Rule Object: A Pattern Language for Adaptive and Scalable
Business Rule Construction

Part 1: Rule Object

Ali Arsanjani
IBM Enterprise Java Services National Practice, Raleigh, NC, USA
Maharishi University of Management, Fairfield, lowa, USA
Arsanjan@us.ibm.com

Abstract

Rules are changing everyday in the face of rapidly wolatile businessrequirements. How do we hande this
charge whil e kegping our systems efficiently maintainable, reusable and extensible? How do we model and
hande (represent) rules, for greater reuse, maintainability, performance?

Business wlestend to change more frequently than the rest of the business object with which they are
assciated. These rules are typically implemented within the rule methods of a business object. Rules also
refer to other businessobjects that their encompassng businessobject associates with; creating aweb of
implicit and increasingly unmaintai nable dependencies. Thus, changing a business ule an impact the set
of objects dependent upon that rule. Entropy increases even more when the amde that isimplementing a
ruleis scattered across gveral methods within aclass or acrossseveral methods of coll aborating classes.
Thislack of centralizationleadsto ripple dfects; theimpact of changing a rule’s constituent if-else
statements leads to side-effects.

The Rule Object Pattern Language mntains eighteen paterns, which, for brevity have been excluded from
our discusson'. We have included only the major one, Rule Object and have mentioned two cthers,
Asesr and Action, that are intimately related to Rule Object. This pattern language balances the forces
in the above problem domain by providing a sequential unfoldment of a set of patterns that address the
increasing need for handling scalability, adgptabil ity and complexity. The Rule Object pattern language
can best be seen to resolve forces in the greater context of the Service Provider domain pattern
[Arsanjani99ab].

Introduction: Rule Design

Rules are encountered in most portions of software systems. They are of various types, scopes and scales.
They are often changed, and changed often, to accommodate new requirements. Various authors have
provided taxonomies of rules, particularly businessrules [Odell 96]. Rules also tend to evolve along with
therapid pace of businesschange and evolution.

Let us define a Simple Rule, within the antext of a programming language, to be of the form: “if
<condition> then <action> el se <action>". Long chains of nested if-else statementsin various parts of code
that implements a classtend to clutter the aode and render it virtually un-maintainable as repeated changes
are made over time. In order to avoid ripple dfeds, based on the principle of variation-oriented design
[GHJIV9Y], [Arsanjani99;b], we encapsulate that which tendsto change frequently andin a non-uniform
fashion. We therefore need to extricate these chains of if-statements and case-statements from within the
application layer code (e.g., businesslogic); to enable rapid alterations to rule structures as dictated by
businessneds.

Thisallows us to insulate the system, to alarge degree against ripple dfeds that result from changes to
individual objects and sets of collaborating objects, coll edively fulfilling a businessoljedive (clusters).

! See Appendix A for abrief summary.

Rules come in various types.

Hereisalis of scenariosthat provides motivation to define ataxonomy of rule types based on complexity,
scale, layer and function. Spedfically, 1-7 addresstier-spedfic types of rules and 8 containsalist of non-
tier spedfic types of rules.

1

2.
3.

®» N O

Field on aform neads to be validated for non-blank, corred domain of values, etc. Objects ched these,

Ul sends the app oljed a message to ched this data value.

Set of interdependent fields must be vali dated coll edively.

Compound data spread acrossmultiple forms neals to be crossvali dated; datain one form should not

violate another data value in another, related form. Implemented using a mediator pattern whom

chedsto seeif all dataare mnsistent without needing the formsto know about one another.

3.1. Invalid combinationsneed to beidentified and reported or disallowed altogether

3.2. Valid combinationstested for validity

Chedking with policies and verifying businessrulesin the middletier constitutes the bulk of

application (or “business') logic; which may be accessed by many types of clients: such as PDAS,

thin-clients, fat clients, etc.

Chedking rules at the database layer in the form of triggers and stored procedures.

Middeware communication rules.

A variety of security-related rules; authorization, authentication, non-repudiation, etc.

Regardlessof tier or layer sin which they reside, rules can pertain to computations (functions,

mappings, transformations usually expressed or expressble via mathematical formulae), for example:

When a Coverage is selected (added to a policy) it may have causes of loss associated with it. These are fixed, and

cannot be changed. If a coverage has causes of loss, when the coverage premium is calculated, it asks each cause

of loss to calculate its contribution to the premium and sums them. If there are no causes of loss for a coverage,

then the coverage has a premium of $0.00.

8.1. some restrict and constrain businessprocesses and data that are input to drive them;

8.2. some pertain to the workflow order and “Rout€e’, “Rules’, “Roles’;

8.3. some constitute “terms of agreament” or “conditions’, such as “servicelevel agreements’ which
aremorelegal in nature

8.4. Theenforcenment of certain types of rulesresultsin “positive inclusion”: a Coverage isvalid if
and only if Sometimes, however, we have “negative inclusion”: for example, “If the zip code
of the applicant is within <list of high-fraudulent zip codes> then we will have to do apre-paid
calling card; other times we have “invalid combinations’ the conjunction of a set of conditions
resultsin an invalid state: “if the loan requester has a seamnd house and the primary houseis
within a high-risk eathquake zone and they have no insurance, then we will have to rejed the
loan if credit is below <xxx> amount”.

The design of rules and their implementation are two separate things: e.g., rules can be designed as

businessconstraints and implemented in the datalayer viareferential integrity rulesthat can be

modeled as Pedfic types of associationgrelationships.

Pattern 1: Rule Object

Intent

Make the design and implementation of computerized business processes extensible and adaptible, without
endangering them with intrusive changes, by making the rules governing them pluggable.

Motivation

Example 1

We want to write a program to allow conversion of temperatures from Celsiusinto Fahrenheit and you
wanted to be able to go both ways: F> CandC > F.

This seems deceptively simple at first blush. Actually, there are anumber of “rules’ that arise when tryoing
to implement this design: “We would like to enter in avalue and click OK and have the other textfield
display the temperature in the other scde. We may implement it as foll ows. We have two text boxes (one
for C and onefor F) and one button (to start the computation) . Y ou would enter the number into one text

= =] E3

Celcius | Farenhiet

Compute
Enter temperature; Press hutton to convert

box and click on the Compute button. The processwould ched to seewhether there was avaluein the
other “converted” text box. If thereisavalue, isit avalid conversion?If not (or if it isblank (no valuein
it), reconvert, other wise, give amessage saying “Already converted.” “

So yau nedd to do validations and chedks before perfroming actions. Thisisarather trivial example of a
more important problem in larger software systems: objeds usually do not cary out actions (exeaute
methods) “mindlesdy”; rather, some cndition isusually cheded and if those series of conditi ons apply
then you can perform the action.

