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Introduction

Synthesizer is a pattern language for designing digital synthesizers using modular synthesis in
software to generate sound.  Software developed according to this pattern language emulates the
abili ties of an analog synthesizer.

Modular synthesis is one of the oldest sound synthesis techniques.  It was used in the earliest
analog synthesizers, like the Moog [1] and ARP [2].  These machines introduced the oscillator-
filter-amplifier paradigm, where sound generated by an oscil lator is passed through a series of
filters and amplifiers before being sent to a speaker.  These first machines had physical modules
through which electrical signals were passed.  These modules can be emulated in software, and
the Synthesizer pattern language captures the software design patterns embodied in this approach.

Context

A Digital audio signal is represented as a series of samples. The two factors determining the
fidelity of the signal are the rate at which samples are produced, and the precision of each sample.
High frequency signals change their values very quickly, and depend on high sample rates to
retain fideli ty, while low frequency signals may retain fidelity at lower sample rates. A sample is
a numeric value: in this paper, a floating point number.

In this paper, each module wil l be represented by an object.  We will use the term provider to
describe a module providing a signal to another module, and the term requester to describe a
module being provided with a signal. Most modules will both provide and request signals.
Provider modules are said to input a signal to any one of a requester’s channels
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Synth Module

Problem:
Need to define a generic system of interaction between individual synthesizer modules.

Forces:
• Modules will need to pass samples to one another
• Number and type of provider modules not known in advance
• All modules must be synchronized to one common sample rate
• There is potential for feedback between modules
• Some signals will require a high sample rate, while others will not

Solution:

Therefore, allow modules to exchange information by keeping references to all provider modules
within the requester module. Keep references in an expandable data structure such as a linked list,
letting each data member correspond to one channel. Individual modules can then hold an
arbitrary number of channels, querying each channel with a consistent method call. This allows
individual modules to determine the use of each channel (i.e., channel 1: volume; channel 2:
frequency; etc.).

A simple way to obtain synchronization would be to utilize the GoF Chain of Responsibility
pattern [3], requesting a sample from last module in a chain, and allowing the request to trickle
down the hierarchy. However, this would prevent feedback loops, which are necessary to certain
effects such as delay. It also presents a problem when modules do not request samples from all
their provider modules on every sample. For example, an oscillator produces waveforms at a
certain frequency. If a request is only made every tenth sample, however, the oscillator will think
only one sample has passed when there have actually been ten. The frequency produced by this
oscillator will then be ten times slower than desired. Therefore, all modules must be notified
exactly once during every sample.

Therefore, provide both a means of advancing the state of a module, and a means of requesting a
sample from a module. All modules will be advanced on every sample, thus solving the issue of
synchronization. The actual sample value will be computed only when the sample is requested of
a module, allowing an oscillator that is only queried every ten samples to only compute one
sample every ten samples, but still producing the correct frequency.

inputs inputs 

        *  *         *     *

Provider
sample_
get_sample(channel)

Requester
audio_inputs_
advance_audio( )
set_audio_input(channel, module)

Synth_Module Synth_Module Synth_Module

<provider>>

<<provider/
requester>>  <<requester>>
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Thus, any module will go through two stages each period: the advancing state stage, and the
requesting sample stage. Advancing the state of a requester module will trigger sample requests
of that module’s providers. This is similar to the Electrical Engineering concept of TTL flip-flops
[4] in electronic hardware systems, which reads inputs on the rising edge of a clock. The Synth
Modules, however, cannot all be clocked simultaneously, so a provider module may or may not
have been advanced during the current sample. This produces a delay of a few samples when the
requester modules are advanced before their provider modules.

When the provider modules are advanced before their sample is requested, however, there is no
delay. This does not present a problem however, because we can control the order in which
modules are advanced. Feedback loops therefore present the only delay because, due to their
circular nature, it is impossible to advance every provider module before all of its requester
modules. This small delay is acceptable, as there is naturally a small delay in analog feedback
loops as well .

