
Patterns in Flexible Server Application
Frameworks

James C. Hu
jxh@entera.com

Entera, Inc.
Fremont, CA, USA

Christopher D. Gill
cdgill@cs.wustl.edu
Department of Computer Science

Washington University
St. Louis, MO, USA

Abstract

This article describes a collection of recurring patterns in the context of flexible
server application frameworks. These patterns are organized into three categories,
corresponding to distinct architectural levels of scale: foundation, scaffolding, and
framework. In addition to identifying well-known patterns at each of these levels,
this article describes three new patterns: the Concrete Bridge pattern at the founda-
tion level, and the Library and Strategized Concurrency patterns at the framework
level.

1 Introduction

The context of this paper comes from experience designing, developing, refining, refac-
toring, and reimplementing an object-oriented framework in C++ called the JAWS
Adaptive Web System (JAWS). JAWS is an application framework for Web servers, de-
signed as a research tool to study sytematically how different design decisions impact
the performance of a server. Achieving this required that the framework efficiently fac-
tor out differences in threading strategies (e.g., thread pool versus thread-per-request),
event completion strategies (e.g., synchronous versus asynchronous), protocol speci-
fications (e.g., HTTP, RTSP, FTP,etc.), and algorithms (e.g., cache replacement algo-
rithms, hash algorithms, lookup algorithms,etc.). JAWS factors out these points of
variation by employing classic design patterns [1], discovering new design patterns,
and leveraging components available in the ACE [2] framework, upon which JAWS is
built [3]. A full discussion of the JAWS framework is beyond the scope of this paper,
but a detailed description can be found in [4].

The evolution of the JAWS framework has led to some interesting insights into
what makes a framework usable, accessible, scalable, and maintainable. A usable
framework isgenerative, i.e., one that guides the developer to create a complete ap-
plication. An accessible framework allows the developer to use the framework by only
studying the documented interfaces. A scalable framework results in applications that
can cope with growing demands on the application, both internal (e.g., new features),
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and external (e.g., higher than expected server usage). A maintainable framework re-
sults in applications that are easy to extend, modify, and debug by software engineers
other than the ones who originally wrote the framework.

A framework will only be considered usable when application developers are con-
vinced that the framework provides, or can support through extension, all the tools
needed to complete their tasks. To meet potentially unexpected demands, the frame-
work must provide good abstractions that are open to extension, so that new tools can
be added easily and seamlessly, either by the framework developer or the application
developer.

Making the framework accessible requires dedication on the part of the framework
developer to document critical framework components. The importance of this cannot
be over-emphasized. If application developers feel they are being short-changed on
documentation, the framework will never be adopted for use.

Scalability is an important feature that directly impacts the longevity of a frame-
work. If the framework is insufficiently extensible, it will likely be replaced by a
rewrite, or even worse, the framework principle itself might be entirely rejected by
the software team. Similarly, if the application that results from the framework is not
able to utilize available hardware resources (such as additional memory or CPUs) to
improve performance, then the framework will likely be labeled the cause of the prob-
lem and rejected.

Maintainability is perhaps more a goal than a design criterion. However, its im-
portance should not be underestimated simply because less ideal software code bases
exist. This is especially true in the arena of open source software projects, which rely
upon the input and feedback from a community of software developers. Successful
development requires that the software itself be resilient enough to withstand that kind
of scrutiny.

This paper explores those patterns that have proven most useful in the development
and evolution of JAWS into a useful, accessible, scalable, and maintainable framework.
Section 2 previews the patterns that are most important in the JAWS framework, and
describes categories of architectural scale at which these patterns are applied. Sec-
tions 3-5 provide detailed explanations of those patterns not previously described else-
where in the patterns literature. Section 3 describes the Concrete Bridge pattern, a
variation of the Bridge pattern that enables applications to bind an implementation at
compile-time, in cases where the application does not benefit from dynamic binding.
Section 4 explores the Library pattern, a useful design pattern for maintaining a collec-
tion of objects. Section 5 describes the Strategized Concurrency pattern. This pattern
enables applications to choose between different concurrency models at run-time.

2 Pattern Language

Here we describe those patterns that appear in the JAWS framework. The first group
of patterns, labeledfoundationpatterns, are small-scale software microarchitectures,
many of which have already been captured and fully described in the patterns litera-
ture. The second group, labeledscaffoldingpatterns, consists of higher level patterns
that are fundamental to systems and application programming. The third group, la-
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Figure 1: Patterns in the JAWS framework

beledframeworkpatterns, contains the highest level patterns in the JAWS framework.
Figure 1 illustrates how these patterns are related to each other.

