive even if the messaging
system crashes. Likewise, the messaging system must deliver a persistent message once
and only once. The messaging system uses transactions internally to ensure this behavior
(even if a client session is non-transactional). These persistent transactions will, of
course, hurt performance, but are necessary overhead for reliable messaging. This paper
assumes that messages are sent persistently, thus ensuring the greatest level of
reliability.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 7 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

There are two distinct approaches for callers to send messages to receivers: Point-to-
Point and Publish-Subscribe. Either way, the caller will need to package the
communication as a Command Message, Document Message, or Event Message. To
implement a full remote procedure call, one that returns a result or at least notifies the
caller when the call has completed successfully, the receiver will have to send the caller a
Reply Message. If a message’s transmission retries for too long without transmitting
successfully, it may time out because of its Message Expiration.

Point-to-Point
My application is using Messaging to make remote procedure calls (RPC’s) or transfer
documents.

How can the caller be sure that only one receiver will receive the document
or perform the call?

One advantage of an RPC is that it’s invoked on a single remote process, so either that
receiver performs the procedure or it does not (and an exception occurs). And since the
receiver was only called once, it only performs the procedure once. But with messaging,
once a call is packaged as a message and placed on a channel, potentially many receivers
could see it on the channel and decide to perform the procedure.

The messaging system could prevent more than one receiver from monitoring a single
channel, but this would unnecessarily limit callers that wish to transmit data to multiple
receivers. All of the receivers on a channel could coordinate to ensure that only one of
them actually performs the procedure, but that would be complex, create a lot of
communications overhead, and generally increase the coupling between otherwise
independent receivers. Multiple receivers on a single channel may be desirable so that
multiple messages can be consumed concurrently, but any one receiver should consume
any single message.

Therefore:

Configure the channel to use point-to-point messaging, which ensures that
only one receiver will receive a particular message.

A point-to-point channel ensures that only one receiver consumes any given message. If
the channel has multiple receivers, only one of them can successfully consume a
particular message. If multiple receivers try to consume a single message, the channel
ensures that only one of them succeeds, so the receivers do not have to coordinate with
each other. The channel can still have multiple receivers to consume multiple messages
concurrently, but only a single receiver consumes any one message.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 8 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Process Purchase Order for chocolate bunnies…

Bunnies

Send Purchase Order for chocolate bunnies,
Send Purchase Order for gummi bears,
Send Purchase Order for licorice

Gummi Worms Licorice

Figure 4: Point to Point connection

In JMS, a point-to-point channel implements the Queue interface. In .NET, the -
MessageQueue class implements a point-to-point channel. MSMQ, which implements
.NET messaging, only supported point-to-point messaging prior to version 3.0, so point-
to-point is what .NET supports.

In a stock trading system, the request to make a particular trade is a message that should
be consumed and performed by exactly one receiver, so the message should be placed on
a point-to-point channel.

To implement an RPC using messaging, use a pair of point-to-point channels, one
channel for the call message a reverse channel for a Reply Message. The call is a
Command Message whereas the reply is a Document Message.

Publish-Subscribe
My application is using Messaging to communicate events.

How can the sender broadcast an event to all interested receivers?

Luckily, there are well-established patterns for implementing broadcasting. The Observer
pattern [GHJV95] describes the need to decouple observers from their subject so that the
subject can easily provide event notification to all interested observers no matter how
many observers there are (even none). The Publisher-Subscriber pattern [BMRSS95]
expands upon Observer by adding the notion of an event channel for communicating
event notifications.

That’s the theory, but how does it work with messaging? The event can be packaged as a
message so that messaging will reliably communicate the event to the observers
(subscribers). Then the event channel is a messaging channel. But how will a messaging
channel properly communicate the event to all of the subscribers?

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 9 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Each subscriber needs to be notified of a particular event once, but should not be notified
repeatedly of the same event. The event cannot be considered consumed until all of the
subscribers have been notified. But once all of the subscribers have been notified, the
event can be considered consumed and should disappear from the channel. Yet having the
subscribers coordinate to determine when a message is consumed violates the decoupling
of the observer pattern. Concurrent consumers should not be considered to compete, but
should be able to share the event message, but only so long as the consumers are not
somehow part of the same subscriber.

Therefore:

Configure the channel to use publish-subscribe messaging, which sends a
copy of a particular message to each receiver.

A publish-subscribe channel works like this: It has one input channel that splits into
multiple output channels (a.k.a., event channels), one for each subscriber. When an event
is published into the channel, the publisher-subscriber consumes the input message by
placing a copy of the message into each of the event channels. Each event channel has
only one subscriber, which is only allowed to consume a message once. In this way, each
subscriber only gets the message once and consumed copies disappear from their
channels.

Address
changed

Address
changed

Address
changed

Address
changed

Figure 5: Publish-Subscribe communication

In JMS, a publish-subscribe channel implements the Topic interface. The sender uses a
TopicPublisher to send messages; each receiver uses its own TopicSubscriber to
receive messages. A subscription can be durable or non-durable—the difference is what
the messaging system does with messages received while a subscriber does not have an
open connection. With a durable subscription, when the subscriber does not have an open
connection, the messaging system will queue messages until the subscriber reads them.
With a non-durable subscription, if the messaging system has messages for the subscriber

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 10 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

but the subscriber does not have an open connection for retrieving them, the messaging
system will throw away that subscriber’s copies of the messages. This paper assumes
that subscribers are durable, thus ensuring the greatest level of reliability.

MSMQ 3.0 adds what it calls a “one-to-many messaging model,” which has two different
approaches:

1. Real-Time Messaging Multicast – This most closely matches publish-subscribe,
but its implementation is entirely dependent on IP multicasting via the Pragmatic
General Multicast (PGM) protocol.

2. Distribution Lists and Multiple-Element Format Names – A Distribution List
enables the sender to explicitly send a message to a list of receivers (but this
violates the spirit of the Observer pattern). A Multiple-Element Format Name is a
symbolic channel specifier that dynamically maps to multiple real channels,
which is more the spirit of the publish-subscribe pattern but still forces the sender
to choose between real and not-so-real channels. [MSMQ-3]

In a stock trading system, many systems may need to be notified of the completion of a
trade, so make them all subscribers of a publish-subscribe channel that publishes trade
completions.

An event on a publish-subscribe channel is often an Event Message because multiple
dependents are often interested in an event. If a subscriber wishes to acknowledge a
notification, it can send a Reply Message back to the publisher (probably via a Point-to-
Point channel).

Data Type Channel
My application is using Messaging to transfer different types of data, such as different
types of documents.

How can I transmit a data item such that the receiver will know how to
process it?

The message contains data—a document of some kind—so obviously it’s a Document
Message. But there can be different types of data. If the receiver does not know what type
of data it’s receiving, it must test the data, using a case statement (which is inflexible and
error-prone).

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 11 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

What am I supposed to do with
this????

Purchase Order

Send Purchase Order,
Send Price Quote,
Send Query

Price Quote Query

Figure 6: Mixed Data Types

The sender knows what type of data it’s sending, so how can this be communicated to the
receiver? The sender could put a flag in the message’s header, but then the receiver will
need a case statement again. The sender could wrap the data in a Command Message with
a different command for each type of data, but that presumes to tell the receiver what to
do with the data when all that the message is trying to do is transmit the data to the
receiver.

A principle of messaging is that all of the messages on a channel must be of the same
type. That way the receivers always know what to expect. Here the problem is that
messages of different types are being sent on a single channel.

Therefore:

Use a separate data type channel for each data type, so that all data on a
particular channel is of the same type.

That way, all of the document messages on a given channel will contain the same type of
data. The sender, knowing what type the data is, will need to select the appropriate
channel to send it on. The receiver, knowing what channel the data was received on, will
know what its type is.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 12 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

This must be a Purchase Order…process it!

Query

Purchase Order

Price Quote

Send Purchase Order, Send Price Quote, Send Query

Purchase Order Queue

Price Quote Queue

Query Queue

Figure 7: Data Type Channels

The message still looks like a document message, just that there are now multiple
channels for these document messages, one for each data type. For example, the sender
may need to transmit several types of documents to the receiver, such as: purchase order,
price quote, and query. Thus the sender and receiver would need three channels for
transmission: a purchase order channel, a price quote channel, and a query channel. If the
sender needs to transmit a query, it must use the query channel. When the receiver gets a
message on the query channel, it will know the message data is a query.

An application may need to transmit many different data types, too many to create a
separate Data Type Channel for each. In this case, multiple data types can share a single
channel by using a different Message Selector for each type. This makes a single channel
act like multiple data type channels.

Malformed Message Channel
My application is using Messaging to communicate between processes.

How can a messaging receiver gracefully handle receiving a message that
makes no sense?

In theory, everything on a message channel is just a message and message receivers just
process messages. However, the fact is that receivers and message formats are
customized for their part of the application, so each receiver must make a lot of
assumptions about the content of the messages it’s processing. While it would be nice to

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 13 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

assume that no sender would ever put a message on a channel with an incorrect format,
the fact is that things can go wrong. As long as a valid message object is addressed to a
valid channel, the messaging system will pass the message through, so the receiver needs
to be prepared to defend itself against improperly formatted messages.

Worse, a malicious sender could purposely send badly formatted messages. Or a
completely separate sender could decide to start using an existing channel for its own
purposes, transmitting messages of a different format. Most messaging systems do not
provide security features to control which senders and receivers can access which
channels.

For a receiver to get its bearings on what to do with a message, it has to look for certain
expected flags in the header, has to determine the message body’s sub-type (bytes, text,
etc.) and usually will perform some initial parsing of the body’s data. Any of this can go
wrong if the message format is not valid. This leads to a lot of if-then-else code in the
receiver: if the message has some expected feature, then use that feature, however, if the
feature is not there, then the resulting exception must be handled.

When the receiver finds that a message format is invalid, it could put the message back
on the channel, but then the message will just be re-consumed by the receiver or another
like it. The receiver could ignore messages without a valid message selector, but the
ignored messages will clutter the channel and hurt performance, and this still does not
help the receiver handle a message with a valid message selector but some other
formatting problem. The receiver could just ignore the badly formatted message,
consuming it from the queue but then throwing it away, but this could cause serious
problems with the messaging to go undetected. What the system needs is a way to clean
malformed messages out of channels and put them somewhere out of the way, yet a place
where these malformed messages can be detected to diagnose problems with the
messaging system.

