Building Frameworks and
Applications Simultanously

Andreas Ruping

sd&m software design & management AG

Thomas-Dehler-Stral3e 27
D-81737 Munchen, Germany

e-mail: rueping@acm.org

Introduction

The decision to build a framework is often made after having built a number of
similar applications successfully. Maybe a company has been selling similar systems
to various customers for many years; building a framework can then reduce the effort
and the time needed to build more applications. A framework evolves: ideally, the
evolution process starts with the experiences gained with previous applications; the
framework starts as a white-box framework and matures into a black-box framework
as it is being used [2][11].

Still, this isn’t always possible. Imagine the following scenario:

You’re starting a large project with several teams building various applications. One
teamn has to provide all kinds of shared functionality — modules that many applica-
tions will need, but which should be developed only once. Sometimes such modules
are rather simple: a module for computing time and date, for instance. But
sometimes they aren’t so simple: many applications may need database access, but a
general module for database access isn’t trivial. Moreover, the more complicated
shared modules often vary slightly from application to application.

To this end, the idea of building a framework for the functionality shared across
applications springs to mind. This framework should offer functionality that many
of the modules can use which will be built in the course of the project.

However, you cannot wait with the design of such a framework until you have built
a number of applications — the framework would be available too late to be used in
the project. The framework must be built in parallel to the applications that are going
to use it.

Designing a framework in such a context is hard. You cannot draw on the experi-
ences gained with previous applications. If you want to be successful, you have to
take care to keep the framework simple, and you have to collaborate closely with the
teams who will use the framewortk.

This paper presents a pattern language that helps the framework developer in such a
situation. Most of the patterns are specific to building a framework and its applica-
tions simultanously. Some patterns are variations of patterns that apply to framework
development in general; however, their focus is shifted towards the special context.

Copyright © 2000 by Andreas Riiping.
Permission is granted to copy this paper for the PLoP 2000 conference. All other rights reserved.

Guidelines
for the
Readers

Overview

The Project

This paper is organised as follows. We start by introducing a running example. This
example describes a framework for database access and is taken from a large project
in the insurance industry.

The actual pattern language follows. It consists of seven patterns mined from this
project. Each pattern includes a problem statement, a discussion of forces, and a
solution. Each pattern is explained with the running example and is related to other
patterns. The problem section and the first paragraph of the solution section of each
pattern form so-called pattlets — thumbnails (printed in boldface) that give you a
quick overview.

We conclude with a discussion of known uses.

The following diagram gives an overview of the pattern language. Patterns that are
connected influence each other.

BUDGET
FACTOR 2.5 \ DOUBLE CHANGE
/ REQUEST
FRAMELETS FOR

MULTIPLE USE \

‘ SMALL
FUNCTIONS
Two PILOT
APPLICATIONS

USER TESTS BASED ON

INVOLVEMENT — | PILOT APPLICATIONS

Figure 1 Overview of the pattern langnage

Running Example

A German insurance company faced the problem of having a large number of old
legacy applications which didn’t work together well. The company felt it was time for
a change; they decided to build several new systems, including the following:

* apolicy system for health insurance

* apolicy system for life insurance

* apolicy system for property insurance

* aparty system that stores information about the persons involved in insurance
contracts, either as insured persons, premium payers, or others

* apayment system that deals with the payment of both premiums and benefits

* acommission system

* aworkflow system

* aprinting system that prints all kinds of insurance documents.

The
Framework

In 1998, a large project was set up. Mixed teams from the insurance company and
various software companies, ranging from 8 to 40 people, were formed to build the
new systems.

One special team was given “horizontal tasks™: the specification, design, and coding
of modules that many, perhaps all other teams could use. The motivation was to save
time and costs, as well as to ensure a consistent architecture across the new systems.

All systems process large amounts of data stored in a relational database system;
therefore each system needs a database access layer, as described in Figure 2. The
access layers ensure that the applications can work on objects defined in the appli-
cation domain and don’t have to deal with the objects’ physical representations.