Next we dedde to add the Kelvin scale. We perform chedks to seeif a value was entered in a given
textfield and whether the other two were blank. If they were not to ched to seeif they were valid
conversions of each other before prompting the user to clea the textfields that do not have focus.

Imagine what would happen if instead of temperature, the fields were airrencies; the problem would be the
similar and the solution would be ana ogous.

Example 2

Y ou are designing a Property Insurance Appli cation. The Insurance @mpany has anumber of client s(the
“insured”) who have purchased anumber of policies. Each policy has a number of Coverages associated
with it by which the Insured wil | proted their buil dings against some Cause of Loss(COL). Buildings are
located on a given premise within a geographic region. Coverage is gedalized in four types: Building
Coverage, Personal Property Coverage, Debris Removal and Speda Provision. Each of these subclasses
have a set number of COLSs associated with them.

At theheat of therequirements, are the businessrules. Y ou will find countlessrules governing a business
application such asthis. These ae often scatered acrosstiers: GUIs, midde-tier businesslogic supporting
businessprocesses and database tiers may each have their own set of rules.

Let’s consider afew businesstier rules that do not require alengthy explanation of the domain:

O There can be no duplicate coverage.

O Inorder to add a Persona Property Coverage to a Palicy, there must be an existing Building Coverage.

O Or take InflationGuard; thisis an additional coverage that can be used if aBuilding Coverageis part of
the Policy and the Policy does not already contain a Debris Removal Coverage.

O Pdlicies should not have Coverage with overlapping dates.

Policies, Coverage and rules associated with individual Coverage are often changing. The business needs to
change rulesto ensure market share and profit; not to mention survival by prudently changing business
processes to accommodate rapidly changing business needs and competition. In order to rapidly change the
design of business requirements, analysis invariants (collectively, businessrules) , we need to locate and
modify rules without suffering dde-effects. We may typically want to restore the previous conditions of the
rule at alater time, for example when a promotional offering expires. Thus the requirement for variation
and change, entails the requirement for pluggability and adaptability. But the rules must be well-organized
in order to do this. If rules are scattered throughout the application, then changing them and anticipating
side-effects can be costly, cumbersome and in some cases infeasible. Business process adaptahility is thus
compromised.

Ingtead of using ahard-coded set of if-statementsto enforce therule, that is hard to maintain and change,
we setup atiny framework which will alow usto do rule checking by plugging-in conditions and actions as
the business seesfit.

Rules, however, do not change in their entirety; new conditions need to be applied to augment old
conditions, new or modified actions need to be replaced or recombined in new combinations. Therefore, we
the requirement to componentize rules for pluggability emerges. We can start by encapsulating their
constituent elements: conditions, actions, properties passed to them (context), result objects along with the
ruleitself as an adaptable component.

Thisfurnishes us with the ability to rapidly change, extend, recombine and reuse rules and rule constituents
and components. For example, it would be convenient to be able to plug in some conditions to be checked
for anew type of Property Insurance, say Personal Property. If the new conditions apply, we would liketo
perform some action, even something as simple as displaying a warning message to inform the user that
they have entered overlapping Coverages that cannot be inserted into the same policy.

Typical Business Rule Implementation

Rules are usually implemented within the body of various methods that an object implements. These
typically scattered and often-nested 1f-el se statements tend to clutter code and render it unitelligible; thus
making it difficult to maintain.

Rules as Methods (Rule Method)

To be properly implemented, Business Rules that are first identified will be listed, categorized and then
implemented by a single method. Thistypcially returns a Bool ean value to acknowledge whether therule
applied or not. If theruleis complex enough, this rule method may call other rule methods and try to
enforce the rule through collaboration with the rules of other business objects. So, for example, in our
property insurance case study we may have something called a Debris Removal Coverage. Thisisan
additional coveragethat can be used if:

} building coverageis part of the policy, and

} inflation guard isnot part of the policy, and

} aSpedaProvision for business grvicehas not been applied, and DebrisRemoval’s limit has been
increased.

A Brief Look at Rule Object’s Peer Patterns

Peer Patterns2

Rule Object actsasa M ediator to Assessors and Actions; Properties (Context) and Results. Rule Objects
determine which Assessors hould be used in the assesanent of Properties, with a possblerecrding o
Resultsin an Assessnent result. If the assesanent was successful, the appropriate Actions are invoked,
possbly updating or changing the State of Properties. Results may be recorded in an Action Resullt.

Assessor

Asssors encapsulate and evaluate anditions based on a set of input Properties and reaord theresults of
the evaluation within their AssessmentResults. Assessor is smilar to Command. A Command exealtes an
operation whereas an Assessor assesEs a set of conditions based on input State or Properties. The
differenceisthat it has an evaluate() method rather than an exeaute(); and coll aborates with a Property List
and aErrorLog or ResultSet: PropertyList

Assessor

AssessorCluster

“*evaluate(PropertyList) : boolean

Result

AssessmentResult

Figure 13: The Asssor (Condition Evaluator)

Action

An Action exeautes by updating State or invoking behavior in other coll aborating objeds. It records the
result of itsactionsin an ActionResult which may contain an ErrorResult or ErrorLog. Actions can be
implemented as Strategies, Visitors, Interpreters, Commands. Hereis the strcuture of its cluster:

Result

<<Composite>> -
ActionCluster Action ActionResult

%execute()

The Action Pattern

2 Peer Patterns are patterns in the same pattern language that work together to resolve and balance forces.

Actions arerelated to Asss2rs in the foll owing way:

<<Composite>>
AssessorCluster Assessor AssessmentResult
*|
*evaluate(PropertyList) : boolean
* Result
<<c|ust9r>> PropertyList
RuleObject

[) * /
\\ <<Composite>>
ActionCluster Action ActionResult

*
*execute()

Actions and AsEssors

Sequential Unfoldment of Rule Object: Simple Rule Object

How can you design something that you can usein asimple @ase and yet start scaling your design?
Rule Object has a structure that is best understoad through a sequential unfoldment of complexity that
attempts to balanceforces that require these additional layers of complexity and functionality.

Make the rules governing an ohjed’s behavior extensible and adaptabl e through transparently attaching
rule oheds, each onerepresenting arule the objed hasto enforcein its domain. The objed managesits
rule ohed(s) dynamically. By representing rules as individual objects, different businessprocess flows are
kept separate from the rules governing them and their interactions. Thus the processof changing them is
smplified.

Rule Object starts out with asimple Validator. This uses methods for conditi ons and actions. The Validator
has a method which accesss its conditions methods and if they are dl evaluated to true, cdl s one or more
action methods.