Therefore:

Create a malformed message channel so that when a receiver discovers a
badly formatted message, it can put that message on the malformed channel.

The malformed channel will not be used for normal, successful communication, so its
being cluttered with malformed messages will not be a problem. An error handler that
wants to diagnose malformed messages can use a receiver on the malformed channel to
detect messages as they become available.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 14 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

What’s a Pszexypk?

Pszexypk

A Request Queue

Malformed Message Q
Client A

Pszexypk

Figure 8: Malformed Message Processing

For example, if a receiver reads what is supposed to be a text message but finds that it’s a
byte message, it can put the message on the malformed channel. If a message is supposed
to have a header flag such as a Correlation Identifier, Message Sequence identifiers,
Reply Channel, etc., but the message is missing the flag, the receiver can move the
message to the malformed channel.

In JMS, the specification suggests that if a MessageListener gets a message it cannot
process, a well-behaved listener should divert the message to “to some form of
application-specific ‘unprocessable message’ destination.” [JMS02, p. 69] This
unprocessable message destination is a malformed message channel.

Messaging systems have a similar concept called “dead message queue” [MHC01, p.
125] or “dead-letter queue.” [IBM00, p. 57], [MSMQ-2] The messaging system considers
a message dead when it cannot be delivered properly; reasons include a message whose
destination channel no longer exists, a message that expires, etc. Whereas dead messages
cannot be delivered successfully by the messaging system, malformed messages are
delivered successfully, but the receiver considers them malformed. Thus the messaging
system can route dead messages to the error queue automatically, but receivers of
malformed messages must manually add them to the error queue.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 15 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

3. Message Patterns
These patterns describe the form and format of messages that flow between parts of a
system built with a messaging system. A Command Message enables procedure call
semantics to be executed in a messaging system. A Document Message enables a
messaging system to transport a document or information, such as the information that
should be returned to a sender as a result of a command message. An Event Message uses
messaging to perform event notification. A Reply Message handles the semantics of
remote procedure call results, which require the ability to handle both successful and
unsuccessful outcomes. A Reply Specifier enables a program making a request to identify
the channel on which a reply should be sent. A Correlation Identifier enables a
requesting program to associate a specific response with its request. When the data to be
conveyed may span several messages, a Message Sequence enables the receiver to
accurately reconstruct the original data. Message Expiration enables a sender to set a
deadline by which the message should either be delivered or ignored. Finally, Message
Throttle enables a receiver to control the rate at which it consumes messages.

Command Message
My application is using Messaging to make remote procedure calls (RPC’s).

How can a remote procedure be called as a message?

Luckily, there’s a well-established pattern for how to encapsulate a request as an object.
The Command pattern [GHJV95] shows how to turn a request into an object that can be
stored and passed around. If this object were a message, then it could be stored in and
passed around through a messaging channel. Likewise, the command’s state (if any) can
be stored in the message’s state.

Therefore:

Use a command message to package an RPC as a message that can be placed
on a channel.

There is no specific message type for commands; a command message is simply a regular
message that happens to contain a command. In JMS, the command message could be
any type of message; examples include an ObjectMessage containing a
Serializable command object, a TextMessage containing the command in XML
form, etc. In .NET, a command message is a Message with a command stored in it. A
Simple Object Access Protocol (SOAP) request is a command message.

For example, the SOAP protocol [SOAP-1] has a convention that the body of a SOAP
request message consists of an XML element that corresponds to the name of a method
that should be invoked on the receiving end. Likewise this element will contain a set of
other elements that correspond to the parameters of this remote method. An example of
this is shown below:

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 16 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=

"http://www.w3.org/2001/06/soap-envelope"
SOAP-ENV:encodingStyle=

"http://www.w3.org/2001/06/soap-encoding">

<SOAP-ENV:Body>
<m:GetExchangeRate xmlns:m="CurrencyIsUsURI">

<country1>USA</country1>
<country2>Japan</country2>

</m:GetExchangeRate>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Command messages are usually sent Point-to-Point so that each command will only be
consumed and invoked once. A true RPC not only invokes the procedure but also returns
a result, so a command message often has a matching Reply Message that is a Document
Message containing the procedure’s result or any exceptions.

Document Message
My application is using Messaging to communicate between processes.

How can messaging be used to transfer a document from one process to
another?

This is a classic problem in distributed processing: One process has data another one
needs. An RPC can be used to send the data, but then the caller is also telling the
receiver—via the procedure being invoked—what to do with the data. Likewise, a
Command Message would transfer the data, but would be overly specific about what the
receiver should do with the data.

Yet we do want to use messaging to transfer the data. Messaging is more reliable than an
RPC. Point-to-Point messaging can be used to make sure that only one receiver gets the
data (no duplication), or Publish-Subscribe messaging can be used to make sure that any
receiver who wants the data gets a copy of it. So the trick is to take advantage of
messaging without making the message too much like an RPC.

Therefore:

Use a document message to reliably transfer a document between two
processes.

Whereas a command message is like an RPC, a document message is like a single
parameter of an RPC, a single unit of data (which may in turn contain smaller units of
data). Whereas an RPC and command message tells the receiver what to do, a document
message just transfers a unit of data to the receiver without telling the receiver what to do
with it.

To the messaging system, a document message looks just like a command message;
they’re both just packets of data being sent through a messaging channel. In JMS, the
document message may be an ObjectMessage containing a Serializable data object
for the document, or it may be a TextMessage containing the data in XML form. In

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 17 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

.NET, a document message is a Message with the data stored in it. A Simple Object
Access Protocol (SOAP) reply message is a document message.

The following example (drawn from the example XML schema in [Graham]) shows how
a simple purchase order can be represented as XML and sent as a message using JMS.

// Assume that we have obtained a Session (session)
// and a Destination (dest) from JNDI lookups

//Create a sender
MessageProducer sender = session.createProducer(dest);

String purchaseOrder =
" <po id=\"48881\" submitted=\"2002-04-23\">

<shipTo>
<company>Chocoholics</company>
<street>2112 North Street</street>
<city>Cary</city>
<state>NC</state>
<postalCode>27522</postalCode>

</shipTo>
<order>

<item sku=\"22211\" quantity=\"40\">
<description>Bunny, Dark Chocolate, Large</description>

</item>
</order>

</po>";

TextMessage message = session.createTextMessage();
message.setText(purchaseOrder);

//Send the message
sender.send(message);

Document messages are usually sent Point-to-Point to move the document from one
process to another without duplicating it. A document message can be broadcast via
Publish-Subscribe, but this creates multiple copies of the document that probably need to
be read-only. A Reply Message is usually a document message—the result is intended for
a single receiver and should not be ignored—where the result value is the document.
When the “document” is a transient one describing an event, that’s an Event Message.

Event Message
My application is using Messaging to communicate between processes.

How can messaging be used to communicate events from one process to
another?

An event is a special kind of data. It’s not a document with a lifetime in the sender
process or the receiver. It exists just long enough for a subject to tell its observer what
just happened (a la the Observer pattern [GHJV95]). Once the subject sends the event, it
does not need the data anymore; once the observer receives and processes the event, it
does not need the data anymore either. So this data is not a document to be read,
modified, passed around, and saved for future use, it’s just a notification. Also, unlike a
document, an event can often be ignored, such as when the observer is too busy to
process the event.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 18 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

In the Observer pattern, a subject notifies an observer of an event by calling the
observer’s Notify() method. Yet if the observer is in a different process from the
subject, this call is an RPC that may not be reliable. Messaging is a good way to make
RPC’s reliable.

Therefore:

Use an event message for reliable event notification between processes.

When a subject has an event to announce, it will create an event object, wrap it in a
message, and put it on a channel. The observer will receive the event message, get the
event, and process it. Messaging does not change the event notification, just makes sure
that the notification gets to the observer.

In Java, an event can be an object or data such as an XML document. Thus they can be
transmitted through JMS as an ObjectMessage, TextMessage, etc. In .NET, an event
message is a Message with the event stored in it.

There is usually no reason to limit an event message to a single receiver via Point-to-
Point; the message is usually broadcast via Publish-Subscribe so that all interested
processes receive notification. Whereas a Document Message needs to be consumed so
that the document is not lost, a receiver of event messages can often ignore the messages
when it’s too busy to process them. Event message is a key part of implementing the
Observer pattern using messaging; the complete design will be discussed in another
chapter.

Reply Message
My application is using Messaging, specifically Command Messages, to make remote
procedure calls (RPC’s).

How does a caller get the result of a command message?

As explained in the Messaging pattern, an RPC is a synchronous call, so the caller blocks
while the receiver runs the procedure. When the procedure finishes, its result is returned
back to the caller. Messaging makes the call asynchronous, so the caller does not know
when the receiver invokes the procedure, much less when the procedure finishes or what
the result was. Yet even with messaging, the caller may still need to know when the
procedure finishes, what the result value was, or what exception occurred.

The caller could somehow block synchronously waiting for the result, but that does not
magically make the result travel back from the receiver. The caller might be able to use
the messaging system in some synchronous way to block on sending the message until
the receiver consumes the message, but that just tells the caller when the message was
consumed, not what the procedure’s result was. The receiver could add the result to the
caller’s message, but the caller will never see that because it does not consume the
message, the receiver does. The caller could try to consume the message looking for a
result, but then the caller is consuming its own messages, which is chaotic for the
messaging system and will probably prevent the receiver from ever actually receiving the
message.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 19 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Yet there must be some way for the caller to get the procedure’s result. This is the
problem that a Document Message solves: The receiver has data—the procedure result—
that the caller needs. So do not try to add the result to the original message. Send the
result back using a whole new message just for this purpose.

Therefore:

The receiver should use a reply message to send the procedure’s result back
to the caller.

The result is just data, so the reply message will be a document message. Reply messages
can also be used to transmit events back to the caller, such as acknowledging receipt of
the original message, but the idea of any reply message is that it’s closely associated one-
to-one with a previous request message from the caller.

Process the request
Send the reply

Reply Queue

Reply

Request Queue

Request

Figure 9: A receiver sending a reply

When a reply message indicates the result of a procedure call, it can be thought of as a
“result message.” In an object-oriented environment, a “procedure” (remote or otherwise)
is really a message invocation, which can result in one of three ways:

1. Returns void – Simply notifies the caller that the message has finished so that the
caller can stop blocking.

2. Returns a value – A single object the message uses as its result.

3. Returns (throws) an exception – A single exception object indicating that the
message aborted before completing successfully; also indicates why.