§
2 £
illE glls
£ 2 c 2 g
1] z 5 %
k73 - ‘& 2 2
& 5 2 3 o
£ ; E life insurance health insurance property insurance xz £
3 3 8 policy system policy system policy system g £
‘ d.a.l. I I d.a.l. I I d.a.l. I I data access layer ‘ ‘ data access layer ‘ ‘ data access layer I I d.a.l. I I d.a.l. I

2L
—

Figure 2 An insurance system

It soon became clear that providing database access would be among the project’s
horizontal tasks. Because the data access layers needed by the various new systems
are architecturally similar but differ in many details, we decided to build a data access
layer framework.

This framework features the following major hot spots:

* The framework provides views on domain-specific objects, such as policies and
products. The mapping of domain-specific objects onto database tables differs
from application to application. The framework abstracts over an application’
data model.

* Insurance companies must keep versions of their application data. Access
functions must be able to retrieve historical versions, for instance of a policy,
from the database when necessary. However, the extent to which versioning is
necessary differs from application to application.

data access static knowledge

—

data model

object layer

=
A A A A
q:s v v v v historical data mgmt.
5 o IR g
A A A A
EamE:
e N 8-
| N W W |
Yy VY vy VY

Figure 3 The architecture of a data access layer framework

The diagram in Figure 3 describes the architecture of the data access layer framework
which itself consists of three layers.

The object layer represents the interface to the application program. It puts smaller
entitites together to form complex, domain-specific objects. Application developers
must provide the definition of the domain-specific objects through meta infor-
mation. The framework includes an abstract class for the object layer. It also includes
a mechanism that generates a concrete class for each domain-specific object from the
meta information.

The logical layer manages the versioning of logical entities. The framework offers
two abstract classes: one for entities that need versioning and one for entities that
don’t. Application developers define a concrete class for each logical entity and let it
inherit from one of the abstract classes.

The physical layer stores and retrieves objects in the database. Application devel-
opers provide the mapping of logical entities onto database tables in the meta infor-
mation. Again, the framework provides a mechanism that generates concrete classes.
For each logical entity one concrete class is built which includes the actual access
functions with SQL statements.

1

Problem

Forces

Solution

Example

Framelets for Multiple Use

How can you justify building a framewotk simultanously to the applications
that are going to use it?

There is some functionality that several of the applications-to-be will share. They will
use it in slightly different ways, but there is a common abstraction. However, these
applications don’t yet exist, but will be developed in the same project in which the
framewortk is going to be built.

In addition, the potential users of the framework might have competing interests in
what the framework should do and how. Worse still, some of these conflicts might
come up later, when the framewortk is already under development.

The literature on reuse has a rule of three’ which says that an effort to make software
reusable is worth it only when the software is reused at least three times [10][18]. A
framework needs to be used for three different applications before the break-even
point is reached and the investment pays off.

Building a framework takes more time than building a normal application. A rough
estimate is that framework development is two to three times longer, but the exact
figure depends upon the framework’ size and degree of abstraction.

You don’t have much time to build your framework, though. A specification of the
framework has to be available when the other teams start designing the applications
that will use the framework. A first version of the framework has to be completed
when the other teams start implementing, at the very latest.

Build a framework only if, first, you can make it quite simple and, second, you
can expect it to be used by at least three, better four ot five applications.

* The framework should be essentially a framelet [15]. A framelet is a very small
framework that defines an abstract architecture not for an entire application,
but for some well-defined part of an application. It follows the “don’t call us,
we call you” principle, but only for that part of the application.

* To keep the framework simple, focus on a small number of cote concepts.
Avoid too much abstraction. A framework with too much abstraction tries to
do too much, and is likely to end up doing little.

* Three expected uses is a must, even for a small framework. Four or five
expected uses is better, since as a project goes on, things can change, applica-
tions may be cancelled, and you may lose a potential user of your framework
more quickly than you might think.

In our large insurance project, at first it looked as if six applications were going to
use the database access framework. In the end, one of them didn’t for “political”
reasons — a consequence of teams from many companies with differing goals
working on one large project. With five applications remaining (and more expected),
building a framework was still justified.