2.1 Foundation Patterns

These patterns are used extensively in the JAWS framework. These patterns are sin-
gled out as those that were explicitly incorporated into the framework by reading the
literature for solutions to specific problems. Other patterns may exist that are yet to be
recognized.

� Singleton[1]

� Adapter[1]

� Bridge[1]

� State[1]

� Facade[1]

� Concrete Bridge (Section 3)

2.2 Scaffolding Patterns

These patterns describe fundamental components of the JAWS framework. They build
upon the Foundation patterns, and used in conjunction with them to form the frame-
work.

� Acceptor[5]

� Connector[5]

� Reactor[6]
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� Proactor[7]

� Asynchronous Completion Token[8]

� Lookup[9]

2.3 Framework Patterns

These patterns appear at the highest level of abstraction in the JAWS framework. The
interfaces to these components are available to the application developer to utilize
framework resources and to specialize application behavior. JAWS framework re-
sources include a file caching subsystem, network I/O, and concurrency mechanisms.
The JAWS framework runtime system calls into application specific code using a state-
machine model.

� Library (Section 4)

� Strategized Concurrency (Section 5)

� Object-Oriented State Machine [10]

3 Concrete Bridge Pattern

Concrete Bridge allows applications to bind a known implementation to an interface at
compile time, while preserving a separation of concerns and minimizing coupling of
the interface and implementation.

3.1 Context

The Bridge [1] pattern elegantly decouples an abstraction from its implementation. It
uses inheritance polymorphism to achieve this decoupling. However, a consequence of
inheritance polymorphism is that it also introduces overhead due to dynamic method
binding. Furthermore, it may be desirable to know at compile time the concrete type
that provides the abstration’s implementation. The Generic Bridge [11] pattern ad-
dresses the latter design force, but still relies on inheritance polymorphism between the
generic class template and the interface class referenced by the client.

3.2 Forces

This pattern resolves two opposing forces. The first is the need for loose coupling be-
tween interfaces and implementations to reduce compile-time dependencies, improve
extensibility, and enhance data hiding. The second is the need for an efficient means to
associate implementations with interfaces at compile time, and also to reduce unneces-
sary overhead.
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3.3 Problem

Decoupling an interface from its implementation is desirable, but inheritance polymor-
phism is not always an acceptable solution.

Some applications, particularly in the real-time domain, cannot tolerate unneces-
sary overhead. In such cases, compile-time binding of the implementation to an in-
terface removes virtual function lookup overhead. Furthermore, removing inheritance
polymorphism may also improve testability of such applications, as the implementation
of a particular interface is then fixed before run-time.

3.4 Solution

Eliminate inheritance polymorphism from the relationships connecting the client class,
through the interface class, to the concrete implementation class. Parameterize the
interface class with the type of its implementation class, and instantiate the interface
with a concrete implementation type at compile time.

The parameterized interface class in Concrete Bridge takes on the same role as
the Abstraction participant in the Bridge pattern. However, rather than delegating to
an abstract base class, the parameterized interface class delegates to a generic type
parameter.

In both cases, a concrete implementation type is bound before any implementa-
tion methods are invoked, but that binding likely occurs later in the case of inheritance
polymorphism. Also in both cases, the interface class requires certain methods of the
implementation class, which must be available to ensure type safety. For inheritance
polymorphism, an implementation base class is used to ensure that only types that im-
plement these methods can be bound to the interface class. The implementation base
class may provide definitions for these methods, or leave them abstract, thus ensur-
ing that any concrete derived type will provide or inherit a definition for each of the
methods.

In the case of type parameterization, the interface class requirements must be met
directly by the concrete implementation type. Taken together, the syntax and semantics
that must be supported by the concrete implementation type constitute aconceptin the
terminology of generic programming [12]. Any concrete type that is suitable as an
implementation class is then said tomodelthe concept specified by the interface class.

Concrete Bridge offers flexibility during the software development process, permit-
ting development to proceed unhindered by changes to underlying implementations,
and allowing developers to experiment with alternative implementations. Inheritance
polymorphism can even be reintroduced below the level of the bound implementation
class, if desired, at least during the experimental phase of development. This latter
technique is similar to the consequences of the Generic Template Method pattern de-
scribed in [13].

Once a particular implementation is chosen for the finished application, the param-
eterized class can then be instantiated with that concrete implementation. This binds
an implementation to the interface at compile time, avoiding unnecessary overhead for
run-time binding.
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3.5 Structure

Figure 2 shows the basic structure of the Concrete Bridge design pattern. The type-
parameterizedAbstraction class template provides the interface to the client. It is
parameterized with anAbstract Implementor type.