Since these are the three things a message result can do, they’re the three things a result
message must be able to contain. The message must indicate success or failure, so there
are two types of result messages, organized like this:

1. Success

a. Returns void – Tells the caller that the message has finished and that it
executed successfully.

b. Returns a value – Tells the caller that the message has finished, that it
executed successfully, and that this value was the result.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 20 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

2. Failure

a. Returns (throws) an exception – Tells the caller that the message has finished,
but not successfully, and why it failed.

Note that the SOAP specification [SOAP-1] describes one particular implementation of
this pattern, in that it shows how when SOAP is used to implement an RPC that the
results returned can either be a call response message (which may or may not contain a
return value), or a SOAP Fault, which corresponds to the failure scenario.

JMS provides for a variation of this pattern using a temporary queue. The requestor uses
its JMS connection to create a temporary queue and sets that as the JMSReplyTo
property of the request message (see Reply Specifier). The replier obtains access to the
temporary queue from the request message and sends the reply to that queue. [MHC01,
pp. 67-69] This offers a certain level of security in that only a consumer of the request
can possibly send a message on the reply queue. However, this technique is not always
reliable, because a temporary queue can only provide non-persistent messaging. The
temporary queue’s lifetime ends when the connection that created it closes, so if the
requestor and its connection crash, all reply messages will be lost and no new ones can be
sent. (The messaging system may put such lost messages in a dead letter queue; see
Malformed Message Channel.) Thus, to transmit replies reliably, a permanent queue with
persistent messaging is more appropriate.

The caller may wish to indicate a Reply Specifier in its request message so the receiver
will know where to send the reply. A reply message may need a Correlation Identifier to
identify the original request it’s replying to.

Reply Specifier
My application is using Messaging to send a request message for which it expects a Reply
Message.

How does the receiver of a request message know where to send the reply
message?

Messages are often thought of as completely independent, such that any sender sends a
message on any channel whenever it likes. However, messages are often associated, such
as request-reply pairs, two messages which appear independent but where the reply
message has a one-to-one correspondence with the request message that caused it. Thus
the receiver that processes the request message cannot simply send the reply message on
any channel it wants, it must send it on the channel the caller expects the reply on.

Each receiver could automatically know which channel to send replies on, but hard
coding such assumptions makes the software less flexible and more difficult to maintain.
Furthermore, a single receiver could be processing calls from several different callers, so
the caller it should reply to is the one that sent the request.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 21 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Now where does this
Reply Go?

Request

A Request Queue

A Reply Queue

B Request Queue

B Reply Queue

Client A

Client B

????

Figure 10: Unsure where to send the reply

A caller potentially may not want a reply sent back to itself. Rather, it may have an
associated callback processor to process replies, and the callback processor may monitor
a different channel than the caller does. The caller could have multiple callback
processors such that replies for different requests from the same caller should be sent to
different processors.

The reply channel will not necessarily transmit replies back to the caller; it will transmit
them to whomever the caller wants to process the replies, because it’s listening to the
channel the caller specified. So knowing what caller sent a request or what channel it was
sent on does not necessarily tell the receiver what channel to send the reply on. Even if it
did, the receiver would still have to infer which reply channel to use for a particular caller
or request channel. It’s easier for the request to explicitly specify which reply channel to
use.

What is needed is a way for the caller to tell the receiver where and how to send a reply
back.

Therefore:

The request message should contain a reply specifier that indicates where to
send the reply message.

This way, the receiver does not need to know where to send the reply, it can just ask the
request. If different messages to the same receiver require replies to different places, the
receiver knows where to send the reply for each request. This encapsulates the knowledge
of what channels to use for requests and replies within the caller so those decisions do not

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 22 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

have to be hard coded within the receiver. A reply specifier is put in the header of a
message because it’s not part of the data being transmitted.

The Request tells me where to send the Reply.
Now I know where the Reply goes…

Request (Reply-to-A-Reply-Q)

A Request Queue

A Reply Queue

B Request Queue

B Reply Queue

Client A

Client B

Reply

Figure 11: Using Reply Specifier

A message’s reply specifier is analogous to the reply-to field in an e-mail message. The
reply-to e-mail address is usually the same as the from address, but the sender can set it to
a different address to receive replies in a different account than the one used to send the
original message.

JMS messages have a predefined property for reply specifiers, JMSReplyTo. Its type is a
Destination (a Topic or Queue), rather than just a string for the destination name,
which ensures that the destination (e.g., channel) really exists, at least when the request is
sent.

A sender that wishes to specify a reply channel that is a queue would do so like this:
Queue requestQueue = // Specify the request destination
Queue replyQueue = // Specify the reply destination
Message requestMessage = // Create the request message
requestMessage.setJMSReplyTo(replyQueue);
MessageProducer requestSender =
session.createProducer(requestQueue);

requestSender.send(requestMessage);

Then the receiver would send the reply message like this:

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 23 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Queue requestQueue = // Specify the request destination
MessageConsumer requestReceiver =
session.createConsumer(requestQueue);

Message requestMessage = requestReceiver.receive();
Message replyMessage = // Create the reply messageDestination
replyQueue = requestMessage.getJMSReplyTo();
MessageProducer replySender = session.createProducer(replyQueue);
replySender.send(replyMessage);

.NET messages also have a predefined property for reply specifiers, ResponseQueue.
Its type is a MessageQueue, the queue that the application should send a response
message to.

When the reply message is sent back the channel indicated by the reply specifier, it may
also need a Correlation Identifier. The reply specifier tells the receiver what channel to
put the reply message on; the correlation identifier tells the sender which request a reply
is for.

Correlation Identifier
My application has received a Reply Message.

How does a sender that has received a reply know which request this is the
reply for?

When one process invokes another via a Remote Procedure Call (RPC), the call is
synchronous, so there is no confusion about which call produced a given result. But
messaging is asynchronous, so from the caller’s point of view, it makes the call, then
sometime later a result appears. The caller may not even remember making the request,
or may have made so many that it no longer knows which one this is the result for. With
confusion like this, when the caller finally gets the result, it may not know what to do
with it, which sort of defeats the purpose of making the call in the first place.

Which Request was this reply for?

Request

Request Queue

Reply Queue

Reply

Request

Figure 12

There are a couple of techniques the caller can use to avoid this confusion. It can make
just one call at a time, waiting for a reply before sending another request. This will

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 24 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

greatly slow the messaging process, however. The call could assume that it’ll receive
replies in the same order it sent requests, but messaging does not guarantee what order
messages are delivered in and all requests may not take the same amount of time to
process, so the caller’s assumption would be faulty. The caller could design its requests
such that they do not need replies, but this constraint would make messaging useless for
many purposes.

What the caller needs is for the reply message to have a pointer or reference to the
request message, but messages do not exist in a stable memory space such that they can
be referenced by variables. However, a message could have some sort of foreign key, a
unique identifier like a row in a relational database table. Such a unique identifier could
be used to identify the message from other messages, clients that use the message, etc.

A full-blown unique identifier generator gets rather complex, making sure that identical
identifiers are not generated simultaneously, guaranteeing that each identifier is unique
forever and ever, etc. Reply messages can get by with something simpler. The caller just
needs to ensure that of all the requests it has outstanding at any given time, each of them
has a different identifier. This identifier may not be unique forever and ever, or for all
contexts of all messages in all channels in the system, but just unique enough to identify
which outstanding request this reply is for.

Therefore:

Each reply message should contain a correlation identifier, a unique identifier
that indicates which request message this reply is for.

This is how a correlation identifier works. When the caller creates a request message, it
assigns the request an identifier that is different from those for all other currently
outstanding requests (e.g., requests that do not yet have replies). When the receiver
processes the request, it saves the identifier and adds the request’s identifier to the reply.
When the caller processes the reply, it uses the request identifier to know which request
the reply is for. This is called a correlation identifier because of the way the caller uses
the identifier to correlate (e.g., match; show the relationship) each reply to the request
that caused it.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 25 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

OK – this is the reply for Request 1!

Request(2)

Request Queue

Reply Queue

Reply(1)

Request(1)

Figure 13

A correlation identifier is usually put in the header of a message rather than the body. The
ID is not part of the command or data the caller is trying to communicate to the receiver.
In fact, the receiver does not really use the ID at all; it just saves the ID from the request
and adds it to the reply for the caller’s benefit. Since the message body is the content
being transmitted between the two systems, and the ID is not part of that, the ID goes in
the header.

In practice, the application needs not only to relate a reply back to its request, but back to
some business activity that caused the request in the first place. That business activity,
such as needing to execute a stock trade or ship a purchase order, probably has its own
unique business object identifier (such as a order ID), so that business activity’s unique
ID can be used as the request-reply correlation ID. Then when the receiver gets the reply
and its correlation ID, it can bypass the request message and go straight to the business
activity object that caused the request in the first place. In this case, rather than use the
messages’ built-in request message ID and reply correlation ID properties, you should
use a custom business object ID in the request and the reply that identifies the business
object this request-reply message pair represents.

In the request message, the ID can be stored as a correlation ID property or simply a
message ID property. When used as a correlation ID, this can cause confusion as to
which message is the request and which is the reply. So typically a request has a message
ID but no correlation ID, then a reply has a correlation ID that is the same as the request’s
message ID. The reply may also have a message ID so that if it in turn has a reply to this
reply, the second reply’s correlation ID can be the same as the first reply’s message ID.
In this way, reply’s can be chained indefinitely via a series of message ID’s and
correlation ID’s.

JMS messages have a predefined property for correlation identifiers,
JMSCorrelationID, which are typically used in conjunction with another predefined
property, JMSMessageID. A reply message’s correlation ID is set from the request’s
message ID like this:

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 26 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Message requestMessage = // Get the request message
Message replyMessage = // Create the reply message
String requestID = requestMessage.getJMSMessageID();
replyMessage.setJMSCorrelationID(requestID);

Each Message in .NET has a CorrelationId member, a string in an acknowledgement
message that is usually set to the Id of the original message. MessageQueue also has a
special peek and receive methods, PeekByCorrelationId(string) and
ReceiveByCorrelationId(string), for peeking at and consuming the message on
the queue (if any) with the specified correlation ID.

