
The Phrasebook Pattern
By Yonat Sharon and Rani Pinchuk

Abstract
The Phrasebook pattern is a technique to separate expressions in one language from the
main code that is written in another programming language. This is done by keeping the
expressions in a separate phrasebook. Any specific expression can be generated by
finding the appropriate entry in the phrasebook and substituting application parameters
into it. This separation makes maintenance easier both for the main application code and
for the foreign language code.

 - 1 -

PHRASEBOOK
Intent
When the application needs to execute, create or output expressions in another language,
keep these expressions in a separate phrasebook.

Motivation
Problem
Consider a bookshop application written in Perl that uses a relational database and SQL.
Users can search books by title, and the application will then display a list of books with
this title. The books are indexed by their ISBN, so in order to display information for any
of these books, the application needs to find its ISBN. This may be done by executing an
SQL statement:

$statement =
q(select isbn from book where title =

'Design Patterns');
$sth = $self->{DBH}->prepare($statement) ;
$rc=$sth->execute();

Listing 1 - SQL statement embedded inside Perl code

The SQL code is embedded into the application code, usually in different places. This
mix of two languages decreases the readability of the code and makes it harder to
maintain both the application code and the SQL code. Also, similar SQL statements,
perhaps differing only slightly, may appear in several places, thus making changes even
more difficult. Moreover, the programmer that maintains the SQL code, needs to know
Perl in order to find the SQL statements and to change them.

Solution
To avoid this, we can replace the inline SQL statements with calls to a PhraseGenerator
that is responsible for providing the necessary statements as shown in Figure 1. When a
specific SQL statement is needed, we ask the PhraseGenerator to generate it by
specifying its phrase lookup key and parameters (if any):

$statement = $sql->get("FIND_ISBN",
 {title => "Design Patterns"});
$sth = $self->{DBH}->prepare($statement) ;
$rc=$sth->execute();

Listing 2 - Phrase lookup for the SQL statement

We keep the actual SQL statements and their corresponding lookup keys in a separate
phrasebook that is read and parsed by the PhraseGenerator. We can use XML to wrap
the SQL and the lookup keys:

 - 2 -

...
<statement name="FIND_ISBN">

select isbn from book where title = '$title'
</statement>
...

Listing 3 - Phrasebook entry of the SQL statement

The phrasebook entries may contain placeholders (like the $title above) and simple
control structures (if-else, while loops) that will be substituted with actual values when
the statement is requested.

 Bookshop PhraseGenerator
+find_book(title:) +new(phrasebook)

+get(key:, values:)

...
$statement=

$sql->get("FIND_ISBN",
{title=>$title});

...

SQL Phrasebook
...
<statement="FIND_ISBN">

select isbn from book
where title='$title'

</statement>
...

Figure 1 - Bookshop Perl application using a separate SQL phrasebook

So instead of having SQL statements embedded on the main application code, we
generate these statements from generic phrases.

Statically typed solution
The get method above doesn�t provide type checking (that is not provided anyway by
Perl). If we want to have type checking (in C++ for example) we can create a special
method for each SQL statement instead of using only one method (get) with keys:

statement = sql.find_isbn("Design Patterns");

Listing 4 - Phrase lookup with static type checking

In this case we need two classes, as shown in Figure 2: the first is the same
PhraseGenerator that we used above with its get method; the second is a wrapper
around it that provides one method for each generic phrase in the phrasebook
(BookPhraseGenerator).

 - 3 -

BookPhraseGenerator PhraseGenerator
+find_isbn(title:)
...

+new(phrasebook)
+get(key:, values:)

$statement=
$sql->get("FIND_ISBN",

{title=>$title}); SQL Phrasebook
...
<statement="FIND_ISBN">

select isbn from book
where title=´$title´

</statement>
...

Bookshop
+find_book(title:)

Figure 2 - The Bookshop application with a phrasebook-specific statically checked wrapper class

Both these techniques allow us to provide custom SQL statements, without polluting the
rest of our code with SQL.

Applicability
Use this pattern when

1. The program needs to execute, create or output expressions in an external format or
foreign language (e.g., English, SQL, PostScript); and

2. The expressions can be separated or combined to "phrases", so that these phrases are
unrelated or have a simple relation (e.g., linear ordering). A phrase may contain
anything from a single atom of the foreign language, to the complete output of the
program (e.g., error messages, database transactions, documents); and

3. The phrases can be generated from generic phrases by applying simple
transformations (e.g., copying, simple variable substitution).

Structure

SpecificPhraseGenerator PhraseGenerator
+foreign_phrase_1(params)
+foreign_phrase_2(param)
...

+new(phrasebook)
+get(key:, values:)

Phrasebook
phrase 1
phrase 2
...

Client

Figure 3 - Class structure of the Phrasebook pattern (dashed lines mark optional wrapper)

Participants
• Phrasebook

- Lists the foreign programming language generic phrases.

 - 4 -

- Associates each generic phrase with a lookup key.

• PhraseGenerator
- Prepares a Phrasebook for usage.