ValidatorRuleObject

applyRule {
Client %assess() : boolean if (assess()) perform Action();
. *action() [1 else getErrors();
*getErrors() }
*applyRule()

Figure 1: Validator

The next step is a Simple Rule Object. Now you find yaursalf having to define many methods or complex
methods for assessng conditions; and these @nditions may start changing; so yau would like to encasulate
the methods 9 yau can change them easly. The same goes for actions. So you decide to reify the

conditi ons as an Ases2r(s) and the actions as an Action(s). The Rule Objed acts asa Mediator ([Gof])
between the Assesgors andthe Actions. It may use a Factory (Builder or Abstract Factory or plain Factory
Method) to create appropriate Asessors and Actions from Serializer Objects (see[Riehle98]). Other
patternsin the Rule Cluster pattern language provide solutionsto “hash and cache” the Rule Object or its
Constituent Assesors and Actions they may be aeated or plugged into the Rule Object on-demand.
Now you have the following design. Please note that SmpleRuleObject is an abstract class Assessor and
Action can be interfaces or abstract classes with some default behavior.

Client

SimpleRuleObject

*applyRule() : Result

[Q

*

*

applyRule{
if (assessor.evaluate()) action.performAction();

}

Assessor

Action

*evaluate(Properties) : boolean

*performAction()

Figure 2: Simple Rule Objed with Assessors and Actions

Thethird level of complexity/scalablity may result from having to constantly change thefields or properties
which undergo assessment. It is convenient to use Bed<’s Variable State or Y oder and Foate' s Property List
patternsto create a set of name-value pairs. These aethen handed to the Assessor for evaluation. The
As®ssor’ s code is thus lesstangled with references to individua (view-leve) instances and hasreferences
to amodel-level set of name-value pairs that refled the set of fields or properties that will be supgied as
input into the Rule Objed’ s Assessor. Y ou may also find that your Action(s) nead to update the fieldsin
some way: expand an abbreviation for a state to a full name, take a zp code and supply the state, etc.
Another step o complexity might lead to the foll owing design:

SimpleRuleObject

Client
*apply Rule() : Result
*T
Properties
~name Assessor
v alue

apply Rule{

— — — if (assessor.evaluate(properties))

action.perf ormAction(properties);

}

*

Action

%y aluate(Properties) : boolean *performAction(Properties)

Figure 3: Simple Rule Objed with Properties

The Fourth Step would be when you need to log and return the outcome of processng throughintelligent
messages. Thus, when a Rule Objed Assesses a set of Properties, the Result may need to belogged as an
As®sanent Result. For example:

i f(assessor.evaluate("BillPayMethod"))

action. performAction();
el se assessnent Resul t. addErr or For ("Bi | | PayMet hod") ;

Users are more interested to know what went wrong in their data entry, so they can fix it. There ae many
more reasons for rearding and reporting results. These include debuggng (programmers) , performance
(architeas), data-mining (marketing, business , problem-resolution (users), etc.

Here isa simple adornment to the Simple Rule Object:

apply Rule{
if (assessor.ev aluate(properties, results))
action.performAction(properties, results);
return results

. SimpleRuleObject
Client

®apply Rule() : Result

a f Q }
Properties .

gname Assessor Action Result
[R
ey aluate(Properties) : boolean ‘perform/-\ction() ’ge[En‘orS()
~——
~ ~—
\\\\]
\\
AssessmentResult ActionResult

Figure 4: Rule Object with Result Hierarchy

Variations in implementation of this pattern include the Rule Objed having areferenceto
AsesanentResults and ActionResults, rather than the Assesor or Action.

Lets call the above duster of classs, the Simple Rule Objed Cluster and show it like this:

<<Cluster>>
SimpleRuleObjectCluster
#<<Mediator>> RuleObject
#Assessor
#Action
#Properties
#Result

*applyRule()

Figure 5: The Simple Rule Objed Cluster

Thissignifies that the cluster acts as a facade with method applyRule(); and has constituent el ements or
coll aborators Rule Objed, Assessor, Action, Properties and Result. The cluster may be implemented asa
component that can refledively ask participantsin the duster for their public methods.

Compound Rule Object

So far we have been exploring the four levels of complexity comprising the structure of a Simple Rule
Objed. In more mmplex cases, when an organization seeks to storeitsrules and gain accessto a set of
reusable mnditions (asses2ors) and actions, the Composite design pattern [GoF95] can be used to design
such a Compound Rule Object structure:

AssessmentResult

logs>
<<Composite>> -
AbstractAssessor [~
. evaluates> 2
——| %evaluate T . AbstractResult
Cli <<Composite>> K~ 0 1 PropertyList ——
jent — AbstractRuleObject * —
updates State>-—
Q\ <<Composite>>| _ Ig <>
« | AbstractAction 9 ActionResult
*execute()

Figure 6 : Compound Rule Object, View 1

The more expanded view would look likethis: The CompoundRuleObjedCluster would contain a
Composite Abstract Rule Objea whose |eaf node would be the Simple Rule Object already discussed and
its components may include nested aggregate structures of Rule Objects with potentially Composite
Assssors and Actions. One of the uses of thismore amplex scheme was used to describe and drive

<<Cluster>>
CompoundRuleObjectCluster

?

<<Composite>>
AbstractRuleObject 1

#<<Mediator>> RuleObjectMediator

*applyRule() “
A \
\ - \
<<Cluster>> é
SimpleRuleObjectCluster CompoundRuleObject
#<<Mediator>> RuleObject #<<Mediator>> RuleObject
‘ﬁitsigisor #<<Composite>> Assessor
¢ . #<<Composite>> Action
#Properties #Properties
#Result #Result
»
applyRule() SapplyRule()

Figure 7: Compound Rule Object Cluster

Telecommuni cations Provisioning where anested set of Rule Objects were needed aong with ther nested
set of appropriate Assessors and Actions.

Forces

O Changesto business requirements entails changesto the design and implementation of rules.
Business rules are expected to change more frequently than therest of the business object. At the
anaysis, architectural, design and implementation level, Business Rules may need to be redefined and
updated to reflect the changesin policy and business. Business Rules tend to evolve over timeasa
result of new business requirements. Changes to existing rules must be such asto leave the integrity of
the system of rulesintact and in a consistent state. Consistency implies that modifications to a set of
conditions not adversaly impact the rest of the system and produce unwanted side-effects.

O Rules may be time-sensitive. Thisiswhen therulesin adomain are time-constrained; for example,
they may pertain to Service Offeringsthat are offered for only alimited duration for a promotion. Such
domains have arapidly expanding and changing set of rulesthat may frequently change; sometimes on
a day-to-day basis. Although necessary, changing rulesin a program are typically costly, asthese
changes are usually intrusive and will thus have side-effects that will require further debugging and
testing. M aking intrusive changes to production code is unsafe and costly; the potential of side-
effects leads to the need for extensive regression testing and re-certification of components.