When assembling the requirements for the database access framework, we had to
work hard to exclude any application logic from the framework. Many applications
use the framework’s versioning features, but all had different ideas on how to use
them. We had to fight to avoid a versioning system that could be used in many
different modes. Had we agreed to include all the features that some of the other
teams desired, it would have blown up the framework to incredible proportions.

Discussion

2

Problem

Forces

In order not to over-complicate the framework, we also had to restrict the mapping
of logical entities onto physical tables. Only simple mappings are possible; advanced
techniques such as overflow tables had to be left to the applications. Generating the
database access functions would otherwise have become unmanageable.

In their patterns for evolving frameworks, Don Roberts and Ralph Johnson claim
that THREE EXAMPLES [11] should be developed before building a framework.
While the context of that pattern is a scenatio in which youre able to draw on the
experience gained with building example applications, the context here is a project in
which a framework has to be built simultanously to the applications that use it.

Juxtaposing the two scenarios, you can conclude that, if you can’t draw on the
experience of example applications, you can build a framework only if it is possible
to keep the framework simple. It’s a good rule of thumb for a framework to be simple
and modeless anyway [13]. But under these specific conditions — time constraints,
no precursor applications — keeping the framework simple is crucial.

In addition, because you cannot rely on expetiences gained previously with THREE
EXAMPLES [11], it’s important to find TWO PILOT APPLICATIONS as soon as the
framework project starts.

Both the number of expected uses and the relative simplicity of the framework are
not only crucial for the success of a framework built in this particluar context, but
they also form the basis for management issues concerning team and budget
(BUDGET FACTOR 2.5).

Budget Factor 2.5

What budget do you calculate for your framewotk at the beginning of the
project?

Building a framework takes more time than building a normal application. A rough
estimate is that framework development requires a two to three times larger effort,
but again, the exact figure depends upon the framework’s size and degree of
abstraction.

With the framework and the applications being built simultanously, you, as the
framework team, sometimes have to do several things at a time: framework
development, framework maintanance, and coaching, This is impossible if you don’t
have enough skilled people.

Despite the larger effort, you won’t have much more time for building the framework
than you would have had for an ordinary module. Many other teams will be waiting
for your results; if you don’t manage to get the framework ready in time, this will be
extremely expensive.

You can’t add more people to the framework team when the deadline is approaching

and the schedule is getting tight. Adding people to a late project makes the project
later [1].

Solution

Example

Discussion

Calculate about two and half times the budget you would need to build a
single application. Find a team that brings the necessary skills for framework
development. The team should be latge enough from the start — about twice
as many people as you would need to build a single application.

The extra budget is necessary for the following reasons:

. Finding the right abstractions isn’t easy. Designing in the abstract needs more
time and cross-checks between colleagues than working on a concrete level.

. The framework team must offer coaching to the other project teams who use
the framework.

It can be difficult to argue that such a comparatively large budget is justified. You can
argue along the following lines:

* If at least three applications will use the framework, developing the framework
will still pay off, despite the larger budget.

* Coaching the users may cost time and effort, but it contributes significantly to
the success of the overall project.

It took us about 30 person months to complete the database access layer framework.
Our estimation was that it would have taken about 12 person months to develop a
database access layer for one specific application that is equally powerful with respect
to business objects and versioning, (However, exact figures would depend on the size
of the application’s data model.) Given the fact that framework instantiation also
takes time, three instances of reuse seems to be the break-even point in our example.

Five people were involved in building the data access layer framework, altough some
only with a small percentage of their time. A stable core team of two people worked
on the framework full-time. Developing the framework extended over about a year.
When it came to introducing the framework into the applications, these two people
were faced with the problem of doing three things at a time: maintaining the just
released version, preparing a new version, and coaching. Though we eventually
managed this, we had some delays. We felt it would have taken a team of about four
people to deliver the releases in time, and to support the other teams simultanously.

In his generative development-process pattern language, Jim Coplien explains that it
is important to SIZE THE ORGANISATION [4] and to SIZE THE SCHEDULE [4] when
building a software development organisation in general. The importance of having
the right number of people, as well as the right people from the start is even more
true for building frameworks, since the additional level of abstraction makes adding
people to the project even more difficult.