- Translates lookup keys and parameters to specific foreign language phrases.

• SpecificPhraseGenerator (optional - for static type checking)
- Has a method for each generic foreign language phrase.

- Calls PhraseGenerator with the method's parameters to create specific foreign
language phrases.

• Client
- Calls the PhraseGenerator (or SpecificPhraseGenerator) object to create phrases in

a foreign language.

- Uses the phrases by invoking them, displaying them, sending them etc.

Collaboration
Without static type checking:
1. The Client initializes the PhraseGenerator object with a Phrasebook for the foreign

language.

2. The Client requests a specific phrase from the PhraseGenerator using its lookup key,
and supplies parameters for it.

3. The PhraseGenerator object finds the generic phrase in the Phrasebook and
substitutes the parameters into it. The resulting phrase is returned to the Client.

4. The Client uses the phrase.

With static type checking:
The SpecificPhraseGenerator object acts as an intermediate between the Client and the
PhraseGenerator object. It performs the same operations as the Client in the typeless
scenario. The collaboration between the SpecificPhraseGenerator object and the actual
Client is as follows:

1. The client calls one of the methods of the SpecificPhraseGenerator in order to get a
specific phrase in the foreign language, passing the necessary parameters.

2. The SpecificPhraseGenerator returns the phrase that results from substituting the
parameters into the corresponding generic phrase in the Phrasebook.

3. The Client uses the phrase.

Consequences
The pattern has the following advantages:

1. Separation of languages. The foreign language code is separated from the rest of the
application. This makes it easier to change and manage these artifacts independently.
There is less danger that refactoring and bug fixing in one language will affect the
code in the other language. This will also make the application code more readable
and the foreign language code more accessible since it is not scattered in many

 - 5 -

different places.

2. Clear-cut code-ownership. It is easier to divide the responsibility for the code
according to expertise. People maintaining the code in one language do not need to be
familiar with another language in order to maintain their code.

3. Dynamic language selection. It is possible to change the foreign language even at run
time. To change the foreign language, only the phrasebook needs to change. Thus, it
is possible to have several phrasebooks for several languages. This may be useful for
localization and for supporting different targets for the foreign language phrases (for
example, a drawing application may support exporting the drawing to PostScript,
PDF and PICT by using a different phrasebook for each of these formats).

The pattern has the following liabilities:

1. More complex design. The extra level of indirection introduced by the
PhraseGenerator adds to the complexity of the design.

2. New format. The foreign language programmers need to learn the phrasebook format.
A way to facilitate this might be providing a tool to manipulate the phrasebook (like
resource editors that are used to manipulate string tables - see Known Uses).

3. Interface inflation. The statically checked variation of the pattern requires adding a
new method each time a new entry is added to the phrasebook. If the phrasebook is
likely to contain many entries, this class may become too big.

Implementation
1. Static prototype checking. Each phrasebook entry has a specific prototype it supports:

the number, names and types of parameters it needs and its specific lookup key. If a
requested phrase does not match the prototype of any entry in the phrasebook, a
runtime error may occur. To catch these errors during compile time in statically typed
languages, we can wrap each specific Phrasebook with the SpecificPhraseGenerator
class. However, this requires changing the class interface whenever a new entry is
added to the phrasebook, so the tradeoff is between prototype-safety and flexibility.

2. Phrasebook format. Basically, the phrasebook is a list of {key, expression} pairs. To
minimize the effort required to learn how to use the phrasebook, it is best to create it
in a familiar or easy to learn format (like XML that was used in the Motivation).
Another option is to create a friendly tool to manipulate phrasebooks.

3. Phrase parameters. If we want to be able to substitute parameters into generic foreign
language phrases, we need a mechanism to identify placeholders for these parameters
in phrasebook entries. Possible mechanisms are:

a) Using escape sequences. For example, the character "$":
select isbn from book where title = '$title'

b) Using parameters declaration. For example
#define FIND_ISBN(t) select isbn from book where title = 't'

c) Using named elements. For example:
select isbn from book where title = '<title>Refactoring</title>'
This mechanism enables having default values when some parameters are
missing.

4. Control structures in phrasebook entries. The parameters of the phrasebook entries

 - 6 -

can affect the structure of the resulted phrase. For example, here is a specification to
display either a list or a "not found" message:

<IF condition="no_matches">
Sorry, no matches found.

</IF>
<ELSE>

<WHILE condition="next_match">
$name

</WHILE>
</ELSE>

Listing 5 - Phrasebook entry with control structures

However, it is important not to go too far and let application logic slip into the
structure of phrasebook entries. (For a more detailed discussion about keeping
application logic out of phrasebook entries see The Skin Pattern (1) Implementation
section.)

5. Coupling phrase execution with generation. When all the generated phrases are
always used in the same way (e.g., always displayed or always saved to file) it is
possible to add this responsibility to the PhraseGenerator. However, this will make it
harder to change the target of the phrases or to aggregate them into a bigger story.

