Synthesizer
A Pattern Language for Designing Digital Modular Synthesis Software

Thomas V. Judkins and Christopher D. Gill
Washington University, St. Louis, MO
November 15, 2000

Introduction

Synthesizer is a pattern language for designing digital synthesizers using modular synthesis in
software to generate sound. Software developed according to this pattern language emulates the
abili ties of an analog synthesizer.

Modular synthesis is one of the oldest sound synthesis techniques. It was used in the erliest
analog synthesizers, like the Moog [1] and ARP [2]. These machines introduced the oscillator-
filter-amplifier paradigm, where sound generated by an oscillator is passed through a series of
filters and amplifiers before being sent to a speaker. These first machines had physical modules
through which electrical signals were passed. These modules can be emulated in software, and
the Synthesizer pattern language captures the software design patterns embodied in this approach.

Context

A Digital audio signal is represented as a series of samples. The two factors determining the
fidelity of the signal are the rate at which samples are produced, and the predsion d each sample.
High frequency signals change their values very quickly, and depend on high sample rates to
retain fidelity, whilelow frequency signals may retain fidelity at lower sample rates. A sample is
anumeric value: in this paper, afloating point number.

In this paper, each module will be represented by an dojed. We will use the term provider to
describe a module providing a signal to another module, and the term requester to describe a
module being provided with a signal. Most modules will both provide and request signals.
Provider modules are said to input a signal to any one of a requester’s channels

Pattern Map
Multi- Patch Synth Module
Patch [¢ (page 4) ' (page 2)
(page 6) % x
Oscillator Shared History Audio Output

(page 8) Processor (page 10) (page 8)

Legend: consider applying A, then B A P R

Synthesizer page 2

Synth M odule

Problem:
Need to define a generic system of interaction between individual synthesizer modules.

Forces:
* Modules will need to pass samples to one another
* Number and type of provider modules not known in advance
» All modules must be synchronized to one common sample rate
» Thereis potential for feedback between modules
» Somesignals will require a high sample rate, while others will not

Solution:
Provider Requester
sample audio_inputs
get_sample(channel) advance_audio()
set_audio_input(channel, module)
<<provider/
<provider>> . requester>> - <<requester>>
Synth_Module 4*% Synth_Module 4*_|npus—* Synth_Module

Therefore, allow modules to exchange information by keeping references to all provider modules
within the requester module. Keep references in an expandable data structure such as alinked list,
letting each data member correspond to one channed. Individual modules can then hold an
arbitrary number of channels, querying each channel with a consistent method call. This allows
individual modules to determine the use of each channd (i.e, channel 1: volume channe 2:
frequency; etc.).

A simple way to obtain synchronization would be to utilize the GoF Chain of Responsibility
pattern [3], requesting a sample from last module in a chain, and allowing the request to trickle
down the hierarchy. However, this would prevent feedback loops, which are necessary to certain
effects such as delay. It also presents a problem when modules do not request samples from all
their provider modules on every sample. For example, an oscillator produces waveforms at a
certain frequency. If arequest is only made every tenth sample, however, the oscillator will think
only one sample has passed when there have actually been ten. The frequency produced by this
oscillator will then be ten times slower than desired. Therefore, all modules must be notified
exactly once during every sample.

Therefore, provide both a means of advancing the state of a module, and a means of requesting a
sample from a module. All modules will be advanced on every sample, thus solving the issue of
synchronization. The actual sample value will be computed only when the sample is requested of
a module, allowing an oscillator that is only queried every ten samples to only compute one
sample every ten samples, but still producing the correct frequency.

Synthesizer page 3

Thus, any module will go through two stages each period: the advancing state stage, and the
requesting sample stage. Advancing the state of a requester module will trigger sample requests
of that modul€'s providers. Thisis gmilar to the Electrical Engineering concept of TTL flip-flops
[4] in eledronic hardware systems, which reads inputs on the rising edge of a clock. The Synth
Modules, however, cannot all be clocked simultaneously, so a provider module may or may not
have been advanced during the current sample. This produces a delay of a few samples when the
requester modules are advanced before their provider modules.

When the provider modules are advanced before their sample is requested, however, thereis no
delay. This does not present a problem however, because we can control the order in which
modules are advanced. Feadbadk loops therefore present the only delay because, due to their
circular nature, it is impossble to advance every provider module before all of its requester
modules. This small delay is acceptable, as there is naturally a small delay in analog feedback
loops aswell.