The budget factor of 2.5 is closely related to a rule of three’ from the literature on
reuse, which says that the effort to build reusable software is about three times the
effort to build non-reusable software [10][18]. The exact figures in the literature vary.
A budget factor of 2.5 is fine, keeping in mind that we are focussing on small frame-
works (FRAMELETS FOR MULTIPLE USE). The following estimates relate framework
development, application development (without a framework), and framework
instantiation (building a concrete application with a framework):

framework development = 2.5 * application development

3 * application development = framework development + 3 * framework instantiation

framework instantiation = 1/6 * application development
The increased budget is a precondition for coaching activities. It is therefore essential
for the framework’ success since without reasonable USER INVOLVEMENT and
coaching, failure would be likely.

3

Problem

Forces

Solution

Example

Two Pilot Applications

How can you find out the requirements fot your framework?

There is some functionality that several of the applications-to-be will probably have
in common. They will use it in slightly different ways, but there is a common
abstraction.

However, none of these applications have been built so far. Moreover, you can’t wait
until a few applications have been built. You must perform a requirements analysis
for the framework at the same time as the other teams perform the requirements
analysis for the actual applications. It’s hard to come up with the requirements ahead
of time.

You have to find the right abstractions for your framework.

The other teams will place many, possibly conflicting requirements on your
framewortk. If you try to please everybody, the framework will become very complex,

and probably will ultimately fail.

Find two pilot applications that will use your framework.
* The pilot applications must be fairly typical.

* The pilot applications should be rather important, so as to keep in close touch
with some of the prominent users of the framework.

* The pilot applications must be applications that are being built relatively early
in the time frame of the overall project.

Collaborating with the teams who wotk on the pilot applications will increase the
knowledge exchange in both directions: you'll get feedback on how good your
framework is, and the other teams will learn how to use it. Pilot applications will also
force you to a policy of eatly delivery, which is well-established strategy for project
risk reduction [3].

Unfortunately, pilot users can get the impression that they’re doing your work when
they use the framework in a very early stage, when its functionality is still incomplete
and it still has a few bugs. Be aware of this, and make clear to the pilot users that they
have the chance to influence a system they’ll have to use.

The fact that there are two pilot applications will help you understand how important
certain requirements are. With two pilot users it’s easier to tell whether a required
function is crucial or just nice to have.

On the other hand, more than two pilot applications can become unmanageable and
will probably do more harm than good. You can’t do everything at a time.

Among the new systems, the health insurance system is a very typical one. We had
many discussions with the team that built this system. These discussions particularly
helped shape our understanding of two-dimensional versioning of application
data — versioning that differentiates between when a change becomes effective and
when it gets known. It’s a subtle topic and it was quite significant for our require-
ments analysis and for our design in a very eatly stage of the project.

Not until we also got into detailed discussions with the team who built the new party
system did we feel we were on safe ground, though. The new party system has
slightly different requirements on application data versioning, Both systems comple-
mented each other well as far as architectural requirements are concerned.

Discussion

4

Problem

Forces

Solution

Collaborating with the pilot users is a kind of USER INVOLVEMENT, but it’s actually
more than that. USER INVOLVEMENT has the primary goal of achieving a better
understanding of the framework among the users once the framework is released,
whereas the knowledge exchange with the pilot users is bi-directional.

The importance of feedback from users is generally acknowledged. In his generative
development-process pattern language, Jim Coplien stresses that it is important to
ENGAGE CUSTOMERS [4] in particular for quality assurance, mainly during the
analysis stage of a project, but also during the design and implementation stages.
Along similar lines, speaking of customer interaction, Linda Rising emphasizes that
ITs A RELATIONSHIP NOT A SALE [16]. Speaking openly with customers — the
framework users in this case — will give you valuable feedback about your product.

The pilot applications are not only useful for finding out the requirements for the
framework; they also form the precondition for setting up TESTS BASED ON P1LOT
APPLICATIONS.

Small Functions

How can you break down the functionality of your framework into interface
functions?