To reduce the number of requests made of modules, provide different methods for advancing
state. This allows modules to check infrequently changing information (like user input) less
frequently than audio information. For example, modules may be told to advance state 44,100
times per second, but may only be told to look at user information 200 times per second. An
alternative to this is to let the individual modules keep track of the number of samples that have
gone by, and only have them query certain in ports every so many samples. This, however, puts
more of a burden on the individual modules, and since most modules wil l have to query at similar
rates, one module may keep track of the rates instead of all modules. Putting rates in a central
location also makes them easier to change. Now only one module needs to be altered instead of
all of them.

Implementation Notes:
For example, the Soft-Synth framework implements Synth Module as a base class that all
modules extend. The class allows for three types of in ports: audio in ports, to which all audio
signals are passed, and are advanced on every iteration; control in ports, which are passed lower
frequency control signals; and gate in ports, which are passed user generated data such as key
presses, knob turns, or MIDI data. The base class provides concrete methods for setting the inputs
to each type of port.

void set_audio  (int channel, Synth_Module &m, int m_out, double m_vol)
{

audio_inputs_  ->insert(channel, m, m_out, m_vol);
}

This method adds a signal to the specified audio input channel. The input signal is specified by
providing a Synth_Module, m, and m’s output channel. The double m_vol adjusts the level of the
signal received from m. When multiple inputs to a single channel1 are specified, both signals are
added together, and the sum becomes the input of that channel.

The base class also provides virtual methods for advancing each set of inputs. A control input is
only queried when the advance_control() method is called, and the same is true of audio and
gate inputs. There is also a method for retrieving sample values when a module is queried. This

                                               
1 As we will see in the next section, a module may produce more than one output channel, so both m and
m’s output channel are needed here.
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method computes and returns the sample value. In case a module is queried by two requesters, the
method also stores the sample value to avoid repeat computation.

virtual void advance_audio() {};
virtual void advance_control() {};
virtual void advance_gate() {};
virtual double get_sample (int out_channel) {return sample_;};

The get_sample (int channel) method takes an integer parameter in case a module provides
more than one output channel. The base class Synth_Module implements this method to return a
number set in one of Synth_Module’s constructors. This is important if a user wishes a constant
value to be input to a module. The method is virtual so that child classes wil l override it.

The Soft-Synth framework also provides a class called Patch to advance state of Synth Modules.

Patch

Problem:
Need to allow users to abstract away details of multiple modules and create compound modules.

Forces:
• Must synchronize internal modules with outside environment
• Must appear to be a single module to provide end users with a higher level of abstraction
• Modules outside the Patch must have a way of passing values to and from internal

modules without breaking encapsulation
• Must be reusable and recallable

Solution:

Therefore, provide a Patch module to combine and synchronize other modules.

To address the issue of synchronization, Patch uses the Chain of Responsibil ity pattern [3]. Every
time a Patch module is advanced, that Patch module advances each module contained within it.
This assures that the states of all modules contained within a Patch object are advanced exactly
once per sample. It also assures that Patches are advanced once every time the external
environment is advanced. This invariant could break down when Patch objects circularly contain
one another (e.g., Patch A contains Patch B, and Patch B contains Patch A).  However, this would
produce an infinite string of modules connected to one another, and thus should not be allowed.

To allow signals to be passed into a Patch object, have external modules referenced by the Patch
module, so internal modules can query the Patch object to receive signals. The Patch module wil l

Synth Module

Patch
members_
set_output ( )

*

1

1

1..n
..n

1..nSynth_Module Synth_Module

<<provider/
requester>> <<requester>><<provider>>

1
Patch
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then access the modules outside the encapsulation barrier and return the value to the internal
module. External modules will access internal modules in a similar way: internal modules wil l
register as outputs with the Patch object, and when an external access request is made of a Patch
object, it will compute and return the value of the internal module(s) corresponding to the output.

Finally, the Patch objects must be able to be reused arbitrarily; for example, a user may wish to
use a program in response to a keyboard. Every different note played must be represented by its
own set of oscil lators, fil ters, etc. Several copies of a Patch object must exist in order to handle
multiple notes. Also, programs in traditional analog synthesizers were difficult to recall (or
remember), so having a way of recalling a Patch’s settings would be beneficial.

Therefore, provide a way of externalizing the state of a Patch object in a file. Every time the
Patch needs to be duplicated or recalled, only the name of the file representing the Patch’s state
must be referenced.