The parameterized type must satisfy the syntactic and semantic requirements of
theAbstraction class template. For example, theAbstraction class template’s
Operation () method calls theOperationImp () on its concrete implemen-
tation class instance. TheOperationImp () method must 1) be present, 2) pro-
vide the necessary type signature to allow correct invoaction, and 3) have the neces-
sary semantics to correctly implement the interface class template’sOperation ()
method.

Taken together, the syntactic and semantic requirements of the interface class tem-
plate on its parameterized implementation typespecifya generic programmingconcept,
as shown in Figure 2. Because UML lacks symbols to convey these ideas from generic
programming, we show the concept as a note with a constraint titledImplementor
Concept .

We also provide appropriate labels conveying the corresponding generic program-
ming terminology for each relationship between the parameterized type, the concept,
and the concrete implementation classes. Specifically, any concrete class that can be
boundto the class template must be amodelof the conceptspecifiedby the require-
ments on the parameterized type.

+Operation()

-impl_ : Abstract Implementor

Abstraction

Abstract Implementor

+OperationImp()

Concrete Impl ementorA

+OperationImp()

Concrete Impl ementorB

«bind»

impl_.OperationImp ();

{Implementor Concept}

specifies

«bind»

models models

Figure 2: Structure of the Concrete Bridge design pattern

3.6 Consequences

Just as the Bridge pattern, the Concrete Bridge pattern decouples interface and imple-
mentation, improves extensibility, and enhances hiding of implementation details from
clients. In addition, the Concrete Bridge allows a single implementation to be bound
to an interface at compile time. If the application requires the ability to configure the
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implementation type of an abstraction at run-time, or has need for the abstraction to
change its implementation polymorphically at run-time, then there may be no advan-
tage to using the Concrete Bridge pattern over the Bridge pattern.

Some languages, such as Java, do not support parameterized types. However, sup-
port for parameterized types is a highly useful feature of modern languages, and sig-
nificant research efforts are underway to extend languages such as Java to support pa-
rameterized types [14].

3.7 Known Uses

The ACE ORB (TAO [15]) provides a reconfigurable Scheduling Service [16] imple-
mentation, that uses Concrete Bridge to bind a particular scheduling strategy at com-
pile time. Concrete classes implement well-known real-time scheduling strategies such
as RMS and EDF [17]. The application binds a particular strategy to the scheduling
service implementation at compile time, avoiding virtual method overhead while pre-
serving flexibility for the application developer to experiment with different scheduling
strategies.

The JAWS framework also employs Concrete Bridge, in its implementation of the
Strategized Concurrency pattern. The relationship between these two patterns in JAWS
is described in greater detail in Section 5.

3.8 Related Patterns

Bridge [1], Generic Bridge [11], External Polymorphsim [18].

4 Library

The Library pattern decouples the creation of a new object from caching an existing
instance of the object. Thus, whether or not the object is being retrieved from cache
is transparent to the requester of the object. The Library pattern provides access to a
collection of named objects of the same type, each created with different initialization
parameters. Clients retrieve objects from the Library, and insert objects into the Li-
brary, by name. If an object is inserted with the same name as an existing object, the
Library ensures that future requests for that name receive the newer object, that existing
references to the old object are not affected by the insertion of a newer version, and that
when there are no more references to the old version, any system resources associated
with it are properly recycled.

4.1 Context

An application requires a searchable repository of versioned objects of the same type.

4.2 Forces

An application may face the following pairs of opposing forces:
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� The need to access a large number of objects,vs. the need to minimize resource
utilization through sharing.

� The need for a sharing mechanism,vs. the need to hide the details of the sharing
mechanism from the users of the objects.

� The need to populate the sharing mechanism,vs. the need to alter the bindings
between names and their associated objects dynamically.

4.3 Problem

An application must be able to access objects of similar type but with different ini-
tialization parameters. Fundamentally, this problem encompases the creation of these
objects, the population of a searchable container, and the management of requests for
the object.

A naive way to build a Library is to create a number of Singletons and add them to
a Lookup.

class Moby_Dick
{
public:

static Book * instance (void)
{

if (! book_)
{

book_ = new Book ("Moby Dick");
Lookup::instance ()->register ("Moby Dick", book_);

}
return book_;

}

};

Now, when clients want to access ”Moby Dick”, they will go to the Lookup and find
it. This is unsatisfactory for several reasons. First, the Lookup interface is explicitly
exposed to the client. The client must understand what items are being stored in the
Lookup, and how to use the Lookup interface to get them. Second, the process of
placing books into the Lookup is entirely static in this approach. New objects cannot
be added seamlessly. Third, if a new version of ”Moby Dick” appears, clients must
explicitly manipulate the Lookup to make the new version visible. Similar problems
arise when initializing a Library using an iteration loop over a list of titles.