O Rulesshould be centralized, making them easy to |ocate and change. Frequently, Rules ar e found
scattered throughout the design and implementation; typically in nested if-then-el se clauses with
many dependencies. Tracing rule requirements to rule design and implementation can be a very error-
prone and resource-intensive project.

O Rulesshould be de-centralized and assigned to their relevant classes and clusters. Objects have
manners. Manners govern the ways in which their methods should be invoked to guarantee a consi stent
and valid set of states. Thus, rules can be assigned to classes. Each such class (aka, business object)
has a set of methods. Rules govern their valid state, and valid sequences of message-sends to their
collaborators and self methods. Rules usualy check the state of an object or set of collaborating

objects. They operate on data that has been submitted to them via a context. We need to track the status
of the application of rules to this set of data (properties). Rules should know about relevant
properties (data); but the properties should be obliviousto therules that check their collective
integrity from a business perspective.

Rules should be scalable. The same rule structure designed for a small application should scale up to
the needs and non-functional requirements of alarger application. They start out in a deceptively small
context and pretty soon need to be scaled up to handle larger scale transactions. Thus, rules should be

simple yet designed to be scaleable.

Non-uniform treatment of rule types. Treating different types of rules differently leads to a variety
of unwanted consequences. We need to strive to have uniformity with respect to the fact that every
business object should carry its own manners. There are different types of rules from different
perspectives that apply to different layersin the user-interface, application logic tier and persstence
layer. Rules need to have aholistic view of all their types whether they are a set of data elements;
knowing (report back) their valid and invalid combinations and values or complex business logic at the
middle-tier of an application server.

Code clutter: Nested |f-then-else statements tend to clutter code and make it difficult to maintain.
Rules are frequently implemented as [nested] if-then-else structures. Rules are usually grown through
piecemeal growth [Foote96] rather than designed top-down.

Architectural Layersand Rules: Different rules may apply at different layersof the architecture.
Rules may apply differently at each layer: GUI, Webserver, Application, Middleware and Database.
Rules are present at different layers and require different mechanisms for their implementation; smple
validationsin the GUI, complex cross-rule checking at the application layer, stored procedures and
triggers at the database layer.Y et their essential structure needsto be smilar to be easily traceable
and uniformly applicable.

Business domains contain business processes that are gover ned by a set of businessrules. These
rules are captured as part of company policy and workflow; operations and procedures. They need to
be standard procedure, but aso need to be updated frequently. They are frequently modeled in
information systems whose design needs ot change along with the needs of the business.

Rules need to be created by and visible to management; rules and rule changes need to be visible
to programmers. Programmersimplement business rules in code and must change them when
executives change them. Management must know which rules have been implemented.

Rules ar e the valid ways in which objects within adomain are alowed to interact and change sate.
They should thus be considered as fir st-class constr ucts of the object paradigm and beidentified
very early in the analysis process; not as an afterthought. In thisnew paradigm, in addition to having
identity, state and behavior, a class has manners (i.e., rules that govern the behavior or methods).
Manners are rules plus methods (object behavior) plus the meta-data needed to apply therules and
govern the interaction and collaboration protocols of an object.

Applicability
Use Rule Object

O

O

to add/modify conditions, actions and rules to business objects dynamically and transparently, that is,
without affecting other objects or rules.

when complexity and scalability makes the use of Rule Method obsolete. Rules can be implemented as
if-statements or as methods (e.g., isCompatible()) returning boolean. When they grow beyond a
proportion of smple checks, it istime to reify them into Rule Objects. Thisisespecialy tru eif
they tend to change frequently.

10

O when maintaining a system by implementing changes of requirements that can be @ptured asrules,
invariants, businessrequirements (predicates and conditions), poli cies, terms of agreements, etc. and
we would like to make non-intrusive dhanges; to reuse existing conditions and actions or crege anew
rulethat is“dightly” different from an existing ane, but which will only be in effed for a “short
diration” (highly volatil e requirements).

O Businessobjects ould know their own manners: how to use their methods in concert with other
coll aborating businessobjeds; what are valid states and what are invalid combinations of states among
businessaobjects. Thus, the laws governing the use of methods, the meta-data that may be required to
store this information and the reification of the conditions and actions that embody these “laws’ are
colledively called abusinessobjeds “manners’.[Arsanjani 99;a] Instead o rules being solely
accessble through their expresgon aslogic within each businessobject, rules are @ll ated together into
their own objeds to facilit ate non-intrusive changeabil ity and pluggability. Businessobjeds would
then contain a set of businessrules.

O When features that a set of businessobjects neal to portray need to be adapted and customized to med
different scalabil ity and complexity constraints. Rule Object can be reduced to a smple Validator for a
GUI data entry field or it can scaleto a Composite Rule Objed with Composite Assessors (Conditions)
and Actions; with Properties, and Results. Here isthe full spedrum.

Structure

Businessrules are expeded to change more frequently than therest of the businessobject. Theimpact of
these changes will be minimized if therules are encapsulated in their own classes and held separately;
ready to be plugged in and reused. Therefore, reify rules and their conditions and actions; making them
interchangeable and pluggable.

Maintain rules by making non-intrusive changes to Rule Objects. Add or change existing conditi ons and
actions; add properties (aka, a context) to beinspeded for valid or invalid combinations (State) by using
Rule Objects. A Rule Objed Cluster isa Composite of Condition (Assesor) and Action Composites along
with their helper classes. These helper classes are Properties that provide a name value set of “fields’ that
the Condition(s) (Assessor) much chedk. Theresult of this Assessnent may be recorded in an Assssnent
Result. If the Conditions all apply, then Actions are performed to change the state of the object or other
objeds. The Result of the appli caion of these Actions can be recorded in Action Results for reporting or
anaysi s purposes.

<<Composite>>
Client | AbstractRuleObject]| ConcreteRuleObject
ConcreteAction ConcreteAssessor
* *
- <<Composite>> <<Composite>>
AbstractAction AbstractAssessor
s
*execute() *evaluate()

evaluates> \
\ GUI

[
‘ updates State>

logs> Iog\|5> _
“ PropertyList |\ Model
|
ActionResult AssessmentResult

~ [—

AbstractResult

Figure 8: Compound Rule Objed

11

Participants

O

O

O

O

O

Abstract Rule Object
definesthe interface for objects that can have rules added to them dynamically.
Concrete Rule Object
defines an object to which additiona rules can be attached.
Rule Object
Mediate between conditions and actions; apply rules
Assessor
check conditions and store results
Action
perform actions based on success or failure of corresponding Assessors; record results and change state

of collaborating objects

O

O

Properties (aka Context)

pass in information and State for evaluation (Assessor) or update of State (Action)

Result

Provide a super class for AssessorResult, ActionResult and Errors so other participants can record

results and report back to client.