To reduce the number of requests made of modules, provide different methods for advancing
state. This allows modules to check infrequently changing information (like user input) less
frequently than audio information. For example, modules may be told to advance state 44,100
times per second, but may only be told to look at user information 200 times per second. An
aternative to this is to let the individual modules keep track of the number of samples that have
gore by, and only have them query certain in ports every so many samples. This, however, puts
more of a burden on theindividual modules, and since most modules wil | have to query at similar
rates, one module may keep track of the rates instead o al modules. Putting rates in a central
location also makes them easier to change. Now only one modue nedls to be altered instead o
all of them.

I mplementation Notes:

For example, the Soft-Synth framework implements Synth Module as a base class that all
modules extend. The classallows for three types of in ports: audio in ports, to which all audio
signals are passd, and are advanced on every iteration; control in ports, which are passed lower
frequency control signals; and gate in ports, which are passed user generated data such as key
presses, knob turns, or MIDI data. The base classprovides concrete methods for setting the inputs
to each type of port.

void set_audio (int channel, Synth_Mdule &m int mout, double muvol)

{
}

audi o_inputs_ ->insert(channel, m mout, myvol);

This method adds a signal to the specified audio input channel. The input signal is ecified by
providing a Synth_ Module, m, and m's output channel. The double m_vol adjusts the level of the
signal received from m When multiple inputs to a single channel* are specified, both signals are
added together, and the sum becomes the input of that channel.

The base classalso provides virtual methods for advancing each set of inputs. A control input is
only queried when the advance_control () method is called, and the same is true of audio and
gate inputs. There is also a method for retrieving sample values when a module is queried. This

! Aswewill seein the next sedion, amodule may produce more than one output channel, so bah m and
m'’s output channd are nealed here.

Synthesizer page 4

method computes and returns the sample value. In case a module is queried by two requesters, the
method also stores the sample value to avoid repeat computation.

virtual void advance_audio() {};

virtual void advance_control () {};

virtual void advance_gate() {};

virtual double get_sanple (int out_channel) {return sanple_;};

Theget _sanpl e (int channel) method takes an integer parameter in case a module provides
more than one output channel. The base class Synth_Module implements this method to return a
number set in one of Synth_Modul€'s constructors. This is important if a user wishes a constant
valueto beinput to a module. The method is virtual so that child classes will overrideiit.

The Soft-Synth framework also provides a classcalled Patch to advance state of Synth Modules.
Patch

Problem:
Need to allow users to abstract away detail s of multiple modules and create compound modul es.

Forces:
* Must synchronizeinternal modules with autside environment
» Must appear to be a single module to provide end users with a higher level of abstraction
* Modules outside the Patch must have a way of passng values to and from internal
modul es without breaking encapsulation
* Must bereusable and recallable

Solution:
<<provider/
Synth Module [« <<provider>> requester>> <<requester>>
Synth Module g 1.0 synth Module
Patch [1
Patch 1
members 1
set_output ()

Therefore, provide a Patch module to combine and synchronize other modules.

To addressthe issue of synchronization, Patch uses the Chain of Responsibility pattern [3]. Every
time a Patch module is advanced, that Patch module advances each module contained within it.
This asaures that the states of all modules contained within a Patch dbjed are advanced exactly
once per sample It also asaures that Patches are advanced once every time the eternal
environment is advanced. This invariant could break down when Patch dbjects circularly contain
one another (e.g., Patch A contains Patch B, and Patch B contains Patch A). However, this would
produce an infinite string of modules conneded to one another, and thus sould not be all owed.

To alow signals to be passd into a Patch dojed, have external modules referenced by the Patch
module, so internal modules can query the Patch dbjed to receive signals. The Patch module will

Synthesizer page 5

then access the modules outside the encapsulation barrier and return the value to the internal
module. External modules will accessinternal modules in a similar way: internal modules will
register as outputs with the Patch dbjed, and when an external accessrequest is made of a Patch
object, it will compute and return the value of the internal module(s) correspondng to the outpui.

Finally, the Patch dbjeds must be able to be reused arbitrarily; for example, a user may wish to
use a program in response to a keyboard. Every different note played must be represented by its
own set of oscillators, filters, etc. Several copies of a Patch dojed must exist in arder to handle
multiple notes. Also, programs in traditional analog synthesizers were difficult to recall (or
remember), so having away of recalling a Patch’s sttings would be beneficial.

Therefore, provide a way of externalizing the state of a Patch dbjed in a file. Every time the
Patch neels to be duplicated o recalled, only the name of the fil e representing the Patch’'s date
must be referenced.

I mplementation Notes:

In the Soft-Synth framework, the Patch class extends Synth_Module, thereby providing an
interface identical to any aher module. This allows users to think of patch as a single objed;
inputs can be asggned to just as any aher module, and any module can request a sample from a
Patch dbjed.