While a correlation identifier is used to match a reply message with its request, the
request may also have a Reply Specifier that states what channel to put the reply on.
Whereas a correlation identifier is used to match a reply message with its request, a
Message Sequence’s identifiers are used to specify a message’s position within a series of
messages from the same sender.

Message Sequence
My application needs to send a huge amount of data to another process, more than may
fit in a single message. Or my application has made a request whose reply contains too
much data for a single Reply Message.

How can Messaging transmit an arbitrarily large amount of data?

It’s nice to think that messages can be arbitrarily large, but there are practical limits to
how much data a single message can hold. Some messaging implementations place an
absolute limit on how big a message can be. Other implementations allow messages to
get quite big, but large messages nevertheless hurt performance. Even if the messaging
implementation allows large messages, the message producer or consumer may place a
limit on the amount of data it can process at once. For example, many COBOL- and
mainframe-based systems will only consume or produce data in 32 Kb chunks.

So how do you get around this? One approach is to limit your application to never need
more data that what the messaging layer can handle. This is an arbitrary limit, though,
which can prevent your application from producing the desired functionality. If the large
amount of data is the result of a request, the caller could issue multiple requests, one for
each result chunk, but that assumes the caller even knows how many result chunks will
be needed. The receiver could listen for data chunks until there are not anymore (but how
does it know there are not anymore?), then try to figure out how to reassemble the chunks
into the original, large piece of data, but that would be error-prone.

Inspiration comes from the way a mail order company sometimes ships an order in
multiple boxes. If there are three boxes, the shipper will mark them as “1 of 3,” “2 of 3,”
and “3 of 3” so that the receiver will know which ones he’s received and whether he has
all of them. The trick is to apply the same technique to messaging.

Therefore:

Whenever a large set of data may need to be broken into message-size
chunks, send the data as a message sequence and mark each message with
three sequence identification fields.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 27 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

The three sequence identification fields are:

1. Sequence identifier – Distinguishes this cluster of messages from others.

2. Position identifier – Uniquely identifies and sequentially orders each message in a
sequence.

3. Size or End field – Specifies the number of messages in the cluster, or marks the
last message in the cluster (whose position identifier then specifies the size of the
cluster).

Let’s say a set of data needs to be sent as a cluster of three messages. The sequence
identifier of the three-message cluster will be some unique ID. The position identifier for
each message will be different—either 1, 2, or 3. If the sender knows the total number of
messages from the start, the sequence size for each message is 3. If the sender does not
know the total number of messages until it runs out of data to send (e.g., the sender is
streaming the data), each message will have a “sequence end” flag that is true for the
final message in the sequence and false for all of the other messages. Either way, the
position identifiers and sequence size/end field will give the receiver enough information
to reassemble the parts back into the whole, even if the parts are not received in
sequential order.

For example, let’s say the user queries the application for all books by a certain author
and there are ten matches. The messaging design might choose to return each match as a
separate message. Then each message needs to indicate the query this reply is for, the
message’s position in the sequence, and how many messages total to expect.

Or imagine a sender needs to send an extremely large document to a receiver, so large
that it must be broken into multiple messages. Again, each message needs to indicate its
position in the sequence and indicate how many messages total to expect.

An application using JMS may wish to use a Transactional Client for sending and
receiving sequences. The sender can send all of the messages in a sequence using a single
transaction. This way, none of the messages will be delivered until all of them have been
sent. Likewise, a receiver may wish to use a single transaction to receive the messages so
that it does not truly consume any of the messages until it receives all of them. If any of
the messages in the sequence are missing, the receiver can choose to rollback the
transaction so that the messages can be consumed later.

Message sequence identifiers are often used in conjunction with Correlation Identifiers,
but they solve different problems and can be used independently. If a reply is in multiple
parts, each message will need the same correlation identifier to match the reply data with
its request, but a different position identifier to indicate its position in the sequence. A
single-message reply needs a correlation ID but no sequence ID. A multi-message
document needs sequence ID’s but no correlation ID.

Message sequences and Competing Consumers tend not to be compatible. If different
receivers consume different messages in a sequence, none of the receivers will be able to
reassemble the original data without exchanging message contents with each other. Thus
a message sequence should be transmitted either via a Publish-Subscribe channel or a
Point-to-Point channel with a single consumer.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 28 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Message Expiration
My application is using Messaging. If a message’s data or request is not received by a
certain time, it is useless and should be ignored.

How does a sender limit how much time can be used to transmit the
message?

Messaging virtually guarantees that the message will be delivered to the receiver
eventually. What it cannot guarantee is how long the delivery will take. For example, if
the network connecting the sender and receiver is down for a week, then it could take a
week to deliver a message. Messaging is highly reliable, even when the participants
(sender, network, and receiver) are not, but messages can take a very long time to
transmit in unreliable circumstances.

Often, a message’s contents have a practical limit for how long they’re useful. A caller
issuing a stock quote request probably looses interest if it does not receive an answer
within a minute or so. The means the request should not take more than a minute to
transmit, but also that the answer had better transmit back very quickly. A stock quote
reply more than a few seconds old is probably too old and therefore unreliable.

Once the sender sends a message and does not get a reply, it has no way to cancel or
recall the message. Likewise, a receiver could check when a message was sent and reject
the message if it’s too old, but different senders under different circumstances may have
different ideas about how long is too long, so how does the receiver know which
messages to reject?

What is needed is a way for the sender to specify the message’s lifetime.

Therefore:

A message can contain a message expiration setting that specifies how long
the message is viable.

At the end of that time, the message will expire; an expired message is ignored and
treated as if it where never sent in the first place.

A message expiration is a timestamp (date and time) that specifies how long the message
will live or when it will expire. The setting can be specified in relative or absolute terms.
An absolute setting specifies a date and time when the message will expire. A relative
setting specifies how long the message should live before it expires; the messaging
system will use the time when the message is sent to convert the relative setting into an
absolute one.

The message expiration property has a related property, sent time, which specifies when
the message was sent. A message’s absolute expiration timestamp must be later than its
sent timestamp (or else it will expire immediately). To avoid this problem, senders
usually specify expiration times relatively, in which case the messaging system calculates
the expiration timestamp by adding the relative timeout to the sent timestamp (expire =
sent time + time to live).

JMS messages have a predefined property for message expiration, JMSExpiration, but
a sender should not set it via Message.setJMSExpiration(long) because the JMS

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 29 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

provider will override that setting when the message is sent. Rather, the sender should use
its MessageProducer (QueueSender or TopicPublisher) to set the timeout for all
messages it sends; the method for this setting is MessageProducer.-
setTimeToLive(long). Time-to-live is a relative setting specifying how long after the
message is sent it should expire.

A .NET Message has two properties for specifying expiration: TimeToBeReceived
and TimeToReachQueue. The reach queue setting specifies how long the message has
to reach its destination queue, after which the message might sit in the queue indefinitely.
The be received setting specifies how long the message has to be consumed by a receiver,
which limits the total time for transmitting the message to its destination queue plus the
amount of time the message can spend sitting on the destination queue. TimeToBe-
Received is equivalent to JMS’s JMSExpiration property. Both time settings have a
value of type System.TimeSpan, a length of time.

When a message expires, the messaging system may simply discard it or may move it to
a dead message queue (described in Malformed Message Channel). In Publish-Subscribe
messaging, each subscriber gets its own copy of the message; some copies of a message
may reach their subscribers successfully while other copies of the same message expire
before their subscribers consume them. A Reply Message with an expiration may not
work well—while the reply sender may wish to limit the message’s lifetime, the reply
receiver may become confused when it does not receive a reply because the message
timed out. Thus the receiver has to be designed to handle the case where expected replies
are never received.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 30 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

4. Message Client Patterns
These patterns concern the behavior of messaging system clients. Polling Consumer
describes a client that receives messages synchronously, whereas Event-Driven
Consumer describes one that receives messages asynchronously. Message Throttle
describes how a client can control the rate at which it accepts requests so as not to
become overwhelmed. Transactional Client describes how a client can externally control
the transactions used to send and receive messages. Competing Consumers describes a
simple technique to process messages on a channel concurrently, whereas Message
Dispatcher describes a more complex but more flexible technique for consuming
messages concurrently.

Polling Consumer
A message consumer needs to consume messages so that it knows what to do, but needs
to control when it consumes those messages.

How can a client explicitly control the rate at which it consumes messages?

Message consumers exit for one reason—to consume messages. The messages represent
work that needs to be done, so the consumer needs to consume those messages and do the
work.

But how does the consumer know when a new message is available? The easiest
approach is for the consumer to repeatedly check the channel to see if a message is
available. When a message is available, it consumes the message, and then goes back to
checking for the next one. This process is called polling.

The beauty of polling is that the consumer can request the next message when it is ready
for another message. So it consumes messages at the rate it wants to, rather than at the
rate they arrive in the channel.

Therefore:

The client should use a polling consumer, one that explicitly makes a call
when it wants to receive a message.

This is also known as a synchronous receiver, because the receiver thread blocks until a
message is received.

A JMS MessageConsumer has three different receive methods:

1. receive() – Blocks until a message is available, then returns it.

2. receiveNoWait() – Checks once for a message, and returns it or null.

3. receive(long) – Blocks either until a message is available and returns it, or
until the time-out expires and returns null.

A .NET MessageQueue client has several variations of receive. The two simplest are:

1. Receive() – Blocks until a message is available, then returns it.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 31 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

2. Receive(TimeSpan) – Blocks either until a message is available and returns it,
or until the time-out expires and throws MessageQueueException.

A consumer that is polling too much or blocking threads for too long can be redesigned
as an Event-Driven Consumer. A set of polling consumers can be used to implement a
Message Throttle.

Event-Driven Consumer
A message consumer needs to consume messages so that it knows what to do, but needs
to control when it consumes those messages.

How can a client automatically consume messages as they become available?

The problem with Polling Consumers is that when the channel is empty, the consumer
blocks threads and/or consumes process time polling for messages that are not there. This
enables the client to control the rate of consumption, but wastes resources when there’s
nothing to consume.

Rather than continuously asking the channel if it has messages to consume, it would be
better if the channel could tell the client when a message is available. For that matter,
instead of making the consumer poll for the message to get the message, just give the
message to the consumer as soon as the message becomes available.