Your framework is a framelet that covers a well-defined part of an application.
Although the framework follows the “don’t call us, we call you™ principle for that
part of the application, it has to be integrated with the rest of the application. It
therefore has to offer an interface to the main event loop of the complete appli-
cation.

A framework with a relatively small number of functions is more easily understood.
A framework with relatively simple functions is more easily understood.

However, you need to put a certain amount of functionality into your framework.
You can choose either a larger number of less powerful functions or a smaller
number of more powerful functions.

Different applications will probably call the functions of your framework in slightly
different ways.

Favour a larger number of less powetful functions over a smallet number of
more powetful functions.

* The functions the framework offers will be better understood.

* Smaller functions have a better chance of meeting the users’ needs, since they

are less specific to a certain context.

* A larger number of smaller, somewhat atomic, functions allows for more
combinations, and hence for an increased configurability on the application’s
side.

The price you have to pay for this strategy is that you cannot minimize the number
of functions in the framework’ interface.

Example

Discussion

5

Problem

Forces

10

The data access layer framework allows loading of business objects into its cache
where they can be processed. Typically, an application loads a policy object and
changes it, thereby also changing the policy’s state which can be active, under
revision, or offered to customers. What happens when a policy should be loaded
which is already in the cacher? Should it be updated? Should the version in the cache
be used instead? Different applications have different requirements. Some applica-
tions even need to define a priority among states; for instance, an active object should
be overridden by an object under revision but not vice versa. We refused to include
such a logic into the framework. Rather we implemented two functions: one that tells
applications whether a certain object is already available in the cache, and another
that loads objects. Applications can combine these functions to implement their
specific logic.

Another example: the data access layer keeps track of which objects have been
changed. At the end of a session applications can commit all or some of the changes
to the database. We decided not to implement a complex function that saves all
changed objects, but, again, decided to offer two functions: one that lists all changed
objects, and one that saves individual object to the database. Applications can
combine these functions to implement their strategy of which changes should be
committed to the database as they see fit.

The first pattern to this collection of patterns, FRAMELETS FOR MULTIPLE USE, says
that a framework for the functionality shared by several applications of a large
project should be relatively simple and that functionality should be included if it is
really necessary. In contrast to that pattern, this pattern assumes that a certain
functionality is not debatable but strictly necessary, and deals with the question of
how it can be implemented in such a way that different applications can use it most
easily.

The suggestion to have small functions is similar to Don Roberts’ and Ralph
Johnson’s suggestion to build frameworks from FINE-GRAINED OBJECTS [11]. Itis
also related to the observation that small modules are more likely to be reusable,
because smaller modules make fewer assumptions about the architectural structure
of the overall system [9]; hence the risk of an architectural mismatch between
components is reduced.

User Involvement

How can you make sure that members of the other teams will be able to use
yout framework when they build their applications?

Other teams depend on your framework in order to complete their applications, that
is, to be successful in what they’re doing, They want to know what the framework
does and how it works. That’s fair enough; you should let them know.

Empirical studies have shown that most people are willing to reuse software if it fits
their needs [8]. You can therefore assume that the other teams are generally willing
to use the framework, provided you can convince them that the framework offers
the necessary functionality and that using the framework is easier than developing
the functionality from scratch.

Solution

Example

Discussion

11

Frameworks often trade efficiency for flexibility, at least to some degree [6]. When
efficiency is critical, applications built with the framework may need some fine-
tuning, Users might need help with this.

It’s your goal that the other teams use the framework successfully. If they don’t, the
failure will be blamed on you, the framework team, rather than on them, the appli-
cation team.

Involve the teams that use your framework.

You must show the users how they should use the framework. The users must getan
understanding of the framework’ feel, so that they understand what they can and
what they cannot expect from the framework and how they can integrate it into their
applications.

Possible actions include:

* Run common workshops. Explain the steps that users have to take when they
build applications with the framework.

* If possible, provide tools that support the framework’s instantiation process
and demonstrate how to use these tools.

. Offer tests of how an application and your framework collaborate.

* If necessary, show the users how to optimize the applications they are building
using the framework.

. Make tutorials and documentation of the framework available eatly.