The class also provides a method add_renber , which adds a module to the Patch. To ensure
synchronization, the method only adds the module if it is not already contained in the Patch.
Users must ensure that modules passed to this method are not contained in any other Patch dbjed.

i nt Patch::add_menber (Synt h_Mdul e &n){
if (nmenbers_.is_menber (m){ /1 trying to add nenber twice
return O;
tel sef
menbers_.add (n;
return 1;

}

When a Patch’s advance state call is made, it calls the same method on each member. The
advance_audi o methodis shown below; advance _gat e andadvance_control aresimilar.

voi d Pat ch:: advance_audi o(){
for(Synth_Mdul e *tenp=nenbers_; 0! =tenp; tenp=tenp->get_next_nodul e())

t enp- >get _nodul e() . advance_audi o() ;

}

A method to set the output of a Patch is also included. The set _out put method takes an internal
module, and adds it to a list of outputs.

int Patch::set_output(int patch_out, Synth _Mdule &m int mout, double muvol){
if (is_menmber (m){
outputs_->insert(patch_out, m mout, myvol);
return 1;
}elsef
return O;
}

Synthesizer page 6

A problem arises, however, in the fact that there will now be two sets of modules requesting
samples from a Patch dbjed: internal modules requesting inputs, and external modules requesting
outputs. There is, however, only one get _sanpl e method. This problem was lved by holding
negative channel numbers for all internal modules requesting input signals. An alternative to this
would have been to check whether the requester module was a member of the Patch. This,
however, would have been time-consuming, and would have required a reference to the calling
object to be passed to each get _sanpl e call. So instead, a negative parameter returns input to
internal modules, while a positive parameter would returns output to external modules. A call
from an internal module with a positive parameter should not happen, but would not break any
abstraction barriers, asthe output modules are already accessble by the module.

doubl e Pat ch:: get _sanpl e(i nt out _channel)

{
i f (out_channel > 0){
return outputs_->m x(out_channel);
}telse if (out_channel < 0){
return audi o_i nputs_->m x(-out_channel);

return O;

}

The program Reaktor creates objeds called ‘macros’ that are similar to Synthesizer’s Patch
objects[5].

M ulti-Patch

Problem:
Users will eventually wish to control their programs by passng it MIDI information.

Forces:
» MIDI presents data as periodic events, but modules exped digital audio signals
» Each Patch can represent one voice or note, but the maximum number of voices is not set
or known

* Notes must sound with little delay after anateis pressed
* Many different types of MIDI data may be used to represent operations

Solution:

MIDI data
>

Controller

<<provider>> <<requester>>
VH 1 Patch 1

VHn V Patchn |—

VH data

Multi-Patch

Synthesizer page 7

Therefore, provide an object called a Multi-Patch that handles interaction between user and
program. Separate notes that are being played simultaneously must produce separate frequencies,
so each note must be represented by a separate set of modules. Therefore, in every Multi-Patch,
include a number of identical Patch objects so that each of these may play a separate note.

There are two possible ways to assign notes to Patch objects. The first is to create a new Patch
object every time a new noteis pressed. The second isto create a pool of Patches, and assign each
note to an existing object. The first approach allows for an expandable number of notes that at all
times matches the load applied by the user. This creation of new Patches can be time consuming,
which could lead to a noticeable delay between the time the note is pressed to the time the noteis
heard. It also may consume memory or processor load to a point where the program will not run

properly.

The second approach limits the number of notes that can be played to a set number, and the
Multi-Patch must begin to drop notes when that limit is exceeded.? The Patch objects are already
created, however, so no additional delay is incurred between the pressing and sounding of a note.
Also, dday time will not degrade because of an increasing number of Patch objects in use. The
main drawback to this approach is that notes must be cut off prematurey when the limit is
exceeded.

Both are viable solutions, but we chose the latter because of the reduced delay. This issue is
similar to the use of Thread Pool vs. Thread-Per-Request [6]. Thus, when more notes are played
than the synthesizer can produce (in our case, the number of Patch objects in use), one note must
be replaced. The criteria used to decide which voice to interrupt is called a voice replacement
scheme. These schemes may be random, or based on criteria such as lowest pitch, least recently
played, or most recently played. Whatever strategy is chosen, this Pattern will decide the replaced
note before it is needed, and keep track of it in case it is needed. This may take additional
computing time, but there will again be no additional delay when the noteis struck.