Therefore:

The client should use an event-driven consumer, one that is automatically sent
messages as they’re added to the channel.

This is also known as an asynchronous receiver, because the receiver does not have a
running thread until a callback thread delivers a message.

An event-driven consumer consists of two parts:

1. Event Handler – The code that detects the message-received event, gets the
message, and hands it off to the performer.

2. Performer – The code that gets the message and processes it.

In JMS, the performer part of an event-driven consumer is a class that implements the
MessageListener interface. This interface declares a single method,
onMessage(Message). The performer class implements onMessage to do whatever
the consumer wants to do to process the message. Here is an example of a JMS
performer:

public class MyMessageListener implements MessageListener {
public void onMessage(Message message) {

// Consume and process the message
}

}

The event handler part of an event-driven client creates the desired performer object
(which is a MessageListener instance) and associates it with the consumer:

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 32 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Destination dest = // Get the destination
Session session = // Create the session
MessageConsumer consumer = session.createConsumer(dest);
MessageListener listener = new MyMessageListener();
consumer.setMessageListener(listener);

Now, when the destination receives a message, the JMS provider will call
MyMessageListener.onMessage with the message as a parameter.

With .NET, the performer part of an event-driven client implements a method that is a
ReceiveCompletedEventHandler delegate. This delegate method must accept two
parameters: an Object that is the MessageQueue, and a
ReceiveCompletedEventArgs that is the arguments from the ReceiveCompleted
event. The method uses the arguments to get the message from the queue and process it.
Here is an example of a .NET performer:

public static void MyReceiveCompleted(Object source,
ReceiveCompletedEventArgs asyncResult)

{
MessageQueue mq = (MessageQueue) source;
Message m = mq.EndReceive(asyncResult.AsyncResult);
// Consume and process the message
mq.BeginReceive();
return;

}

The event handler part of an event-driven client specifies that the queue should run the
delegate method to handle a ReceiveCompleted event:

MessageQueue queue = // Get the queue
queue.ReceiveCompleted +=
new ReceiveCompletedEventHandler(MyReceiveCompleted);

queue.BeginReceive();

Now, when the queue receives a message, it will issue a ReceiveCompleted event,
which will run the MyReceiveCompleted method.

Event-driven consumers automatically consume messages as they become available. For
more fine-grained control of the consumption rate, use a Polling Consumer. Event-driven
consumers can be used to implement a Message Throttle if the total number of consumers
is limited so as not to overwhelm the receiver application.

Message Throttle
When two applications are joined such that one calls the other, there is the possibility that
the caller will make so many calls that they flood the receiver and cause it to crash.

How can a computer providing a service keep from becoming overwhelmed
with an unreasonable number of requests?

When providing more users easier access to a legacy application, a very real concern is
that the new users may well create far more load than the legacy application was
designed to handle. Say a travel reservations app is designed to support a few hundred
travel agents at a time, but a new web front-end enables anyone with a web browser to
use this reservations system. If an airline announces a discounted fare, thousands of users

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 33 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

may flood the website to buy tickets. The web front-end may be able to handle this load,
but the legacy backend may not. If the web app forces too much load on the legacy app,
the legacy app may crash.

The web app could try to control the load it places on the legacy app, but that can be
difficult. The web app does not know how much load it’s creating; what it can control is
the number of simultaneous requests it makes. Yet with hundreds of threads making
requests, even the web app may not know how many requests it’s making. Even if the
web app can control the load it causes, there could well be several other web apps also
creating load, each thinking that it can use all of the legacy app’s capacity.

What is needed is a way for the legacy app to control how many requests it tries to
perform at once. If its load is low, it can take on more requests. If load is too high, it can
slow the number of additional requests it accepts. Controlling load by adjusting to handle
more or fewer requests is called throttling.

Therefore:

Use a message throttle to control the rate at which a receiver accepts requests.

This requires that the caller and receiver use Messaging to make requests. Then the
receiver can control the rate at which it consumes request messages so that it does not try
to handle too many requests at once. If the callers are sending request messages faster
than the receiver is consuming them, the unconsumed messages will simply queue up
while waiting to be consumed.

Messaging provides two ways to control message consumption: the receiver can be an
Event-Driven Consumer or a Polling Consumer. Event-driven consumers will consume
messages as fast as they become available. This conceivably could flood the legacy app,
but probably will not because the messaging client only has so many threads and so many
listener objects, so these will tend to limit the consumption rate. If event-driven
consumption still might overwhelm the legacy app, the app can use a polling approach to
more-explicitly control consumption. Either way, messaging’s queuing allows
communication to be paced so that the receiver will not be overwhelmed.

Throttling is typically used when consuming Command Messages, where the receiver
cannot afford to loose a command but may become overwhelmed trying to process too
many of them. Throttling can also be used when consuming Document Messages, again
because they should not be lost but may require effort to consume.

Throttling is more typically used with Point-to-Point messaging, where the receiver
needs to be sure not to loose the message. With Publish-Subscribe messaging, the
messages are usually events, which can be easier to process than point-to-point command
messages, and which a receiver may be able to ignore altogether.

Transactional Client
A messaging system, by necessity, uses transactional behavior internally. It may be
useful for an external client to be able to control the scope of the transactions that impact
its behavior.

How can a client control its transactions with the messaging system?

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 34 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

A messaging system must use transactions internally. A persistent message is not
considered sent until the messaging system has persisted the message, so the send action
and the internal persistence must be implemented as a single atomic operation.. The
message that is sent must be persistent, so that if the system crashes and restarts, the
persisted message will be sent correctly. Two Competing Consumers may attempt to read
the same message; the messaging system must ensure that the read operation is atomic
and that the consumers’ two read operations are isolated so that only one of the
consumers actually receives the message. When the messaging system moves a message
from a physical copy of a queue on one computer to that on another, it uses a distributed
transaction across the two computers to ensure that, at any given time, the message is in
only one queue or the other, even if the messaging system crashes while moving the
message. Thus the messaging system must always be in a consistent state, even if the
system crashes. Transactions are a fundamental part of how a messaging system delivers
messages reliably in unreliable circumstances.

A messaging client may not be aware of these internal transactions. All it knows is that
the send and receive actions are atomic; a message is either sent or it is not, consumed or
not consumed. Hiding transactions within calls like send and receive make messaging
clients much simpler.

Yet hidden transactions are too simple for some messaging clients. A client may wish to
explicitly control transaction boundaries.

Therefore:

Make the client’s session with the messaging system transactional so that the
client can specify transaction boundaries.

There are two reasons a client may wish to control its transactions with the messaging
system:

1. Batch message sends/receives – The client wishes to send or receive several
messages all at once, such that either all of them get sent/received, or none of
them do. (Note that messages sent as a batch do not have to be received as a
batch, and vice versa.)

2. Coordinate transactions – Sending/receiving a message may represent an action
external to the messaging system, such as deleting a document being sent or
consuming an event being received, and the external action needs to be
coordinated with the message being manipulated such that either it all happens or
none of it does. This often involves a distributed transaction, where transactions
on two different data stores must be combined and coordinated using a two-phase
commit.

Transactional clients using Event-Driven Consumers may not work as expected. The
event handler typically must commit the transaction for receiving the message before
passing the message to the performer. Then if the performer examines the message and
decides it does not want to consume it, or if the performer encounters an error and wants
to rollback the consume action, it cannot because it does not have access to the
transaction. So an event-driven consumer tends to work the same whether or not its client
is transactional.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 35 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

In JMS, a client makes itself transactional when it creates its session.
Connection connection = // Get the connection
Session session =
connection.createSession(true, Session.AUTO_ACKNOWLEDGE);

Setting the first createSession parameter to true makes the session transactional.

When a client is using a transactional session, it must explicitly commit sends and
receives to make them real.

Queue queue = // Get the queue
MessageConsumer consumer = session.createConsumer(queue);
Message message = consumer.receive();

At this point, the message has only been consumed in the consumer’s transactional view.
But to other consumers with their own transactional views, the message is still available.

session.commit();

Now, assuming that the commit message does not throw any exceptions, the consumer’s
transactional view becomes the message system’s, which now considers the message
consumed.

In .NET, each action on a queue (send, receive, etc.) is either transactional or not.
MessageQueue queue = // Get the queue
MessageQueueTransaction transaction =
new MessageQueueTransaction();

transaction.Begin();
Message message = queue.Receive(transaction);
transaction.Commit();

Although the client had received the message, the messaging system did not make the
message unavailable on the queue until the client committed the transaction successfully.

A client sending or receiving a Message Sequence may use a single transaction to ensure
sending or receiving all of the messages in the sequence or none of them. A client
executing a Command Message may wait until it executes the command and sends the
Reply Message before committing the transaction that receives the command and sends
the reply. (The requestor needs two transactions, however—one for sending the request
and another for receiving the reply. If the requestor tries to send the request but will not
commit the transaction until it receives the reply, it’ll wait forever because the request
does not really get sent until the transaction is committed, so there never will be a reply.)
A client consuming a Document Message may wish to persist the document before
committing to consuming the message and persisting the data. A client consuming an
Event Message may wish to process the event before committing the receive action.

Competing Consumers
My application is using Messaging. However, it cannot process messages as fast as
they’re being added to the channel.

How can a messaging client process multiple messages concurrently?

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 36 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Messages arrive through a channel sequentially, so the natural inclination of a consumer
is to process them sequentially. However, sequential consumption may be too slow and
messages may pile up on the channel, which makes the messaging system a bottleneck
and hurts overall throughput of the application. This can happen either because of
multiple senders on the channel or because each message takes significantly more effort
to consume and perform than it does to send.

The application could use multiple channels, but one channel might become a bottleneck
while another sits empty, and a sender would not know which one of equivalent channels
to use. Multiple channels would have the advantage, however, of enabling multiple
consumers (one per channel), processing messages concurrently. Even if this worked,
though, the number of channels the application defined would still limit the throughput.

What is needed is a way for a channel to have multiple consumers.

Therefore:

Create multiple competing consumers on a single channel so that the
consumers can process multiple messages concurrently.

This solution only works with Point-to-Point channels; multiple consumers on a Publish-
Subscribe channel just create more copies of each message. But with point-to-point, each
consumer processes a different message concurrently, so the bottleneck becomes how
quickly the channel can feed messages to the consumers instead of how long it takes a
consumer to process a message. A limited number of consumers may still be a bottleneck,
but increasing the number of consumers can alleviate that constraint as long as there are
available computing resources.