The drawback is that involving the users a lot costs a lot of time, and will probably
take place while the framework is still developed further. You must make sure that
framework development doesn’t grind to a halt since youre busy running
workshops.

After the release of the first version of the framework, we had a two-week workshop
together with the health insurance system team. They wanted to know what they had
let themselves in for — how they could use our framework. We showed them, and
at the same time had the opportunity to fine-tune the two-dimensional versioning of
application data, since it was tested with real-life examples for the first time.

At some point we learned that the commision system had special efficiency require-
ments. The commision system team had to define a sophisticated mapping of
business objects onto database tables — more sophisticated than can be defined in
the meta information of our framework. We discussed a way to extend the data
access layer of their application with a special module that implements the mapping
they need.

Building a concrete data access layer doesn’t require programming, Instead, appli-
cation programmers replace generic parameters by actual parameters and choose
superclasses from the framework to inherit from (for instance templates including or
excluding versioning). This is a tedious and error-prone process that involves a lot of
copy and paste. To make working with the framework easier, we provided a script
that generates a concrete access layer from the application’s meta information. A
tutorial explains how to use this script, but we also demonstrated the automated
instantiation process to the other teams.

Unlike the collaboration with the TwO PILOT APPLICATIONS, this pattern doesn’t
put the emphasis on learning from the framework’ users (although it’s fine if you
do). The focus here is to provide a service to users and help them.

6

Problem

Forces

Solution

12

Involving the users and working jointly on their tasks is generally acknowledged as a
successful strategy to achieve this goal. In particular this is true of frameworks, due
to the additional level of abstraction and the sometimes non-trivial instantiation
process [5].

Moreover, listening to the users, running common workshops, etc. helps to BUILD
TRUST [16]. Trust is important since the users will view your framework as a third-
party component; they will only be successful building their application if the
framework works as it is supposed to.

When you explain how to use the framework, design patterns are often useful since
they describe typical ways in which application programs can be put together [12]. If
you consider developing a tool that helps users build applications, keep in mind that
a complicated mechanism is probably not justified. However, a simple script, perhaps
based on object-oriented scripting languages, might save a lot of work [14].

Involving the users through coaching or workshops requires a budget which is
sometimes underestimated at first. Calculating with a BUDGET FACTOR 2.5 is a
precondition to allow for the necessary coaching activities.

Tests Based on Pilot Applications

How can you test the framework sufficiently and reliably?

Testing is an important aspect of quality assurance. Testing is particularly important
when you build a framework, since bugs would quickly multiply and show up in all
applications that use the framework.

However, testing a framework is difficult [6]. Normally, when you test software, you
need test cases with sufficient coverage. Because of the framework’s inherent
abstraction, test case coverage for a framework is much harder to achieve.

In addition, it can be difficult to find realistic test scenarios when there are no
precursor applications that you could use.

Because your framework is a framelet, it covers only a part of an application and
therefore cannot be tested alone. You need applications that use the framework to
act as test drivers.

Set up regression tests based on the pilot applications.
In more detail, this means:

* Identify core components from the pilot applications that call the framework,
and use these components as test drivers for the framework.

* Find typical use cases from the pilot applications and maintain them as a test
suite.
* Shape these test cases into regression tests that you can run before every release

of a new version of your framework.

However, you can’t rely on the pilot applications only. You also have to include some
exotic scenarios in your test suite, ones that take your framework to its limits and that
can detect more unexpected bugs.

In addition, you need test cases that test the time performance and stability of your
framework under load.

Example

Discussion

7

Problem

Forces

Solution

13

The two-dimensional versioning of application data included in our framework had
to be tested with real-world examples. The first time we performed such realistic
tests was in a two-week workshop together with the health insurance system team .
In this workshop, we learned some subtle details about two-dimensional versioning
that we had not yet implemented. We were therefore able to fine-tune our framework
in a relatively early stage.

Moreover, the realistic examples that we used in the workshop represented typical
use cases for the health insurance system. We could therefore use these scenarios as
a test suite for the future versions of our framework.