Another problem arises in converting the MIDI information sent to the Multi-Patch into a stream
of samples that can be understood by the Patches. The first part of this problem is the fact that
MIDI represents notes by numbers, 0-127, and our objects must use a frequency instead of these
numbers. Therefore, include a lookup table inside our Multi-Patches that will convert these MIDI
note numbers into their frequency equivalents. This not only removes this task from individual
modules, but also allows for different tuning schemes to be utilized. This approach does,
however, eliminate the ability to manipulate the MIDI data being passed into the program.

The second part of this problem resides in the fact that MIDI data are not persistent events. In
other words, when a note is played, a signal is not held high until the note is released, instead, a
packet is sent informing of a note being pressed, then another packet is sent when the note is
released. Therefore, provide a voice handler class that will hold values such as note pressed and
frequency. This voice handler will then be referenced by the individual Patch objects like any
other module would be. Each Patch will have one voice handler object which passes signals
relevant to only that one Patch module, as well as one voice handler that will present signals
relevant to all Patch objects.

% Thisisin fact no different from traditional instruments such as the guitar, which limits the musician to six
notes. The pianois abit less limiting with eighty-eight possible notes.

Synthesizer page 8

There are, however, many different types of MIDI packets that may be sent. So, instead of
implementing a channel for every possble type of packet, only implement a channel for the
common messages, and then all ow the user to program separate messages over spedfic channels.

Audio Output

Problem:
Audio signals must eventually be passed aut of the program in one form or anather.

Forces:
» Users may wish to send autput to afile or soundcard
» Soundcards usually have multiple output channels (Ift and right)
* Most systems will have interrupts, which will slow sown the processing of some samples,
but samples gill must be produced at constant rate

Solution:

Therefore, contain all a program’'s Synth Modules within an Audio Output object. The objed will
be responsible for transferring data from the modules to the destination (a soundcard, file, or
other program). The single objed will also handle multiple signals to hande stereo o multi-
channel outpuits.

What's more, the objed will handle advancing modules in a program. It will hold a buffer to
prevent lost samples due to interrupts. It will also be capable of reducing the sample rate in case
of processor overload.

I mplementation Notes:

This portion was implemented in assembly language. The code basically creates two buffers in
memory from which the sound card reads. The object writes samples to the first buffer whil e the
sound card is reading from the second. It continues to write samples until the buffer is full. When
the sound card is finished reading the second buffer, the Audio Output object repeats the process
on the second buffer.

Oscillator

Problem:
The most common way of producing signals is through general waveforms repeated at some
frequency.

Forces:
* Many different wave forms will be needed (either generated mathematically or by table
lookup), but all will be generated similarly
» Waveforms may be switched arbitrarily, and might be different in form
« Will beused differently LFO? vs. Oscillator
* Neadalsto befast / won't be accessed every sample

3Low Frequency Oscill ator (LFO): These objeds areidenticd to regular oscill ators, except for the fact that
they generate signds which are several octaves lower, and thus need not be processed at such ahigh sample
rate.

Synthesizer page 9

Solution:

Oscillator

Oscillator_Strategy waveform _ »| Oscillator_Strategy

int step_size_ compute (int position)
Int num_steps

int position_

change waveform (Oscillator_Strategy &)

Wavetable Strategy Sinusoid_Strategy
Int wavetable] int period
compute (Int position) compute (int position)

Therefore, abstract away the actual shape of the wave forms by encapsulating the shapes in a
separate Strategy objed. The Oscillator classthen can focus lely on frequency and progression
through a wave form. When actual samples are neaded, the Oscillator objed may provide it's
Strategy object with the progresson through the current wave to retrieve actual sample values.
This allows frequency, amplitude, and waveform to be changed at any time, even in the midde of
awaveform.

Also, the strategies used by the Oscillators may be quite abundant. They will, however, all be
stateless objects. Therefore, it is natural to implement them all as flyweights. This reduces the
amount of memory used by the strategies, and makes it easier to

Method calls to the Strategy object will be needed when a get _sanpl e request is made of the
oscillator. This allows oscil lators being used only as control inputs (low frequency oscil lators) to
use lesscomputation time than a regular oscil lator.

I mplementation Notes:

The Soft-Synth framework implements the Oscill ator as a sub-classof the Synth-Module class It
implements both Amplitude and Frequency Modulation. The class takes two channels of gate
inputs and two channels of control inputs. Oscill ators take no audio input signals.