For competing consumers to work properly, each consumer must have its own session
and message consumer. When the consumers are running concurrently, they will each
have their own thread, and the transactions in a session are not guaranteed to work
correctly if two concurrent threads share a single session. [JMS02, pp. 26-27]

A sophisticated messaging system will detect competing consumers on a channel and
internally provide a Message Dispatcher that ensures that each message is only delivered
to a single consumer. This helps avoid conflicts that would arise if multiple consumers
each thought they were the consumer of a single message.

Competing consumers may not work well with Transactional Clients. A messaging
system with a good locking scheme should prevent multiple consumers from trying to
simultaneously consume a single message, but there is no guarantee that a particular
messaging system implementation will provide this behavior or that the behavior will be
equivalent from one implementation to the next. Thus code dependent on this behavior
may not be portable and should be thoroughly tested on each messaging system
implementation.

The coordination of competing consumers depends on each messaging system’s
implementation. If the client wants to implement this coordination itself, it should use a
Message Dispatcher.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 37 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Message Dispatcher
My application is using Messaging. However, it cannot process messages as fast as
they’re being added to the channel. I considered using Competing Consumers but that
would not work well.

How can a messaging client process multiple messages concurrently?

Competing consumers is a simple solution to this problem, but its specific behavior is
largely dependent on the internal implementation of the messaging system. It may not
work well with transactional clients, and does not work at all with Publish-Subscribe
channels. These circumstances require a single consumer.

Yet a single consumer can become a bottleneck to consuming messages. When there are
a lot of messages to consume or each one takes a long time to perform, consumption
needs to take a minimal amount of time and the messages need to be performed
concurrently. The channel wants a single consumer but multiple consumers need to run
concurrently.

Therefore:

Create a message dispatcher on a channel to consume messages and distribute
them to performers.

A message dispatcher consists of two parts:

1. Dispatcher – The object that detects a newly available message, gets the message,
and hands it off to a performer.

2. Performer – The object that gets the message and processes it.

A dispatcher acts as a one-to-many connection between a single channel and a group of
performers. The performers do most of the work; the dispatcher just acts as a
matchmaker, matching each message with an available performer. The dispatcher
receives the message, and then sends it to a performer to process it. Because the
dispatcher does relatively little work, it can dispatch messages as fast as the messaging
system can feed them and thus avoids becoming a bottleneck.

A dispatcher makes the performers work much like Event-Driven Consumers, even
though the dispatcher could be an event-driven consumer or a Polling Consumer. As
such, implementing a dispatcher as part of a Transactional Client can be difficult. If the
client is transactional, ideally the dispatcher should allow the performer to process a
message before completing the transaction. Then, only if the performer is successful
should the dispatcher commit the transaction. If the performer fails to process the
message, the dispatcher should rollback the transaction. Since each performer may need
to rollback its individual message, the dispatcher needs a session for each performer and
must use that performer’s session to receive the performer’s message and complete its
transaction. Since event-driven consumers often do not work well with transactional
clients, the dispatcher should not be an event-driven consumer, but rather should be a
polling consumer.

In JMS, it is helpful to implement the performer as a MessageListener. A message
listener has one method, onMessage(Message); it accepts a message and performs

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 38 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

whatever processing necessary. This forms a clean separation between the dispatcher and
the performer. Likewise, in .NET, the performer should be a
ReceiveCompletedEventHandler delegate, even though the dispatcher will not
really issue ReceiveCompleted events.

Message Selector
My application is using Messaging to transmit a large number of data types to a large
number of receivers, which requires a very large number of channels.

How can I make one channel act like several separate channels?

We like to think of a messaging system as if it has an unlimited number of channels, but
no computer resource is truly unlimited. At the very least, more hardware is required.
With a messaging system, the messaging servers have to be deployed across a greater
number of computers. One messaging system may have a hard limit to the number of
channels it can support; to have more, multiple messaging systems have to be integrated
to work as one, which is not so easy to do.

So channels are a relatively scarce resource that should not be wasted. Data Type
Channel says that you need a channel per data type to be transmitted. When a sender is
trying to communicate with a particular receiver or type of receiver, it needs a dedicated
channel for this use. In general, when a channel has multiple receivers, any one of them
has equal access to any message on the channel, even if this is not what the sender
intended. What is needed is some way to mark a message to specify which receiver
should consume it.

Therefore:

Use a message selector to specify a message’s type and receive only messages
of a particular type.

The sender sets a message’s selector value, and then each receiver filters for a certain
selector value. A receiver will only receive the messages whose selector matches the
receiver’s filter. A channel should have at least one receiver filtering for each valid
selector value or the messages with that selector will be ignored, like a channel with no
receivers.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 39 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Select Purchase
Orders, Process
Purchase Order

Purchase Order

Send Purchase Order (Set Type to Purchase Order),
Send Price Quote (Set Type to Price Quote),
Send Query (Set Type to Query)

Price Quote

Query

Figure 14: Queue with Message Selectors

For example, a stock trading system with a limited number of channels might need to use
one channel for both quotes and trades. The receiver for performing a quote is very
different from that for trading, so the right receiver needs to be sure to consume the right
message. So the sender would set the message selector on a quote message to QUOTE, and
the quote receiver would only consume messages with QUOTE message selectors. Trade
messages would have their own TRADE message selector that their senders and receivers
would use. In this way, two message types can successfully share a single channel.

In JMS, a MessageConsumer (QueueReceiver or TopicSubscriber) can be created
with a message selector string that filters messages based on their property values. First, a
sender would set the value of a property in the message that the receiver could filter by:

TextMessage message = session.createTextMessage();
message.setText("<quote>SUNW</quote>");
message.setStringProperty("req_type", "quote");
Destination destination = //get the destination
MessageProducer producer = session.createProducer(destination);
producer.send(message);

Second, a receiver set its message selector to filter for that value:
Destination destination = //get the destination
String selector = "req_type = 'quote'";
MessageConsumer consumer =
session.createConsumer(destination, selector);

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 40 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

This receiver will ignore all messages whose request type property is not set to “quote” as
if those messages were never added to the destination at all.

In .NET, MessageQueue.Receive does not support message selectors per se. Rather,
what a receiver can do is use MessageQueue.Peek to look at a message. If it meets the
desired criteria, then it can use MessageQueue.Receive to read it from the queue.

Message selectors make a single channel act like multiple Data Type Channels.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 41 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

5. Messaging Application Patterns
The following patterns are unique in that they are all really solve the same general
problem, within the same architectural framework, but each relate to a specific part of
that general problem. Our basic problem is this: messages form the core of our
architecture; however, not all programs can handle messages (e.g. not all programs are
built with a messaging system in mind) and even when a program is built to attach to a
messaging system, it might not be capable of handling a specific message format that
another program is capable of generating.

In this section of patterns, Pipes and Filters shows how you can architect a system that
uses messaging to handle multiple sequential processing steps that can be carried out for
different requests simultaneously. Message Router demonstrates how specific business
logic can be used to make routing decisions and redirect processing among several
potential steps. Message Translator and Message Bridge describe the ways in which
systems can convert messages to other forms and transports to allow systems to
communicate freely.

To facilitate the communication between disparate systems, a Canonical Message Data
Format should be adopted. Whichever message format is chosen, it should exhibit Data
Format Flexibility in order to make it clear how programs written at different times in a
system lifecycle should communicate. Finally, Message Bus integrates several of the
previous patterns into a joint architecture that solves several outstanding business
problems.

Pipes and Filters Messaging
Computers often perform tasks as a series of steps, but this is more complicated when the
tasks must be performed by different processes.

How can the steps of a process be performed when different steps must be
performed on different machines?

Just about any task worth automating with computer software requires that a series of
steps to be performed. At the line-of-code level, to average two numbers, the computer
must first add them, and then divide by two. At the use case level, a document (such as a
purchase order, insurance claim, etc.) must be received, processed, and then handed to the
next processor.

A computer performs a task in a divide-and-conquer style, by splitting the task into a
series of steps and performing one step at a time. This is so common that there’s an
architectural pattern for it, the Pipes and Filters pattern [BMRSS95]. A set of data is
processed by a filter (a program that manipulates the data in some way), then passed
through a pipe to another filter for more processing, and so forth for all of the steps in the
task.

In its simplest form, a pipes-and-filters architecture runs all in one process with data in
one memory space that’s shared by all of the pipes-and-filter steps. With distributed
computing, however, the various filters are often running in different processes. This
distributes the processing and provides the opportunity for load balancing, fault tolerance,

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 42 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

etc., but requires a more complex pipe to transmit the data from a filter in one process to
another filter in a separate process. What is needed is a pipe designed to connect separate
processes. As luck would have it, Messaging provides just such a pipe.

Therefore:

Use pipes and filters messaging to perform several steps in sequence even
when different steps run in different processes.

Each step becomes a filter that manipulates the data; the pipe is the messaging connection
that transmits data from one step to the next.

For example, consider processing an insurance claim. The claim must be entered,
approved, and then a check is issued. All three steps could be performed in one
application running on one machine, but probably there’s a specialized application for
each step: A web page for customers to enter claims, a native GUI for claims adjusters to
approve claims, and a program for writing and printing checks that will issue claims
checks. Since these are three separate applications, they must be linked, and messaging is
a good way to do so.

 Print a check for
the claim

Create an
insurance claim

Unapproved
claim

Adjust and approve the
claim

Approved
claim

Figure 15: Pipes and filter messaging for processing an insurance claim

More often than not, the messages that are carried on the pipes in a Pipes and Filters
Messaging system are Document Messages. Thus, the pipes are most commonly Point-
to-Point connections.

With a pipes and filters messaging design, data can be processed in several different
ways. A Message Router can use various pipes to choose which filter to apply next. A
Message Translator can convert the data format output by one filter into the data format
expected by the next filter. If a filter cannot connect to a messaging pipe, use a Message
Bridge to connect this filter to the messaging system.

Message Translator
My application implements a Pipes and Filters Messaging architecture, but different
filters expect messages with different formats.

How can systems using different data formats work together in the same
architecture?