Implementation Notes:
In the Soft-Synth framework, the Patch class extends Synth_Module, thereby providing an
interface identical to any other module. This allows users to think of patch as a single object;
inputs can be assigned to just as any other module, and any module can request a sample from a
Patch object.

The class also provides a method add_member, which adds a module to the Patch. To ensure
synchronization, the method only adds the module if it is not already contained in the Patch.
Users must ensure that modules passed to this method are not contained in any other Patch object.

int Patch::add_member(Synth_Module &m){
if (members_.is_member (m)){ // trying to add member twice

return 0;
}else{

members_.add (m);
return 1;

}
}

When a Patch’s advance state call i s made, it calls the same method on each member. The
advance_audio method is shown below; advance_gate and advance_control are similar.

void Patch::advance_audio(){
for(Synth_Module *temp=members_; 0!=temp; temp=temp->get_next_module())
{

temp->get_module().advance_audio();
}

}

A method to set the output of a Patch is also included. The set_output method takes an internal
module, and adds it to a list of outputs.

int Patch::set_output(int patch_out, Synth_Module &m, int m_out, double m_vol){
if (is_member (m)){

outputs_->insert(patch_out, m, m_out, m_vol);
return 1;

}else{
return 0;

}
}
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A problem arises, however, in the fact that there wil l now be two sets of modules requesting
samples from a Patch object: internal modules requesting inputs, and external modules requesting
outputs. There is, however, only one get_sample method. This problem was solved by holding
negative channel numbers for all internal modules requesting input signals. An alternative to this
would have been to check whether the requester module was a member of the Patch. This,
however, would have been time-consuming, and would have required a reference to the calling
object to be passed to each get_sample call . So instead, a negative parameter returns input to
internal modules, while a positive parameter would returns output to external modules. A call
from an internal module with a positive parameter should not happen, but would not break any
abstraction barriers, as the output modules are already accessible by the module.

double Patch::get_sample(int out_channel)
{

if (out_channel > 0){
return outputs_->mix(out_channel);

}else if (out_channel < 0){
return audio_inputs_->mix(-out_channel);

}
return 0;

}

The program Reaktor creates objects called ‘macros’ that are similar to Synthesizer’s Patch
objects [5].

Multi-Patch

Problem:
Users will eventually wish to control their programs by passing it MIDI information.

Forces:
• MIDI presents data as periodic events, but modules expect digital audio signals
• Each Patch can represent one voice or note, but the maximum number of voices is not set

or known
• Notes must sound with li ttle delay after a note is pressed
• Many different types of MIDI data may be used to represent operations

Solution:

MIDI data

Multi-Patch

Controller

VH 1 Patch 1

<<provider>> <<requester>>

VH n Patch n

… …

VH data
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Therefore, provide an object called a Multi-Patch that handles interaction between user and
program. Separate notes that are being played simultaneously must produce separate frequencies,
so each note must be represented by a separate set of modules. Therefore, in every Multi-Patch,
include a number of identical Patch objects so that each of these may play a separate note.

There are two possible ways to assign notes to Patch objects. The first is to create a new Patch
object every time a new note is pressed. The second is to create a pool of Patches, and assign each
note to an existing object. The first approach allows for an expandable number of notes that at all
times matches the load applied by the user. This creation of new Patches can be time consuming,
which could lead to a noticeable delay between the time the note is pressed to the time the note is
heard. It also may consume memory or processor load to a point where the program will not run
properly.

The second approach limits the number of notes that can be played to a set number, and the
Multi-Patch must begin to drop notes when that limit is exceeded.2 The Patch objects are already
created, however, so no additional delay is incurred between the pressing and sounding of a note.
Also, delay time will not degrade because of an increasing number of Patch objects in use. The
main drawback to this approach is that notes must be cut off prematurely when the limit is
exceeded.