The first gate input specifies the frequency of oscillation in Hertz. This value will most likely be
set by some form of user input, and thus will not change very often. The second gate input is a
wave-sync that will reset the oscillator to the beginning o it's waveform when the signal is non-
zero. Thisis useful when using an Oscillator as an LFO, and resetting the waveform in response
to akey press

void Gscillator::advance_gate(){
frequency_ = gate_inputs_->m x(1);
if (gate_inputs_->m x(2))

position_ = O;
}

advance_control ();

Synthesizer page 10

The first control input specifies frequency modulation, where a positive value will increase the
frequency, and a negative one will deaease it. The second control input specifies amplitude
modulation. It is $mply a constant that the output signal will be multiplied by. The variable
step_size_ is then calculated based on the value gotten from the FM input. This variable
corresponds to the decimal to be added to posi t i on_ every time the Oscil lator is advanced.

void Gscillator::advance_control ()

{
double FM freq = control _i nputs_->m x(1);
doubl e tenp_freq;
if (FMfreq > 0)
tenp_freq = ((FM.freq / MAX_VALUE) + 1)* frequency_;
}
el se
{
tenp_freq = ((FM.freq / MAX_VALUE) + 1)* frequency_;
}
step_size_ = tenp_freq / (SAMPLE_RATE);
anmplitude_ = control _i nputs_->m x(2) / MAX_ VALUE;
advance_audi o();
}

Another approach taken by the Reaktor [5] program is to provide separate modules for both
LFO's and Oscillators. Also differentiating between waveforms generated by mathematical
formula and waveform stored in wavetables. Reaktor also allows switching between different
waveforms by multiplexing between several existing acillators, in effed shutting of processng
for unused cscillators.

Shared History Processor

Problem:
Modules may haveto keep track of previous samples.

Forces:
» Sample values must be recorded every time the sampleis advanced
» Two modules may be kegping track of the same samples
* Number of samplesto be kept track of may vary

Solution:

Processor J Buffer
Buffer buffer int samples]
prev_sample (int index)

Therefore, provide a buffer classthat will keep track of samples, and interface with processng
modules that neead these values. The buffer class will act as a requester module, requesting
samples from any other module, but will define a separate interface for pasgng recorded values to
the processor. This buffer will be used by an arbitrary number of processing modules, thus
eliminating the need for each processor module to keep track of the same sample values.

Synthesizer page 11

For example, reverberation is produced by applying multiple delay effects to an audio signal.
Individual delay modules will receive a sample, and then play it back a fixed period later. Were
each delay unit to keep track of it's own internal buffer, data would be repeated in each delay
unit. However, implementing the delay units as Shared History Processors all ows the buffer to be
kept in a shared external buffer, thus reducing memory use.

The buffer must, however, keep track of the samples that will be needed by the processors. This
could be problematic because, as in the previous example, it is unlikely that all delay units will be
set to the same delay length; some may request a sample recorded 100 samples earlier, while
anather may request onerecorded 1000samples earlier.

One possble solution isto have each processor spedfy to the buffer the number of samples it will
need it to keep track of. This, however, would require that the processor not only know how many
samples it neals, but also inform the buffer of that number every time it changes. A better
solution is to let the buffer decide how many samples to track based on its use by the processors.
Thus, every time a processor requests a sample that is nolonger held in the buffer, the buffer can
increase the number of samplesit halds.

Another problem raised by creating an external buffer is the question of which processor owns it.
In the case of internal buffers, each processor would own it's own buffer, however, with an
external buffer, processors cannot automatically destroy their buffers. For this reason, it is easiest
to allow the Patch dbject to claim responsibility for both buffer destruction, and advancing the
state of the buffer.

Acknowledgements

The authors are grateful to our pattern shepherd, Norm Kerth, for guiding us in the months
leading up to the PLoP 2000 conference. Norm has provided many valuable comments,
questions, and suggestions that have shaped the evolution o both this paper and the pattern
language it describes.

We also wish to thank David L. Levine, Director of the Center for Distributed Objed Computing,
in the Department of Computer Science at Washington University in St. Louis, for his ongdang
support of thiswork.

Finally, the first author would like to thank Rich O’'Donnell, Professor of Music at Washington
University, and lead percussonist for the St. Louis Symphony Orchestra, for introducing him to
sound synthesis.

References

[1] Eledronic Musician magazine, August 200Q vol.16, no. 8

[2] Owner's Manual, the ARP Electronic Music Synthesizer Series 260Q 1971, Torus Inc.

[3] Gamma, Helm, Johnson, and Vlissides, “ Design Patterns’, 199%, Addison Wesley

[4] Bredling, “ Digital Design Fundamentals’, 2". Ed., 199, Prentice-Hall, NJ, pp. 217-223

[5] Benutzerhandbuch, Reaktor Series version 2.3, 19972000 All e Rechte vorbehalten, Berlin

[6] Douglas C. Schmidt, “Evaluating Architedures for Multi-threaded CORBA Object Request
Brokers’, Communications of the ACM, Voal. 41, No. 10, October 1998