The party system acted as the second pilot application for our framework. We
occasionaly tested together with the party system team, since this decreased the
necessary testing effort for both them and us. We were able to fix problems very
quickly, which was equally good for both teams.

Testing is an activity for that the TWO PILOT APPLICATIONS are particularly helpful.
Finding real-world test scenarios would otherwise be very difficult.

Joining efforts with the users for testing is a particular kind of USER INVOLVEMENT
from which both the framework developers and the users can profit. The framework
developers receive valuable test scenarios, while the users can run tests with the
framework developers readily available for immediate bug fixing if necessary.

Double Change Request

How can you make sute your framework isn’t overloaded with changes
following requests for additional functionality?

Independent of how much functionality you have already included in your
framework, some people will always ask you to include more. After all, if you add
functions to the framework, the members of the other teams won’t have to
implement these functions themselves.

If only one application is interested in the additional functionality, that team can
implement the desired functions on a concrete level at much lower costs than if you
implemented them on an abstract level.

However, if several applications need additional functionality, it’s probably useful to
include that functionality, for all the reasons that justify a framework in the first place.

Since many teams will use your framework for their applications, it’s no surprise that
they’ll come up with different, maybe conflicting requests for more functionality.

However, you have to keep the framework simple. In particular, you should avoid
that the framework can run in different modes. [13]

Accept change requests for additional functionality only if at least two teams
will use the added functions.

The following guidelines are helpful for dealing with change requests:

* Beactive. Once you have received a change request, it’s your job to figure out if
it could be useful for more than just one team.

* Allow users of the framework to add application-specific functions when their
change request is rejected.

Example

Discussion

14

When a change request is accepted, make sure that it doesn’t invalidate the
framework’s design. Apply refactoring techniques if necessary [7].

Normally the data access layer framework allows committing changes to the database
only at the end of a session. Both the workflow system and the printing system
required an exception to this rule; certain changes have to be visible on the database
immediately. Changing the framework’ session logic is rather difficult. We decided
to offer an additional function that commits changes to the database immediately,
provided these changes are atomic and consistent.

The party system needed special search functions that allow searching for a person
with an arbitrary combination of name, phone number, address, and others. The data
access layer framework doesn’t include arbitrary queries since they would be very
complex to implement in the abstract and they might easily ruin the system’ time
performance. Since no other team needed such queries we decided not to extend the
framework, but to show the party system team how to extend their concrete appli-
cation with the necessary functionality.

When we implemented the second release of our framework, we received several
requests from different teams for extending the two-dimensional versioning. It
turned out that what those teams needed could already be expressed. The desired
extensions would have made things a little more comfortable for the other teams.
However, different teams wanted different comfort functions which altogether
would have over-complicated our framework. We declined the change requests.

FRAMELETS FOR MULTIPLE USE requires that a framework for the functionality
shared by several applications of a large project be used at least three times. The fact
that the critical number is down to two for change requests is no contradiction:
adding functionality is less complex than building a new framework.

15

Conclusions

The patterns presented in this collection were all mined from the insurance system
project with which the patterns are explained. This project is representative in many
ways: the need for new applications, framework and applications built simultanously,
the time constraints, the involvement of several companies.

We made a lot of observations in this project about what worked and what didn’t
wortk, particularly as far as building frameworks is concerned [17]. We made some
observations many times as the project continued and chose to describe these obser-
vations as patterns.

Other teams made similar observations. Our insurance project also saw the
development of a printing system that receives textual building blocks from the
applications and puts them together to form complete insurance documents. The
printing system was designed as a framework that abstracts over the document
structure, which differs depending on the type of insurance.

This relatively simple framework was also built simultanously to the applications that
use it. The team reported that simplicity was crucial; they focussed on a small
number of core concepts so that the complexity was still manageable, given the short
time span in which the framework was built. The team also reported that joining
efforts with the other teams for requirement analysis, use cases, and tests was an
important prerequisite for the frameworks’ success.

It appears that developing frameworks and applications simultanously is indeed
possible, provided that the framework is quite small and that framework developers
and users collaborate closely.