Both are viable solutions, but we chose the latter because of the reduced delay. This issue is
similar to the use of Thread Pool vs. Thread-Per-Request [6]. Thus, when more notes are played
than the synthesizer can produce (in our case, the number of Patch objects in use), one note must
be replaced. The criteria used to decide which voice to interrupt is called a voice replacement
scheme. These schemes may be random, or based on criteria such as lowest pitch, least recently
played, or most recently played. Whatever strategy is chosen, this Pattern will decide the replaced
note before it is needed, and keep track of it in case it is needed. This may take additional
computing time, but there will again be no additional delay when the note is struck.

Another problem arises in converting the MIDI information sent to the Multi-Patch into a stream
of samples that can be understood by the Patches. The first part of this problem is the fact that
MIDI represents notes by numbers, 0-127, and our objects must use a frequency instead of these
numbers. Therefore, include a lookup table inside our Multi-Patches that will convert these MIDI
note numbers into their frequency equivalents. This not only removes this task from individual
modules, but also allows for different tuning schemes to be utilized. This approach does,
however, eliminate the ability to manipulate the MIDI data being passed into the program.

The second part of this problem resides in the fact that MIDI data are not persistent events. In
other words, when a note is played, a signal is not held high until the note is released, instead, a
packet is sent informing of a note being pressed, then another packet is sent when the note is
released. Therefore, provide a voice handler class that will hold values such as note pressed and
frequency. This voice handler will then be referenced by the individual Patch objects like any
other module would be. Each Patch will have one voice handler object which passes signals
relevant to only that one Patch module, as well as one voice handler that will present signals
relevant to all Patch objects.

                                               
2 This is in fact no different from traditional instruments such as the guitar, which limits the musician to six
notes. The piano is a bit less limiting with eighty-eight possible notes.
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There are, however, many different types of MIDI packets that may be sent. So, instead of
implementing a channel for every possible type of packet, only implement a channel for the
common messages, and then allow the user to program separate messages over specific channels.

Audio Output

Problem:
Audio signals must eventually be passed out of the program in one form or another.

Forces:
• Users may wish to send output to a file or soundcard
• Soundcards usually have multiple output channels (left and right)
• Most systems wil l have interrupts, which will slow sown the processing of some samples,

but samples still must be produced at constant rate

Solution:
Therefore, contain all a program’s Synth Modules within an Audio Output object. The object will
be responsible for transferring data from the modules to the destination (a soundcard, file, or
other program). The single object will also handle multiple signals to handle stereo or multi-
channel outputs.

What’s more, the object will handle advancing modules in a program. It will hold a buffer to
prevent lost samples due to interrupts. It wil l also be capable of reducing the sample rate in case
of processor overload.

Implementation Notes:
This portion was implemented in assembly language. The code basically creates two buffers in
memory from which the sound card reads. The object writes samples to the first buffer while the
sound card is reading from the second. It continues to write samples until the buffer is full. When
the sound card is finished reading the second buffer, the Audio Output object repeats the process
on the second buffer.

Oscillator

Problem:
The most common way of producing signals is through general waveforms repeated at some
frequency.

Forces:
• Many different wave forms will be needed (either generated mathematically or by table

lookup), but all will be generated similarly
• Wave forms may be switched arbitrarily, and might be different in form
• Will be used differently LFO3 vs. Oscillator
• Needs to be fast / won’ t be accessed every sample

                                               
3Low Frequency Oscill ator (LFO): These objects are identical to regular oscill ators, except for the fact that
they generate signals which are several octaves lower, and thus need not be processed at such a high sample
rate.
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Solution:

Therefore, abstract away the actual shape of the wave forms by encapsulating the shapes in a
separate Strategy object. The Oscil lator class then can focus solely on frequency and progression
through a wave form. When actual samples are needed, the Oscil lator object may provide it’s
Strategy object with the progression through the current wave to retrieve actual sample values.
This allows frequency, ampli tude, and waveform to be changed at any time, even in the middle of
a waveform.

Also, the strategies used by the Oscillators may be quite abundant. They wil l, however, all be
stateless objects. Therefore, it is natural to implement them all as flyweights. This reduces the
amount of memory used by the strategies, and makes it easier to

Method calls to the Strategy object wil l be needed when a get_sample request is made of the
oscillator. This allows oscil lators being used only as control inputs (low frequency oscil lators) to
use less computation time than a regular oscil lator.