Sample Code
SQLStatement class is a PhraseGenerator Perl class that lets us manage centrally
parameterized SQL statements.

use SQLStatement;

open the phrasebook
my $sql = new SQLStatement("library.xml");
...
generate an SQL statement
$statement = $sql->get("FIND_ISBN",

{ title => $title });

Listing 6 - Perl program that uses an SQL phrasebook

The phrasebook is written in a separate file as XML document:

<?xml version="1.0"?>
<!DOCTYPE sql [
<!ELEMENT sql (statement)*>
<!ELEMENT statement (#PCDATA)>
<!ATTLIST statement name CDATA #REQUIRED>
]>
<sql>
<!-- get the isbn according to the title -->
<statement name="FIND_ISBN">
select isbn from book where title = '$title'

</statement>
...

</sql>

Listing 7 - SQL phrasebook file

Each entry in the phrasebook has a name attribute that is used as a lookup key. The
entries can specify parameters by using the $ escape character.

 - 7 -

Known Uses
The SQLStatement class is used by EM-TECH group for several Web application
projects. One example is the DHL Millenium Information Center that was used by DHL
world wide in the first days of the millenium in order to have real time status reports from
all over the world.

String tables, commonly used to make user interface easy to localize, are a simple
instance of Phrasebook. The foreign language here is a human language (like English).
The string table serves as a phrasebook: it contains string lookup keys and their
associated string values. The string tables can be changed without affecting the main
application code. When a specific message needs to be displayed, the application
searches the string table for the string with the appropriate lookup key. Apple MacOS (2),
Microsoft Windows (3) and some application frameworks use string tables.

Many text editors have a user-configurable list of tools that can be invoked by the editor.
Each tool is defined by a name and a shell command. The shell command may contain
placeholders to parameters that are supplied at runtime by the editor application. For
example, the Perl interpreter may be invoked on the active file by: perl %f where %f will
be substituted with the current file name. The tool list is the phrasebook, and the shell
command language is the foreign language.

Many code generators use a phrasebook with code snippets or complete source files. For
example, Microsoft Visual C++ has a feature called Custom AppWizard (4) that
generates source files from "TextTemplates". These templates can contain "macros" that
are substituted with actual values when the files are generated. For example: class
$$APP_CLASS$$ can be used to generate a class declaration. The class CCustomAppWiz is
the PhraseGenerator class, its member m_Dictionary is the phrasebook, and its method
ProcessTemplate is used to generate the code phrases.
The Linux administration tool linuxconf (5) uses Phrasebook for localization. All the text
for its user interface is placed in a phrasebook file. Each phrasebook entry may contain
printf-like parameters. For example: Jobs listing for %s.

Related Patterns
The Skin pattern (1) guides to create a view specification language. Then it guides to use
this language to create Skins that are templates for views. It can then use Phrasebook to
access skins and generate views. In this case, each skin is a generic phrase in the view
specification language of the application.

After the foreign language phrases are generated, they can be encapsulated inside
Command (6) objects.

Phrasebook can be used instead of Builder (6) if the product is in a foreign language (e.g.
TeX or RTF) and the relations between its elements are simple (e.g., the product is
simply an aggregation of its elements). Each element can be represented by a foreign
language phrase. This allows more flexibilty and easier configurability, by using different
phrasebooks instead of different subclasses of Builder. It also makes it easier to have
complex elements, since these elements are maintained seperatly in the phrasebook.
Both these patterns separate the foreign language from the main code. Builder is better
when the relations between foreign language phrases are complex, while Phrasebook is
better when the phrases themselves are compex, as shown in Figure 5. When both the
phrases and their relations are complex, it may be possible to use a combination of

 - 8 -

Builder and Phrasebook: The phrases are created using Phrasebook and assembled using
Builder.

C
om

pl
ex

ity
 o

f P
hr

as
es

Complexity of Relations between Phrases

Builder

Phrasebook

Figure 4 - Applicability domains of the Phrasebook and Builder patterns

Acknowledgements
We would like to thank our PLoP2000 shepherd Alejandra Garrido for her insightful
comments, and the writers' workshop participants for their helpful feedback.

We thank EM-TECH group for providing the environment where the SQLStatement class
could be created, and for providing resources that helped in writing the pattern.

References
1. R. Pinchuk and Y. Sharon. The Skin Pattern. In this volume.

2. Apple Computer, Inc. Inside Macintosh: Macintosh Toolbox Essentials. Apple
Developer Connection, 1996. http://developer.apple.com/techpubs/mac/Toolbox/Toolbox-2.html.

3. MSDN Library. Platform SDK: Windows User Interface. Redmond, MA: Microsoft,
1998. http://msdn.microsoft.com/library/psdk/winui/resource_1inn.htm.

4. MSDN Library. Visual C++ Programmer's Guide. Redmond, MA: Microsoft, 1998.
http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_creating_custom_appwizards.htm.

5. C. Williams. Translation system for Linuxconf.
http://www.solucorp.qc.ca/linuxconf/translat/translat.html.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