O

O

O

Assessor Result

The specialization of Result

ActionResult

A specialization of Result used to record results of actions

M ediationStrategy

Determine how we will execute the Assessors and Actions or even Rule Objects in the case of

Compound Rule Objects, Assessors and Actions.

Simple Rule Object: Static View

IRuleObject A set of properties (attributes) are
I | passed into the RuleObject. The
RuleObject ScheckRule() Assessor is given the PropertyList to
mediates ’getResults() evaluate. If all is okay, the RO then
between invokes the appropriate Action object
Assessor, /

Action and
result

I

AN

RuleObject

Assessor

Q<<Default|mpl>> checkRule(Properties p) : Result %<<Assessor>> boolean evaluate(Properties)
B

—

—
—

Action

#<<Command>> execute(Properties) : return

Result

DuplicateCheckRule ‘ ‘ ConfirmDeletionRule
i i ®getActionResults()
*getAssessorResults()

Figure 9: Static View of Rule Object and its Collaborators

12

Compound Rule Object: Static View

The Rule Cluster holds a cluster of Composite Rules; each with their its potential Compasite Conditions
and Actions. A Simple Ruleisaleaf node of the mmposite and can exist by itself to handle (for example)
GUI field editing and validation.

<<Cluster>>
RuleCluster

i

<<Interface>>
RuleModel

implements
<<Abstract>>
AbstractRule | g
<<Abstract>> <<Abstract>>
| SimpleRule | CompoundRule

1% l\ 1.

Validator <<Abstract>>| 1..* 1..*| <<Abstract>
é Condition |— Action [» |
° D

‘ SimpIeCondition‘ ‘ CompoundConditionH SimpIeAction‘
I | I il |
[I [11 I

Figure 10: Static View of Compound Rule Objed and its Composite Hierarchy

Hereisan dternative view of the above diagram. The @mncentration is on the dynamically pluggable nature
of the Rule Objed and its congtituent parts rather than on its Composite nature as depicted above.

Figure 11: Alternative View of Compound Rule Object

: <<Composite>>
Client ~ | AbstractRuleObject

Collaborations
Hereisaset of sample wllaborations:

. 1. Setuprules(eg., cacheina
* hashtable: “cache and hash”)

<sComposite>> <<Composite>> 2. Submit candidate state (passin
AbstractAction AbstractAssessor

— property or hashtable or just parameters
*evaluate() for state you want to chedk consistency
T of)

\ luates> e .
| updatesState> sanges 3. Chedk conditions on submitted state

logs> |0§S> using Assesr(s) . An Assessor will
| S —— \ usually go through thelist or hashtable
\ | and chedk each condition, or have a
\ ‘x\ Strategy that wil| check each condition
ActionResult AssessmentResult using an dgthm that ”_1 the smpleﬂ
default caseisround rohbin, but you can

choase or define your own optimized

*execute()

AbstractResult

13

Assessor algorithm by creating, extending a given Assessment Strategy.

4. For each set of assessors, you have a corresponding set of Action(s) that must be performed or
ResultState or ErrorLog that must be written to, created, reported back. This may be a Null Object by
default for non-important or unimplemented ErrorResults or ResultLogs.

The following sequence diagram depicts the Set up Rules step above:

DebrisRemoval Debris

RemovalRule

DebrisRemoval
Assessor

Debris
RemovalAction

initializeRules()

i

new()

|

‘new()
|

|
|
|
|
‘ new() /u
I
|
|
|
|
|
|
|
|
|

|
addAssessor() !

addAction()

addProperties()
E——]

addAsessorActionRelation()

addRule(newDebRem Rule)]

\
T |
\
|

|
|
|
|
b
|
|
|
|
|
|
|

Here are some variationsin default collaborations:

Figure 12: Setting Up Rules

One Strategy for Rule Object: (many to many)
If (assessorList.assess(inState))
actionList.perform(inState, outState)

else errorLog.reportOutcome(outState);

Simple Strategy: (onefor one)

if (assessor.evaluate(inState))
action.performAction(inState, outState); else
errorLog.reportErrors(outState);

ValidCombinations:

A Combination isa State which is coupled with a
Strategy and a Rule Object. An initially InvalidState
Stateistrangtioned into aVaidStateif therule
applies. Otherwise, errorLog records the fact and
reasonsfor theinvalid State.

Invalid Combinations:
If thisinState is an InvalidState then
errorLog.logThisAsinvalidState();

Go through al Rule Objects (Using specified or
default [optimizing] Strategy). Determineif this
inState matches an InvalidState Combination, if so,
reportinvalidState using the

outState = assessor.assess(inState);

if (outState.isiINvalidtate())
errorLog.reportErrors(outState) e se continue; //
with next check for next possible invalid state

Consequences

1. Rulesbecome more easily changeable and reusable; simpler to maintain. Non-intrusive changes can be
made to maintain rules and their Assessors and Actions. Theindividual Assessors and Actions can be
potentially reused in multiple different scenarios. Systems built this way tend to adhere more to the

14

open/closed principle [Meyer84]. Changes to BusinessRules have much lessof aripple dfect; they
are encgpsulated within a Rule Objed. New Rules can be added by adding more Rule Objeds, by
creating a Compound Rule within a Rule Object context or by changing the Strategy for aValidator in
the @se of a Simple Rule. [Client has Abstract Rule Object].

Rules become scalable. As Composites, their rules, asessors and actions can be stored in a database or
cached to account for increased vdume, demand and availability, in proporation to the growth of
individua rules.

Uniformtreatment of Rule Types. Thereisno “best “ way to design and implement businessrules.
Actually, rules comein various categories: businessrules, vali dation rules, usage rules, coll aboration
rules. Validation Rules usudly apply to a GUI; some fields are mandatory, some have to be within a
given range, somefields arerdated in an interdependent way: enter values in some, others are enabled
or disabled (state-based). BusinessRules chedk valid combinations of inpus; ched against invalid
combinations . Rules at each layer are treded in a smilar manner; though provisions for the
uniquenessof each layer is made through customizing arule. For example, instead o a compositerule,
asmplerule (Validator) can be used to validate atextbox in a GUI. Alternatively, a Composite Rule
with Composite Assessors and Composite Actions can be used to implement requirements for relating
customer care and teleadmmunications provis oning.

Rules become more easily testable. Foll owing arigorous requirements approach for businessrules also
meansthat each businessrule @ptured must have ameans of being tested.

New subsystems will be nealed to hold Rule Objects and to al ow therulesto be dhanged by
privileged users.

Company Policy Repository. Rule Object prepares the infrastructure for having a central repository of
rules within a software devel opment organization or within a corporation. Although the Rules (and
Company Policies) are scattered /distributed within the structure of the organization, they can be
centrally managed and browsed, defined and changed from a centra location, allowing all interested
parties who have registered interest in the Rule or Rule Type to receve notification of its change. This
is done using Observer or Publish-Subscribe.