Implementation Notes:
The Soft-Synth framework implements the Oscillator as a sub-class of the Synth-Module class. It
implements both Ampli tude and Frequency Modulation. The class takes two channels of gate
inputs and two channels of control inputs. Oscill ators take no audio input signals.

The first gate input specifies the frequency of oscillation in Hertz. This value will most likely be
set by some form of user input, and thus wil l not change very often. The second gate input  is a
wave-sync that wil l reset the oscillator to the beginning of it’s waveform when the signal is non-
zero. This is useful when using an Oscil lator as an LFO, and resetting the waveform in response
to a key press.

void Oscillator::advance_gate(){
frequency_ = gate_inputs_->mix(1);
if (gate_inputs_->mix(2))
{

position_ = 0;
}
advance_control();

}

Oscillator
Oscillator_Strategy waveform_
int step_size_
int num_steps_
int position_
change_waveform (Oscil lator_Strategy &)

Oscillator_Strategy
compute ( int position )

Wavetable_Strategy
int wavetable []
compute ( int position )

Sinusoid_Strategy
int period
compute ( int position )
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The first control input specifies frequency modulation, where a positive value wil l increase the
frequency, and a negative one will decrease it. The second control input specifies amplitude
modulation. It is simply a constant that the output signal wil l be multiplied by. The variable
step_size_ is then calculated based on the value gotten from the FM input. This variable
corresponds to the decimal to be added to position_ every time the Oscil lator is advanced.

void Oscillator::advance_control ()
{

double FM_freq = control_inputs_->mix(1);
double temp_freq;
if (FM_freq > 0)
{

temp_freq = ((FM_freq / MAX_VALUE) + 1)* frequency_;
}
else
{

temp_freq = ((FM_freq / MAX_VALUE) + 1)* frequency_;
}
step_size_ = temp_freq / (SAMPLE_RATE);
amplitude_ = control_inputs_->mix(2) / MAX_VALUE;
advance_audio();

}

Another approach taken by the Reaktor [5] program is to provide separate modules for both
LFO’s and Oscillators. Also differentiating between waveforms generated by mathematical
formula and waveform stored in wavetables. Reaktor also allows switching between different
waveforms by multiplexing between several existing oscillators, in effect shutting off processing
for unused oscillators.

Shared History Processor

Problem:
Modules may have to keep track of previous samples.

Forces:
• Sample values must be recorded every time the sample is advanced
• Two modules may be keeping track of the same samples
• Number of samples to be kept track of may vary

Solution:

Therefore, provide a buffer class that will keep track of samples, and interface with processing
modules that need these values. The buffer class will act as a requester module, requesting
samples from any other module, but wil l define a separate interface for passing recorded values to
the processor. This buffer wil l be used by an arbitrary number of processing modules, thus
eliminating the need for each processor module to keep track of the same sample values.

*

Processor
Buffer buffer_

Buffer
int samples_ []
prev_sample ( int index)1
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For example, reverberation is produced by applying multiple delay effects to an audio signal.
Individual delay modules wil l receive a sample, and then play it back a fixed period later. Were
each delay unit to keep track of it’s own internal buffer, data would be repeated in each delay
unit. However, implementing the delay units as Shared History Processors allows the buffer to be
kept in a shared external buffer, thus reducing memory use.

The buffer must, however, keep track of the samples that will be needed by the processors. This
could be problematic because, as in the previous example, it is unlikely that all delay units will be
set to the same delay length; some may request a sample recorded 100 samples earlier, while
another may request one recorded 1000 samples earlier.

One possible solution is to have each processor specify to the buffer the number of samples it wil l
need it to keep track of. This, however, would require that the processor not only know how many
samples it needs, but also inform the buffer of that number every time it changes. A better
solution is to let the buffer decide how many samples to track based on its use by the processors.
Thus, every time a processor requests a sample that is no longer held in the buffer, the buffer can
increase the number of samples it holds.

Another problem raised by creating an external buffer is the question of which processor owns it.
In the case of internal buffers, each processor would own it’s own buffer, however, with an
external buffer, processors cannot automatically destroy their buffers. For this reason, it is easiest
to allow the Patch object to claim responsibil ity for both buffer destruction, and advancing the
state of the buffer.
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