Acknowledgements

Thanks are due to all colleagues who worked on the data access layer framework,
both inside and outside of sd&m software design & management, Munich, Germany.
Particular thanks go out to Rudolf Simson, Christian Kolle, Achim Kugler, and Hans
Zieret.

Thanks are due to Neil Harrison who, as the PLoP shepherd for this paper, made
several suggestions for improvement. In particular, Neil suggested to contrast the
patterns in this paper more with the related literature, and gave many helpful
references. Thanks for making me think in directions I didn’t think of at first.

Last but not least, I would like to thank the participants of the writers’ workshop at
PLoP 2000 in which this paper was discussed. Particular thanks go out to Paul
Asman, Steve Berczuk, and Phillip Eskelin for providing many detailed comments.

16

References

[12]

[13]

[14]

[13]

[16]

[17]

[18]

Frederick P. Brooks. The Mythical Man-Month. Addison Wesley, Anniversary
Edition, 1995.

Davide Brugali, Giuseppe Menga, Amund Aarsten. “The Framework Life
Span”, in Communications of the ACM, Vol. 40, No. 10. ACM Press, October 1997.

Alistair Cockburn. Surviving Object-Oriented Projects — A Managers Guide. Addison
Wesley, 1998.

James O. Coplien. “A Generative Development-Process Pattern Language”, in
J. Coplien, D. Schmidt (Eds.), Pattern Languages of Program Design. Addison-
Wesley, 1995.

Jutta Eckstein. “Empowering Framework Users”, in M. Fayad, R. Johnson,
D. Schmidt (Eds.), Buzlding Application Frameworks — Object-Oriented Foundations of
Framework Design. Wiley, 1999.

Mohamed E. Fayad, Ralph E. Johnson, Douglas C. Schmidt. “Application
Frameworks”, in M. Fayad, R. Johnson, D. Schmidt (Eds.), Buzlding Application
Frameworks — Object-Oriented Foundations of Framework Design. Wiley, 1999,

Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison Wesley,
1999.

William B. Frakes, Christopher J. Fox. “Sixteen Questions About Reuse”, in
Communications of the ACM, Vol. 38, No. 6. ACM Press, June 1995.

David Garlan, Robert Allen, John Ockerbloom. “Architectural Mismatch, or
Why its Hard to Build Systems out of Existing Parts”, in: Proceedings of the
International Conference on Software Engineering, ICSE 17. ACM Press, 1995.

Ivar Jacobsen, Martin Griss, Patrik Jonsson. Software Reuse: Architecture, Process
and Organization for Business Success. ACM Press, 1997.

Ralph Johnson, Don Roberts. “Evolving Frameworks”, in: R. Martin, . Riehle,
F. Buschmann (Eds.), Pattern Langnages of Program Design, Vol. 3, Addison-Wesley,
1998.

Ralph E. Johnson. “Frameworks = (Components + Patterns)”, in
Communications of the ACM, Vol. 40, No. 10. ACM Press, October 1997.

Art Jolin. “Usability and Framework Design”, in M. Fayad, R. Johnson,
D. Schmidt (Eds.), Buzlding Application Frameworks — Object-Oriented Foundations of
Framework Design. Wiley, 1999.

John K. Ousterhout. “Scripting: Higher Level Programming for the 21st
Century”, in IEEE Computer, Vol. 32, No. 3, March 1999.

Wolfgang Pree, Kai Koskimies. “Framelets — Small is Beautiful”, in M. Fayad,
R. Johnson, D. Schmidt (Eds.), Building Application Frameworks — Object-Oriented
Foundations of Framework Design. Wiley, 1999.

Linda Rising. “Customer Interaction Patterns”, in: N. Harrison, B. Foote,
H. Rohnert (Eds.), Pattern Langnages of Program Design, Vol. 4, Addison-Wesley,
2000.

Andreas Riping. “Experiences with Object-Oriented Frameworks”, in
J. Eisenbiegler, M. Haug, B. Kolmel, E. Olson (Eds.), Soffware Best Practices —
Object-Oriented Concepts. Springer, 2000 (to appear).

Will Tracz. Confessions of a Used Program Salesman. Addison Wesley, 1995.