Rule Object Repository all ows corporate exeadtives to be able to define and manipulaterules as
policies from a GUI-based Rule Browser. This can then be propagated within an entire organizational
structure so that the programmers who will ultimately responsible for implementing therulesin
businessaobjects will have a @mmon basis or reference point of traceabil ity.

Implementation
Consider the foll owing implementation isues:

1

Avoaid puting smplelogic in Rule Objects unlessthey are apt to change on afrequent basis, Rule
Methods are a ssimpler way of handling rulesif they are not nealed to be pluggable, adaptable or
extensible.

Reuse of existing conditions and actionsisa good sign of opting to use aRule Object.

Setting up Rule Objeds may take abit of effort but oncethe framework is st up (see kample mde
bel ow in the Sample Code sedion) then defining new rules, actions and conditions becomes smple.
Strategy can be used to chedk rules because there may be a family of rules that arerelated, and neal to
be applied depending on the state of a given ojed. Command may also be used to chedk state, or to
exeadte an action after a mndition is cheded. Assessor reifies a set of conditions that need to be
chedked. For example, an cluster’s gate mndgsts of anumber of states of its objects. Each needsto be
chedked for valid conditions, or they may alternatively (an entirely different kind of eff ort) be thheded
for the presenceof invalid conditions, so permutations of valid and invalid combinations need to be
cheded.

Results of rule application. The application of rules, leaves atrace results of the application of rules;
their conditions and actions may neeal to be logged and recorded. Efficiency considerations disall ow
thelogging o every single @mndition and action set.

15

ion 2

6. Rule Complexity: Rulescan be simple or complex (compound). They can be seen as Composites; or
as smple Validators. They may be implemented as a Composite, a Strategy or a Command.

One of the lessthought-about factorsin businessrule design isthefact that error handingis closaly
coupled toiit. It isasimportant, perhaps, to know why arulefaled asit isto know that it succeeled.
Therefore eror handling will be mnsidered as part of the implementation consideration sedion.

Guidelines on Implementation

Each BusinessRule is encapsul ated within its own class This can be Simple Rule Objed or a Compound
Rule Object. A Composite Rule object consists of a Composite Structure @mntaining Assessors and Actions.
The RuleObjed contains a Composite Assessor, A Composite Action and an ErrorResult. The ErrorResult
istherein order to spedfy what the error wasthat disal owed therule to fire the action after evaluating the
As®ssor. The Assesor is amilar to a Command. It has amethod “assesg)” which returns boolean. If it isa
Composite, the Assessor must succesdully assess all of its constituent elements before returning true. 1f
thereisa problem, the Assesor logs this as an error message/condition in the ErrorResult.

If all iswell and the Assessor has eval uated the conditionsto be true, then the Action isinvoked. The
Action isa Command, posshly Composite that will either change the state of the aurrent Client object
which isusing, containing the Rule Object, or more likely, will collaborate with other objedsto create a
valid state for the system, based on the evaluation by the Assessor. If at any time there ae error conditions
arising, these will be logged within the ErrorResult objed to which Action has areference

A Rule Objed usually formsa duster. This Cluster consists of { RuleObjed, Properties, Assesr, Action,
Result}. The attributes or statethat is passed into the RuleObjed is assessed or evaluated by the Assessor.
If thisevaluation is successful, RuleObjed (acting as a Mediator between Property, Assessor, Action and
Result) setstheresults of the Assesament in theresult Objed then asks Action to exeaute on the Properties,
potentially changing their State.

Theresults of the exeaution are set in the Result ojed. This may provide meta-data s to the fact that, for
example, a System State change took place Properties are used to encapsulate State from a all aboration or
asingle objed’s attribute values. Therefore, not only are we interested in evaluating a set of attributes and
performing actions based on the result of the evaluation, we frequently would like to know of the
intermediate results of the evaluation andthe exeaution of each action asintermediate steps. This
information isrecorded in the Result object. The State or set of attributes and values which are used asthe
basisfor evaluation by the Assessor are passd into the Rule Objed or the Rule Objed aggregates and
creates its own Properties object(s) and passes them to its Assessors and Actions on a demand-driven basis.

Sample Code

Here isan example of a Simple Rule Object that can be applied at the GUI layer. Although this
demonstrates Simple Rule Objed for a GUI layer, Rule Objed is applicable in all layers: application,
protocol and persistencelayers.

cl ass BusinessRul e inplenents ActionListener{
private JDi al og theDi al og;
private Frane theFrane;

public void setTheDi al ogJDi al og abDi al og) {
theDi al og = abDi al og;

publ i c Busi nessRul e(){

publ i c bool ean assess(int nunber){
i f (M N_SERVI CES <=nunber && nunber <= MAX_SERVI CES)
return true;
return fal se;

}

public void actionPerforned(ActionEvent event){

16

if (event.getActionCommand() ==" SubmitButton"){
theDialog.dispose();
}

}

Thisisthe simplest case where the Rule Object is merely one Class and acts asthe Listener. Eachtimea

key istyped in afield in aDailog, assess() is called to assess whether a valid value has been entered or not.
Inthis caseit isarangethat is being checked.

Beow, isan instance of use.

/**

* Register the field for entering the number of people
* @ param field The field used to enter the number people

*
public void registerNumberField(final JTextComponent field) {
numberOfServices = field;
DocumentAdapter documentAdapter = new DocumentAdapter () {
protected void parseDocument() {
int count = 0;
try {
count = Integer.parselnt(field.getText());

} catch (NumberFormatException e) {

if (rangeRul e. assess(count))
serviceCount = count;
else
serviceCount = 0;
Y parseDocument()

field.getDocument(). addDocumentListener(documentAdapter);
Y registerserviceCountField(JTextComponent)

Register the Rule Object as the button’s listener:

public void registerOKButton(final JButton btn){
submitButton = btn;
submitButton.addActionListener(rangeRul e);
submitButton.setActionCommand(" SubmitButton");
rangeRule.setTheDialog(myParentDialog);
}

Sample Code : The Rule Object Framework

Define a Rule Object that containsits Assessors and Action; Properties and an ActionAssessor Map to help
determine which Actionsrelate to which Assessors.

public abstract class RuleObject
{
private Vector assessorVector;
private Vector actionVector;
private RuleProperties ruleProperties;

private ActionAssessorMap actionAssessorMap;

public RuleObject()
{
actionVector = new Vector();
assessorVector = new Vector();
actionAssessorMap = new ActionAssessorMap();
ruleProperties = new RuleProperties();

}

public boolean applyRule(){

boolean assessorReturns = true;
Assessor tempAssessor;
Action tempAction;

/I get an enumeration of the assessor vector
Vector tempVector = getAssessors ();

17

Enurmeration e = tenpVector. el ements();

/1 for each assessor in the enuneration, call the evaluate
/1 method and get the return val ue
whi | e(e. hasMor eEl ement s())
{
t enpAssessor = (Assessor)(e.nextEl enent());
assessorReturns = assessorReturns &&
t enpAssessor. eval uat eAssessor (get Rul eProperties());

// determine if there are any actions that need to be executed for this assessor
Vector tenpActionsVector = getActionsForAssessor (tenpAssessor);
i f(tenpActionsVector != null)
{
Enurer ati on tenpEnum = t enpActi onsVector. el enents();
whi | e(t enpEnum hasMor eEl ement s())

tenpAction = (Action)(tenpEnum nextEl ement ());

t enpActi on. performActi on(get Rul eProperties(),
new bool ean(assessor Returns));
}

}

return assessor Ret urns;

Known Uses

The Rule Object has been used on several projeds by various teans that the author has been involved with.
Domains include Teleaommunications (Customer Care and Billing), Healthcare, Insurance, Automotive,
Higher Education industries, Sales, e-brokerage.