When two applications are built independently, they rarely agree on the same data
format. Yet when we try to integrate them in an enterprise system, they need to agree on

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 43 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

the data formats they’re exchanging. For example, a company may develop an order
processing application that uses a particular COBOL data format, and independently
develop an order entry application that uses an XML data format. When the company
decides to integrate these two applications together, which data format should the
applications use?

The company integrating the applications may wish to avoid modifying either
application, especially a change as fundamental as changing an application’s data format.
Changing an application’s data format is risky, difficult, and will discourage integrating
more applications in the future.

Messaging can be used to integrate the applications pipe-and-filter style, where each
application acts like a big filter. But for two filters to pass data through a pipe, they have
to agree on the data format being exchanged. What is needed is an intermediary
application that will translate the data formats between the two existing applications.

Therefore:

Insert a special filter, a message translator, between two other filters to
translate one’s output format into the other’s input format.

A message translator is a specialized kind of filter that takes a message in one format and
translates it to another format. There are a number of commercial products that do this,
like Extricity and MQ-Si.

For example, the order entry application can send a message using its XML data format,
the message goes to the translator which translates the data from the order entry format to
the order processing format, and then the message goes to the order processing
application in its COBOL format.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 44 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Order Entry
Application

Order Processing
Application

Order Translator

<Order>
<CustomerId>1234</CustomerId>
<Customer>Bob Smith</Customer>
<OrderDetails>
<Symbol>IBM</Symbol>
<Amount>100</Amount>
</OrderDetails>
</Order>

01 Order.
 02 CustId PIC 9(7).
 02 CustName.
 03 Surname PIC X(8).
 03 Initials PICXX.
 02 OrderInfo.
 03 Symbol PIC X(3).
 03 Amount PIC 9(8).

Original Message Format Translated Message Format

Figure 16: Order Translation

In this way, the Message Translator acts as a special filter in Pipes and Filters
Messaging. It protects the systems on each end of the pipe from knowing about the
details of the format the other expects, but at the same time, each of the systems are
isolated from the Message Translator itself – if one or the other of the systems became
able to speak the native format of the other, then the Message Translator could be
removed from the topology altogether without changing the functioning of the system at
all.

Message translators are often used in converting from an internal data representation
(specific to a particular company) to a standard, external data representation. For
example, an insurance company may translate requests made using one of the standard
ACORD XML message formats1 into an internal message format.

Another common use of this pattern we see today is that a group of programs decide on a
common XML message format (a Canonical Message Data Model), and then use a
message translator to interface with other (perhaps older) programs that do not natively
speak that XML format.

Canonical Message Data Model
My application implements a Pipes and Filters Messaging architecture, but all of the
filters expect different data formats. This has lead to a huge number of Message
Translator filters that require maintenance effort and runtime resources.

1 ACORD is a standards organization for the insurance industry. Its XML standards can be downloaded at
http://www.acord.org/xml_frame.htm.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 45 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

How can the pipes-and-filters data be designed to minimize translation?

As described in Message Translator, independently developed applications tend to use
different data formats. They can be integrated with messages translators, but this can lead
to an explosion of translators that become as difficult to maintain and run as the
applications themselves. Eventually there comes a point where the translators are too
complex and too numerous, and the applications need to be modified to work together
better without translators.

The reason independently developed applications tend to use different data formats is that
each format was designed with just one application in mind. What is needed is a format
designed with all applications in mind, so that it will work with any application. Such a
unified format is needed not just for a single data type, but for all data types that may be
exchanged between applications. Once each application is modified to use these data
formats, then all of the applications will be able to exchange data. As new applications
are added, if they expect the unified data formats, then they too can be integrated without
translators.

Therefore:

Develop a canonical message data model that all filters use so that no
translation is necessary.

A canonical message data model is a unified data model for data types that will be passed
through messaging. Designers should strive to make the unified model work equally well
for all applications being integrated. Applications designed to produce and consume data
conforming to the unified model do not require translators.

A canonical message data model is actually made up of two layered protocols (a) what
data is sent between the parties and (b) how that data is represented. These two protocol
layers are termed the application layer and presentation layer in the OSI reference
model. There are a large number of presentation layer protocols to choose from, such as
XDR, ASN.1, CDR, etc. A presentation layer is simply a common way of encoding or
representing your data. For instance, you may say that your data is encoded in XML –
this means that the data will follow the rules of the XML standard (purely text, with
elements enclosed in tags that represent the structure of the data).

While, today the basis for a presentation layer protocol is often XML, but both ASN.1
and key-value pairs are also popular and useful. In this way all messages have the same
top-level format, and each system translates from a well-known, canonical model to its
own internal format on message receipt and vice versa before it sends a message.

However, even with a common presentation layer protocol you have to define common
semantics too. For instance, you have to get all parties to agree on the definitions of all of
your terms. This is the application layer protocol part of the reference model. This means
that each of the systems in your application will need to agree on a common way to (for
instance) identify Customers so that a Customer identifier on one system refers to the
same Customer on another system and so on. In XML, DTD (Document Type
Definition) and XML Schema are two different ways of specifying different application
layer protocols for specific uses. So, within an organization, you may specify both that

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 46 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

all data will be sent using XML (a presentation layer protocol choice) and using a
specific XML Schema (an application layer choice).

Adopting a Canonical Message Format leads to requiring Data Format Flexibility.
Usually, when adopting a canonical message data format, you will require Message
Translators to convert from the canonical format to existing message formats, at least for
some length of time while both formats must co-exist.

Data Format Flexibility
My application implements a Pipes and Filters Messaging architecture, perhaps using a
Canonical Message Data Model, but realistically the message formats may need to
change over time.

How can a message’s data format be designed to allow for possible future
changes?

Let's take a worst-case scenario. Say you have a binary format and that in version 1.0
your first field in 32 bits. In version 2.0 that field is now 64 bits. The problem is that
version 2.0 programs will try to read not only the first field, but part of the second
field...chaos ensues. So a fixed binary format is not flexible enough to meet our needs.

Therefore:

Design a data format that includes meta-data to describe the structure of the
data, a structure that may change over time.

There are at least three template solutions to this problem.

1. Version Numbers – include a "version number" as the first field of the structure.
Programs know immediately what they're dealing with and whether or not they can
handle it.

2. “Self-describing” data. If your data is “key-value” or XML then your programs can
more easily tolerate certain types of changes to the data structure since position does
not matter (as much...). However, even XML documents often refer to a specific DTD
– if the difference is too great, then a replacement DTD can declare its compatibility
using a version numbering scheme like the one described above.

3. “For expansion” or “unused” fields. In positional (binary) forms you keep some space
for future expansion, which older programs ignore and newer programs can use.

Which one you choose depends to a large extent upon the structure of the rest of your
system. In most cases, a key-value or XML format will provide the most flexibility.
However, many older systems (mostly those written in COBOL or C) may not be able to
take advantage of an XML format as they do not have easily available XML parsers and
generators for them. So, if you choose to use an XML format for flexibility, and you
have a system like this, you must use a Message Translator to convert between the more
flexible format and one of the other two binary cases.

Both Binary and XML formats can take advantage of the version number scheme. In an
XML format, the version number is really carried through the internal reference to the
DTD or Schema that the XML document was written to. If a program cannot process a

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 47 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

particular version of a DTD or Schema, it can reject the document outright. On the other
hand, in a binary format, literal version numbers are critical to understanding the
structure of the remainder of the document. Since the size of a binary structure should
often remain fixed (since older programs could suffer buffer overflow if a larger structure
is passed to them than they expect) the “expansion” fields solution is often used in this
situation. However, even in that situation, a version number must be used so the
receiving program will know how to interpret the “expansion” fields by referring to a set
of metadata that is keyed by version number indicating the meaning of each field.

Message Router
My application implements a Pipes and Filters Messaging architecture, but
every filter may need to send data to any other filter, which will cause an
explosion in the number of pipes needed. How can any filter send data to
any other filter without the need for a pipe between every single pair of
filters?

For one of N filters to talk to every other filter requires N – 1 pipes. Since message pipes
are one way, not only does filter A need a pipe to send data to filter B, but then filter B
needs another pipe to send data to filter A.

A B

C D

If this is a Purchase
Order send it to B and
C, but if it’s a Query,
then send it to D …
now where was I
supposed to send that
again!??

Ditto…

Ditto…

Figure 17

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 48 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Publish-Subscribe may be a considered as a solution to this problem in that it reduces the
total number of channels involved, but the semantics of publish-subscribe may not be
appropriate for all cases; We may have the case where each system is buried under an
avalanche of messages that it may not care about (necessitating Message Selectors), or
we may end up in a case where only one of several similar systems may need to process a
particular message – a complex problem to try address with Publish-Subscribe; one that
would require very close coordination of the receiving systems.

As noted in Message Selector, no computing resource is truly unlimited, including
message channels.

Therefore:

A filter should send its data to a central message router that will send the
data to the next filter.

A message router will read from one queue and then place its output on N (where N
could be 1 or a number greater than 1) other queues based on information held inside
each particular message’s body or its headers.

The primary decision here is where the routing portion of your business logic lives. In a
topology without a message router, often systems must duplicate routing logic in each of
the potential senders and receivers of messages. A Message Router gathers together that
routing logic into a single point, making it easier to update the routing when necessary.

This pattern is a realization of the pipes and filters pattern. A message router is a
specialized kind of filter that takes input from one pipe and directs its output to 1 to N
other pipes. Most Messaging router systems are rule-based, meaning that they can make
simple decisions about which destinations a message will go to based on the content of
the incoming messages.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 49 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

A B

C D

Router
If this message is a Purchase
Order, send it to B and C. If
the message is a Query then
send it to D,…

Figure 18

As an example, IBM’s MQSeries MQ Systems Integrator (MQSi) product acts as a
message router [MQSi]. The following diagram shows the structure of the MQSi product.
This is instructive because the basic steps used by the MQSi product (remove a message
from a Queue or Topic, evaluate it against some set of rules, and then based on the
decisions, place it on one or more other Queues or Topics) are the same that any Message
Router will take.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 50 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Sending Application
Queue

Evaluate
Rules

Rules
Repository

1 message at a time

Execute
Actions

Put Message
on Queue

 Receiving
Application

1 message at a time

0 - n
times

 0 - m
 times

Reformat
Message Format

Repository

Queue

Figure 19: MQSi system structure

Of course, you do not need the flexibility of a product like MQSi in all cases. In many
cases an individual Java program can act as a Message Router, invoking business logic
triggered by the receipt of a JMS message, and then placing the output on one or more
appropriate queues.