4.4 Solution

Use the Library pattern to hide the details of using the underlying Lookup and to ma-
nipulate the underlying object. This pattern borrows ideas from Singleton (create on
first use), Proxy (surrogate object) and Facade (unified interface).

The Library pattern hides the Lookup interface from the user, and also permits
dynamic search and insertion.
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template <class Library>
class Book_Proxy
{
public:

Book_Proxy (const char *name)
{

this->book_ = Library::instance ()->find (name);
if (this->book_)

this->book_->acquire ();
}

˜Book_Proxy (void)
{

this->book_->release ();
}

// ...
// Delegate methods into underlying book_,
// mimicing the public interface of Book.

private:

Book_Type *book_;

};

template <class Title, class Book, class Lookup>
class Library
{
public:

Book * find (const Title & name)
{

Book *book = this->lookup_.find (name);

if (book && ! book->current ())
{

book = 0;
}

if (! book)
{

Book *old_book;

book = new Book (name);
book->acquire ();

this->lookup_.rebind (name, book, &old_book);

if (old_book)
old_book->release ();

}

return book;
}
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private:

Lookup lookup_;

};

4.5 Structure

Figure 3 Shows the basic structure of the Library design pattern.

BookProxy

Library

Lookup

Book

«uses»

-

1

-

0..*

«uses»

«uses»

-

1

0..*

Figure 3: Structure of the Library design pattern

4.6 Consequences

Cache coherency problems may appear when using the pattern in a distributed context.
That is, if multiple distributed processes are applying Library on a common collection
and one process detects an update, then it would be desirable to communicate this
information to the other processes. The implementation described here leaves it to
each process to perform its own discovery, which may be inefficient in a distributed
context.

4.7 Known Uses

A file server may wish to avoid re-opening files that are commonly requested. It may
wish to cache the contents of these files so that future requests will be able to be served
from memory rather than being re-read from the disk. This is how JAWS uses the
Library pattern.

The most direct uses of this pattern are in networking applications. Domain Name
Service (DNS) servers use this pattern to hide the details of the DNS protocol and
mappings to IP addresses from users of Fully Qualified Domain Names (FQDNs). The
failed Singleton approach of this pattern is analagous to the use of/etc/hosts to
manage IP address lookups. Caching DNS servers will cache the results so that future
lookups for the same FQDN do not occur until after the entry expires.

Web caches, such as Squid [19], employ this pattern to determine whether a re-
quested Web page was cached on a previous retrieval. The Web browser is typically
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shielded from whether the object originated from the Web server or was delivered from
a cache.

UNIX file systems can also be viewed as using this pattern. Theopen () system
call can first check for the existence of the file, and create a new one if it does not exist,
or open it. The directory lookup is hidden.

4.8 Related Patterns

Lookup [9], Object Lifetime Manager [20].
A similar pattern is mentioned as part of the pattern language forNew Clients with

Old Servers: A Pattern Language for Client/Server Frameworks[21], but the pattern
was not fully described.

5 Strategized Concurrency

The Strategized Concurrency pattern allows clients to alter dynamically the concur-
rency behavior of the server. It does so by decoupling the concurrency implementation
from the application design.

5.1 Context

A server may have to deal with varying load conditions. For example, at times a server
may face “bursty” loads, in which client request rates peak at varying intervals. At
other times, the server may face steady loads, in which client request rates remain
fairly consistent.

Typical concurrency strategies employed by multi-threaded servers include Thread
Pool and Thread-Per-Request. A server may not want to be tied to a single concurrency
strategy to adjust dynamically to varying load conditions.

5.2 Forces

An application may need to resolve the following forces. First is the need to experiment
with different concurrency strategies to determine what provides optimal performance.
Second is the need to alter the concurrency strategy of the application at run-time to
deal with varying load conditions. Third is the need to minimize overhead when ac-
cessing the concurrency mechanism. Note that the third force directly opposes the first
two.

5.3 Problem

The Thread Pool concurrency strategy avoids thread creation overhead, and fixes the
concurrency resources available to the application. However, it makes it inflexible to
cope with varying loads. If the application expects that at times many requests are
going to be made, the pool must be made large enough to deal with the maximum
expected load. On some implementations, this may lead to unncessary overhead even
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if the threads are idle, because the synchronization mechanism may wake up all threads
instead of just one.