Rule Object has been used in the implementation of the Java BusinessFrameworks [Arsanjani 99
IBM San Francisco uses Policy Common BusinessObject and Pattern which use asimilar concept.
Rule Object motivated and was used in the “If-Then-Else” Framework, by Paul Corazza [Corazza].

IBM WebSphere Appli cation Server Enterprise Edition, Component Broker’s Managed Objed Framework
implements Rule Objed.

David Taylor mentionsa similar scheme in his Object Magazne column on BusinessRules.

Related Patterns

Peer Patterns3

Rule Object actsasa M ediator to Assessors and Actions; Properties (Context) and Results. Rule Objects
determine which Assessors hould be used in the assesanent of Properties, with a possblerecrding o
Resultsin an Assessnent result. If the assesanent was successful, the appropriate Actions are invoked,
posshbly updating or changing the State of Properties. Results may be recrded in an Action Resullt.

Other Patterns

Rule Object uses sveral more fundamenta design patterns. It can therefore be considered to bea
Compound Pattern (or a Composite Pattern [Riehle98]). But not all Compound Patterns are Patterns

% Peg Patterns are patterns in the same pattern language that work together to resolve and belanceforces.

18

themsel ves; Compound Patterns are merely a namespacethat labels a set of patternsthat are repeatedly
found to work in concert in many different occasions. To implement the Condition participant, we suggest
the use of an Assessor [Arsanjani98]. To implement the actions (Simple or Compound) use aCommand.
The Compound Ruleisitself a Composite. SimpleRule uses a Strategy to implement its Validator
participant. The Rule Cluster has a Builder which usesan Abstract Factory to produceindividual
instances of Rules, Conditions and Actions.

The Assessor isreally aspedd case of a Command that isfound to reaur in multiple contexts. Insteal of
exeauting a ommand, the Assesor has an asssg) method which returns either abodean (in the ase of a
simple asessr) or a mmposite (in the ase of a Compound Assesor). The Asesor may further be
implemented as an Interpreter if it needs to determine the validity of a“rule string”; i.e., astring containing
sentences of a“rulelanguage”.

Rule Object is conneded with Visitor in that it shares the foll owing applicabil ity to alarge degree “many
distinct and unrelated operations neeal to be performed on oljectsin an object structure, and yau want to
void "poll uting” their classes with these operations. Visitor letsyou keep related operations together by
defining them in one dass When the object structureis shared by many applications, use Visitor to put
operations in just those appli cations that need them. ”

Alternatively, Assessor may be used in the mntext of Grammar-Oriented Programming [Arsanjani89]
where domain analysis determines a domain language. The domain language is then described in terms of a
domain grammar. The interaction between the domain oljedsis fully described by the domain grammar.
Use-cases that trigger coll aborations, trigger the domain grammar and the message is passed as an inpu
stream into the parser that isinterpreting o parsing the grammar. Objed’ s “manners’ are described in
terms of the meta-moded that is represented as a grammar.

19

References

[Arsanjani99;a] Ali Arsanjani. "ServiceProvider: A Domain Pattern and Its BusinessFramework
Implementation,” presented to PloP '99.
http://st-www.cs.ui uc.edu/~pl op/plop 99 proceadings/Arsanjani/provider3.pdf

[Arsanjani99;b] Ali Arsanjani. "Analysis, Design, and Implementation of Distributed Java Business
Frameworks Using Domain Patterns' in Proceadings of Tedhnology of Object-oriented Languages and
Systems 30, IEEE Computer Society Press 1999, pp. 490-500.

[Arsanjani89] Concepts of Grammar-Oriented Programming, Azad University Tedchnicad Report, 1939.
[Corazza] Paul Corazza. Using the if-then-el se framework, Part 1: Code maintainable branching logic with
the if-then-else framework. Available a: http://www.javaworld.com/javaworld/jw-03-2000jw-0324
ifthenelse.html
[Fow96] Martin Fowler. Analysis Patterns. Reading, MA: Addison-Wedey, 1996

[GHJV95] E. Gamma, R. Helm, R. Johnson and J. Vlisddes. Design Patterns. Elements of Reusable
Object-oriented Software. Reading, MA: Addison-Wesley, 19%.

[MRB98] Robert Martin, Dirk Riehle, and Frank Buschmann (eds.). Pattern Languages of Program
Design 3. Reading, MA: Addison-Wedley, 1998.

[Odell96] James Odell and James Martin, Object-oriented Methods: Pragmatic Considerations. Prentice-
Hall, 19%.

[Riehle98] Dirk Baumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. "Role Objed." In Proceedings of
the 1997 Conference on Pattern Languages of Programs (PLoP '97). Technicd Report WUCS-97-34.
Washington University Dept. of Computer Science, 1997. Paper 2.1, 10 pages.

[VCK96] John M. Vlissdes, James O. Coplien, and Norman L. Kerth (eds.). Pattern Languages of
Program Design 2. Reading, MA: Addison-Wesley, 19%.

Appendix A: Rule Object: A Pattern Language for Adaptive and
Scalable Rule Design and Construction (Management)

The foll owing table summarizes the patternsin this pattern language and provides an initial definition and
context for each one. The next sedion in this appendix outlines amap o the pattern language showing how
the patternsrelate to ane another; supplying transition criteria (for going from one pattern to another) and
the forces that will be encountered before the transition and oncethe transition is made.

ROPL Patterns

1. RuleObject —
Provide extensibility and adaptability to businessprocesses, without endangering them with intrusive
changes, by making the rules governing them pluggable.

2. Assessor —Assessa set of conditions based on an input set of Properties; record results of evaluations

3. Action — Peform actions in continuation of theresults of the Assesanent of conditi ons, record results
and updite Properties and State of pertinent ojedsin coll aboration.