Message Bridge
My application implements a Pipes and Filters Messaging architecture, but some of the
filters cannot use a messaging client and thus cannot put messages on a pipe implemented
using a messaging system.

How can a process without a messaging client participate in messaging?

In many cases, existing systems are only capable of communicating via a simple protocol
like HTTP or TCP/IP Sockets due to firewall restrictions or other problems like the
unavailability of a messaging client for a particular programming language or operating
system.

Another common case is where a company uses two different messaging systems; for
instance IBM’s MQ Series and Sonic Software’s SonicMQ. The JMS standard does not
mandate interoperability between JMS clients and servers; therefore you cannot (for
instance) easily transfer a message from a Queue on MQ Series to another Queue on
SonicMQ. So, as a result, in most EAI (Enterprise Application Integration) scenarios
there are a set of cases where information cannot reach its intended destination because of
protocol mismatches.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 51 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Therefore:

Use a message bridge, a gateway into the messaging system, to connect a non-
messaging client to a messaging system.

For instance, a common case is to build a bridge that accepts messages through HTTP
and then sends them on to an external system through JMS (using a MOM like MQ
Series) and vice versa.

Order
Processing
Program

Message Bridge
(Java Servlet)

Requesting
Program

HTTP
over the
global
Internet

MQ Series

Figure 20: Message Bridge

Again, here the Message Bridge (the Java servlet in our example) is really just acting as a
specific type of filter in Pipes and Filters Messaging. This sort of Gateway for protocols
will commonly be used to allow connections from clients that cannot use the underlying
MOM protocol for one reason or another. Often, MOM vendors include such gateways
as a value-add to their products. For instance, WebSphere Application Server 5.0
contains a product called the “Web Services Gateway” that transparently bridges SOAP
messages from HTTP to MQ Series in this way. This allows the SOAP messages to be
conveyed over an intranet using the native MQ Series protocols, while messages can be
carried to the global internet (outside the firewall) over HTTP. Another example of a
message bridge of this sort can be found in the Apache SOAP engine, which includes a
bridge for SOAP messages from SMTP to HTTP.

There are many concerns that must be dealt with in building a Message Bridge.
Obviously, when you leave the protocol and software of a MOM behind, you leave the
Qualities of Service that a MOM provides behind as well. You must also consider that
different protocols have different properties – for instance, in the example above there is
no easy way to “push” messages to the client system over HTTP unless that system
listens over HTTP (e.g. contains a web server) as well. In many cases, this reduction in
QoS is acceptable, but it is not a decision that should be taken lightly.

Message Bus
My enterprise contains several existing systems that must be able to share data and
operate this shared data in response to a set of common business requests.

Is there an architecture that enables separate applications to work together,
but in a decoupled fashion such that applications can be easily added or
removed without affecting the others?

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 52 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

When you are architecting a solution that must perform Enterprise Application
Integration (EAI) you are often faced with the problem that you have multiple disparate
systems, developed in several different languages and environments, which must
communicate with each other in a controlled and orderly fashion. For instance, consider
the following example: Let’s say that you’re an Insurance Company that sells different
kinds of insurance products (life, health, auto, home, etc.). As a result of various
corporate mergers and acquisitions, and the varying winds of change in IT development
you are stuck with the following problem:

Health Insurance System
(Client-Server C++)

Life Insurance System
(Mainframe COBOL IMS)

Auto Insurance System
(Mainframe COBOL CICS)

Homeowners Insurance System
(J2EE)

Insurance Agents

Figure 21: EAI Scenario

In this scenario, the different insurance products are all handled by different front-end
systems, with varying business rules. However, what if an insurance agent wants to
accomplish a simple task like changing the Home Address of a Client that has policies of
all four types? In the worst-case scenario, the agent would have to use four different
systems (with four different interfaces) in order to perform this update – a lengthy and
time-consuming process that takes them away from their primary job function. What’s
more, the chances for error increase as the number of systems the agent must use
increases.

So, what the agent would like to do is to be able to make this change once, and have the
change propagate to all of the systems that need to be updated. However, in many cases,
it’s not feasible to scrap the existing systems and rewrite them with a single interface
(due to the cost involved), nor is it feasible to “skip” the intervening system layers and go
directly to the underlying databases where the data is stored (because of the business
logic “edits” that run on the data before it is inserted or updated into the database).
Writing a single program (such as a set of Java Servlets or EJBs that would use JCA) that
acts as a front-end to all of the systems involved is often not feasible either, since
managing the different interaction patterns of all of the systems involved would probably

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 53 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

cause the front-end system to collapse under its own weight. So, what is needed is a way
to use the existing systems, while still keeping them as independent components.

Therefore:

Structure the connecting middleware between these applications as a
message bus that allows them all to work together strictly using messaging.

A Message Bus is a combination of a common data model, a common command set, and
a messaging infrastructure to allow different systems to communicate through a “least
common denominator” set of interfaces.

The analogy here is to a communications bus in a computer system, which serves as the
focal point for communication between the CPU, main memory, and peripherals. Just as
in the hardware analogy, there are a number of pieces that come together to form the
message bus:

? Common communication infrastructure – Just as the physical pins and wires of a
PCI bus provide a common, well-known physical infrastructure for a PC, a
common infrastructure must serve the same purpose in a message bus.
Commonly, a MOM like MQ Series is chosen to serve as the physical
communications infrastructure since they are cross-platform, cross-language, and
available for most systems. The infrastructure may include Message Router
capabilities to facilitate the correct routing of messages from system to system.
Another common option is to use Publish-Subscribe to facilitate sending
messages to all receivers.

? Adapters – The different systems must find a way to interface with the message
bus. Most commonly, this is done with commercial or custom Message
Translators that can handle things like invoking CICS transactions with the
proper parameters, or representing the general data structures flowing on the bus
in the specific and particular way they should be represented inside each system.
This also requires a Canonical Data Format that all systems can agree on.

? Common Command Structure – Just like PC architectures have a common set of
commands to represent the different operations possible on the physical bus (read
bytes from an address, write bytes to an address), there need to be common
commands that are understood by all the participants in the Messaging Bus. The
Command Message pattern illustrates how this feature works. Another common
implementation for this is the Data Type Channel, where a Message Router
makes an explicit decision as to how to route particular messages (like Purchase
Orders) to particular endpoints.

It is at the end that the analogy breaks down, since the level of the messages carried on
the bus are much more fine-grained than the “read/write” kinds of messages carried on a
physical bus.

In our EAI example, for instance, one instance of a command might be “Update an
Address”. The following diagram illustrates how this would work:

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 54 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

Health
Insurance
System

Life Insurance
System

Auto Insurance
System

Homeowners
Insurance
System

Insurance Agents

Adapter

Adapter

Adapter

Front-
end

system

Figure 22: Message Bus

Here we have a single new GUI that only knows about the Message Bus – it is entirely
unaware of the complexities of idiosyncrasies of the underlying systems. The Bus is
responsible for routing Command messages to the proper underlying systems. In some
cases, the best way to handle the Command messages is to build an Adapter to the system
that interprets the Command and then communicates with the system in a way it
understands (invoking a CICS transaction, for instance, or calling a C++ API). In other
cases, it may be possible to build the Command-processing logic directly into the existing
system as an additional way to invoke current logic.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 55 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

6. Conclusions
In this pattern language, we’ve “opened a window” (so to speak) on the world of
enterprise messaging. We’ve examined why enterprise messaging is useful, how it helps
developers build systems that communicate reliably and asynchronously, and we’ve
examined some architectural styles for building systems using enterprise messaging.
However, we’ve barely scratched the surface of this topic – many more patterns exist in
this space, and our journey to discover them has only begun.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 56 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

7. Bibliography
[BMRSS95] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,

Michael Stal, Pattern Oriented System Architecture: A System of
Patterns, John Wiley & Sons, 1995.

[GHJV95] Erich Gamma, Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Design, Addison-Wesley, 1995.

[Graham] Steve Graham, Simon Simeonov, Toufic Boubez, Glen Daniels, Doug
Davis, Yuichi Nakamura, Ryo Nyeama, Building Web Services with
Java: Making Sense of XML, SOAP and UDDI, SAMS Publishing,
2002.

[IBM00] IBM, MQSeries Application Programming Guide, Thirteenth edition
(November 2000); ftp://ftp.software.ibm.com/software/ts/mqseries/-
library/books/csqzal05.pdf.

[JMS-1] The Java Message Service API (JMS); http://java.sun.com/products/jms.

[JMS-2] JMS licensees; http://java.sun.com/products/jms/licensees.html.

[JMS02] Java Message Service (the Sun Java Message Service (JMS) 1.1
Specification); http://java.sun.com/products/jms/docs.html.

[MHC01] Richard Monson-Haefel and David A. Chappell, Java Message Service,
O’Reilly, 2001.

[MQS-1] MQSeries from IBM; http://www.ibm.com/software/mqseries.

[MQS-3] MQSeries and Java;
http://www.ibm.com/software/mqseries/api/mqjava.html.

[MQSi] IBM MQSeries Integrator, Version 2 Technical Whitepaper;
ftp://ftp.software.ibm.com/software/ts/mqseries/library/whitepapers/mqs
iv2twp.pdf.

[MSMQ-1] Microsoft Message Queuing (MSMQ);
http://www.microsoft.com/msmq.

[MSMQ-2] Microsoft, “MSMQ Start Page,” Platform SDK Release: November
2001; http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/msmq/msmq_overview_4ilh.asp.

[MSMQ-3] Microsoft, Message Queuing in Windows XP: New Features, 2001;
http://www.microsoft.com/msmq/MSMQ3.0_whitepaper_draft.doc.

[NET-1] System.Messaging namespace in .NET;
http://msdn.microsoft.com/library/en-
us/cpref/html/frlrfSystemMessaging.asp.

[SOAP-1] W3C Simple Object Acccess Protocol (SOAP) 1.1 Specification;
http://www.w3.org/TR/SOAP/.

Patterns of System Integration with Enterprise Messaging Bobby Woolf and Kyle Brown

06/21/02 10:49 AM 57 / 59
Copyright © 2002, Bobby Woolf and International Business Machines Corp.
Permission given to PLoP 2002 conference for reproduction.