To deal with ”bursty” conditions, it would be optimal to offer more concurrency
when the server needs it, and less when it does not. The Thread-Per-Request concur-
rency strategy can be used to achieve this. However, this benefit comes at a cost of
thread creation overhead. In addition, the application may possibly saturate available
concurrency resources. The benefit of using this method depends on how bursty the
traffic is and how long lived the sessions are to the server.

During stable periods of known predictable load conditions, thread pool would
provide optimal performance. During bursty periods, a more dynamic concurrency
strategy like thread per request could be more optimal.

5.4 Solution

Use the Strategized Concurrency pattern to provide distinct concurrency solutions for
distinct operating regions.

In the dynamic case of the Strategized Concurrency pattern, the application can cre-
ate a policy that decides which concurrency strategy to apply at discrete points during
server execution. For example, a time based policy may cause the server to use Thread
Pool concurrency at certain times of the day, and Thread-Per-Request at other times of
the day.

In the static case of the Strategized Concurrency pattern, the application can apply
a single fixed concurrency strategy for those cases where the load is well known and
for which dynamic overhead must be avoided.

The ability to promote both dynamic and static solutions is achieved by applying
the Concrete Bridge pattern, using either a concrete or abstract implementation class.

Discretetransitions should be used when changes in load conditions can only be
managed by a transition to a different strategy. For example, consider a transition from
1) a very stable load of short requests that is best managed by a fixed thread pool, to
2) a very bursty load profile with long-running operations that is better managed by a
thread-per-request strategy.

Continuoustransitions should be used when changes in load conditions can still be
managed by the same strategy, but with different characteristics. For example, consider
a dynamic thread pool that can raise and lower the number of its threads between a high
and low water mark.

The implementation closely follows Active Object, but specializes the methods
that enqueue and dequeue requests from the object’s job queue. When a job producer
enqueues a request, this triggers the object to decide whether or not to create a new
thread. When a consumer thread dequeues a request, this triggers the object to decide
whether or not the thread should be reaped.

In a Thread-Per-Request strategy, the decision is always to create a new thread on
enqueue, and always to let the thread die when the queue is empty on dequeue. In
a Thread-Pool strategy, the enqueue decision is never to create a new thread, and the
dequeue decision is only to reap a thread if the concurrency object is being destroyed.

In a Hybrid strategy, the decisions involve a simple algorithm. A new thread is
created upon insertion of jobs into the queue if there are not enough threads already
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waiting, and the total number of running threads has not exceeded a pre-determined
limit. Upon removing jobs from the queue, a thread will allow itself to expire if it
detects that it is an extra thread (thread count higher than low water mark) and there
are not any jobs in the queue.

5.5 Structure

Figure 4 shows the basic structure of the Strategized Concurrency design pattern.

+process_command(in c : Command)

-strat_ : Concurrency_Strategy

Server

+operation()

Command

+process_command(in c : Command)

Concurrency_Strategy

+operation()

ConcreteCommandA

+operation()

ConcreteCommandB

+process_command(in c : Command)

Thread_Per_Request

+process_command(in c : Command)

Thread_Pool

«uses»

strat_->process_command (c);

Figure 4: Structure of the Strategized Concurrency design pattern

5.6 Consequences

By employing the Concrete Bridge pattern, the Strategized Concurrency pattern gives
application developers the ability to configure experimentally the concurrency imple-
mentation to be used at run-time. It also allows the application to change its concur-
rency implementation during execution. Furthermore, it allows an application to bind
an implementation to an interface at compile time.

If the overhead costs of run-time flexibility are too great, then binding a “continu-
ous” strategy may provide better performance. If the self-monitoring costs employed
by the “continuous” strategy are too great, then loose coupling can be used along with
“discrete” strategy transformations. Careful performance measurements are required
to determine which approach will provide the best performance for a given application.

5.7 Known Uses

The JAWS application framework employs this pattern to achieve flexible control of
the thread creation policy of the server application.

In ACE, the Reactor implementations include the TPReactor and SelectReactor.
The former is designed to be used in a Thread Pool dispatching strategy, while the Se-
lect Reactor uses single threaded dispatching. The Reactor employs the Bridge pattern,
so dynamic selection of the concurrency used for dispatching is possible.
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5.8 Related Patterns

Bridge, State, Strategy [1], Concrete Bridge, Active Object [22].

6 Summary

Applying patterns at several levels of architectural scale can improve overall integrity
and generativity of an application framework. In presenting these patterns, and an
architectural context within which they recur, we seek to illustrate their applicability
for server application frameworks, and to extend the state of the practice in developing
such frameworks.
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