4. Rule Cluster — Components the Composite definition and appli caion of Rule Objects; optimizerule
application through the definition and seledion of arule applicaion policy.

o

Rules have State — Maintain State between rule cheds and applications

6. RulesareTracked —track history, changes, condition/action set pairs

20

7. Document Rules as Patterns—capture rules as patternsto track and report reasons for solution of issues
and consequences

8. Rule Object Repository: Centralize Rules in Corporate Repository

9. Rule Access Rights —managers should be able to crede rules; give accessrightsto control unwanted
or acddental corruption of rules

10. Rules Change Process — New rulesimpact old processes

11 ClustersHave Manners— clusters of coll aborating objeds have laws governing their behavior and
meta-data ebout these rules (laws).

12. Rulesas First-class Constructs -- conducting analysis and design based on objed “manners’

13. Rulesas Production Rules of the Application Domain Grammar — Grammar-oriented olject design;
define adomain language and grammar for a domain; implement it using a parser accepting input from
an appli cation running in that domain

14. Persistent Rules—Handle proliferation of subclasses and oljects as “ data”

15. Hash and Cache—provide dficient and quick accessto subclasses and objeds as the numbers
increase

16. Remedy Rule Prolifer ation—Handle object proliferation syndrome

17. Rules Evolve —Rule erolution for business sirvival

18. Rule Change Impacts Ar chitectur e —information system architedure, functional and non-functional
requirements are impacted by changesin rules.

Pattern Language Map

The Rule Object Pattern Language can be briefly described in thefoll owing narrative. We will then take a
lodk at the relationships between the individual patterns and how one can potentiall y follow another or is
somehow related to another pattern.

Note that some patterns are tiny pattern languegesin disguise: Rule Objed consists of Validator, Simple
Rule Object, Assssor, Action, ErrorResult, Properties, Compound Rule Objed and MediationStrategy
(showing what algorithm to apply in sequence when applying rules, conditions or actions. These can be
simpleround-robin style or have a more compli cated algorithm such as the Rete Algorithm to apply rules.
The default isthe ssimple roundrohbin; just go through the vedor of rules and apply each one sequentially.
Y ou may want to have aweighted vedor or a Hashtable which gves a priority to the gplication of each
rule of assessor or action, should they be a coll edion or should they be Composite).

You can start at various parts of the ROPL language and work your way around by applying petternsto
resolve forces in the problem domain. So for example, there ae many use-cases for starting the journey and
resolving forces that arise in the problem space trhough the appli caion of the pattern language’ s patterns.

Use-case 1: You want to huild an insuranceapplication and need to implement existing businessrul es that
are given as part of the requirements gpedfication.

Use-case 2: The organization wants to arganizeits businessrules. You are on a businessrules hunt and
Document Rules as Patterns, Create aCorporate Rule Repasitory and store the rules.

Use-case 3: You have a Corporate Rules Repository and want to configure it for genera use. Y ou assgn
Rule AccessRightsto managers and devel opers who have access to the Rules in the Repository. You Log
Changes to Rules as management changes the businessto med market and operational demands. Having
thisrepository affeds how businessis conducted so Rules Changes BusinessProcesses. As changes are
madeto rules, the achitedureisimpacted; maybe rules are oncentrated in amidd etier rather than being
scattered and duplicated in various middle tiers, database triggers, GUIs, etc.

Use-case 4: During devel opment with Rules Objects, Rules Evolve and changes to rules are handled by
creating new Assessors and Actions, or reusing existing ones in new combinations to refled new rules and
processes. Properties are created asraw inputs for Assessnent and Actions may updete the Properties,
yielding a Results or ErrorLog which isreported to the user and/or logged in a persistent store.

21

Use-case 5: AsRules gart proliferating, we Handle Rule Proliferation by encapsulating related rulesin
Rule Clusters and compose Compound Rules from Simple Rules. We start reusing Assessors and Actions.
We may Hash and Cache them in memory or in amiddletier for optimal performance Asthey proliferate,
we may deddeto persist our Assesors, Actions and Rules, Properties and ErrorResults and thus Create
Persistent Rule Objects.

Use-case 6: During the course of using Rule Objects we may find that we need to Track Rule State by
maintaining it asaMomento a some other mechanism, maybe even a simple static AssessorResult would
do the trick.

Use-case 7: Aswe conduct more requirements analysis and create more Rule Objeds, we find that there ae
Clusters of coll aborating classes tat work with each other to achieve a businessgoal. These Business
Objeds form Clusters. These Clugterstend to have rules governing their interactions within the duster, we
call thistheir “manners’. Thus, Clusters have manners and BusinessObjeds have Manners.

ScatteredIf-Statements Rule Methods Rule Object Assessor

o

T

N

Action

Remedy Rule

Cache And Hash

Rules are Tracked

Persistent Rules

| P e

Rule Access Rights

Rules as Productions Rule Repository
12 3
Change Impacts Architecture B Rules Evolve
I
15
L | Document Rules as Patterns Rules change Process

4
10

Figure 17: Rule Objed Pattern Language Map

22

Kegping these use-cases in mind, the foll owing pattern language map will aid you in choosing paths
throughthe language:

Number Transtion Criterial Forces

1 Complexity, adaptahility, compasabilit y, organization

2. Frequent changes to rules rapid turnaround neeled; reuse of designs, rules, conditionsand
actions, maintenanceisales as complexity increases, scalabil ity

3. Uses; interchangeable anditions needed (again zip code is chedked againg the servicetype
and features)

4. Uses; interchangeable and reusable, reaurring actions (e.g., error messages, updates to db,
etc.)

5. Subclasses and dojects proliferate

6. Greater proliferation (ojed proliferation syndrome); need to have faster accessto objects;
neeal to manage and maintain object assts

7. Even greder proliferation; faster access treat ohjeds as “data’ ; databases handle this well

8. Ned to track changes and report

9. Many people have access, accessneeads to be mntroll ed; legal and seaurity purposes;
stability and control

10. Common portal for corporate rules; organized and browseable; devel opment teams need
frame of referencefrom which to be updated on new neals for rules changes; dynamic,
crossdomain reuse

11 Multi-domain reuse; product line architedures; create a domain grammar; employ grammar-
oriented ohjed design [Arsanjani 90|

12 Architedure and businessprocess driven by rules

13 Rules and businesschange; need to stay in business maintain market share and profit;
promotions, new services, new offerings; new legisation; deregulation, etc.

14. Change of rules impact architedure in terms of functionality and non-functional
requirements (availability, seaurity, performance, persistence, scalability, etc.)

15. Corporate awarenessof rationale behind rules, issies therules are trying to solve neal to be
documented, what are the reasons and isues, how does thisrule solve them; what isthe
resulting consequence (sound familiar?)

16. <same as above>

17. Implement rules garting with the most appropriate design or implementation mechanism

23

