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Abstract 2.1 Context and Forces

The Proactor pattern should be applied when applications re-
Modern operating systems provide multiple mechanisms for quire the performance benefits of executing operations con-
developing concurrent applications.  Synchronous multi- cyrrently, without being constrained by synchronous multi-
threading is a popular mechanism for developing applica- threaded or reactive programming. To illustrate this, con-
tions that perform multiple operations simultaneously. How- sider networking applications that need to perform multiple
ever, threads often have high performance overhead and re-gperations concurrently. For example, a high-performance
quire deep knowledge of synchronization patterns and prin- wep server must concurrently process HTTP requests sent
ciples. Therefore, an increasing number of operating systemsfrgm multiple clients [1]. Figure 1 shows a typical inter-
support asynchronous mechanisms that provide the benefitgction between Web browsers and a Web server. When a
of concurrency while alleviating much of the overhead and (ser instructs a browser to open a URL, the browser sends
complexity of multi-threading. an HTTPGETrequest to the Web server. Upon receipt, the

The Proactor pattern presented in this paper describes server parses and validates the request and sends the speci-

how to structure applications and systems that effectively uti- fied file(s) back to the browser.
lize asynchronous mechanisms supported by operating sys- Developing high-performance Web servers requires the
tems. When an application invokes an asynchronous opera-resolution of the following forces:
tion, the OS performs the operation on behalf of the appli-
cation. This allows the application to have multiple opera- e Concurrency: The server must perform multiple client
tions running simultaneously without requiring the applica- requests simultaneously;
tion to have a corresponding number of threads. Therefore, o o o
the Proactor pattern simplifies concurrent programming and ® Efficiency:  The server must minimize latency, maximize
improves performance by requiring fewer threads and lever- throughput, and avoid utilizing the CPU(s) unnecessarily.

aging OS support for asynchronous operations. e Programming simplicity: The design of the server

should simplify the use of efficient concurrency strategies;

e Adaptability: Integrating new or improved transport
protocols (suchas HTTP 1.1 [2]) should incur minimal main-

. . . tenance costs.
The Proactor pattern supports the demultiplexing and dis-

patching of multiple event handlers, which are triggered by A Web server can be implemented using several concur-
the completionof asynchronous events. This pattern sim- rency strategies, including multiple synchronous threads, re-
plifies asynchronous application development by integrating active synchronous event dispatching, and proactive asyn-
the demultiplexing of completion events and the dispatching chronous event dispatching. Below, we examine the draw-

1 Intent

of their corresponding event handlers. backs of conventional approaches and explain how the

Proactor pattern provides a powerful technique that sup-

1 Alternative point of contact is thomgsrdan@deluxedata.com. ports an eff|C|ent' and flexible asynchronous event dIS'patCh-
2This research is supported in part by a grant from Siemens MED. ing strategy for high-performance concurrent applications.
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2.2 Common Traps and Pitfalls of Conven- Figure 2: Multi-threaded Web Server Architecture
tional Concurrency Models

Synchronous multi-threading and reactive programming are socket call waiting for a client connection request;
common ways of implementing concurrency. This section

. . . 2. A client connects to the server, and the connection is
describes the shortcomings of these programming models.

accepted;

3. The new client's HTTP request is synchronously read

2.2.1 Concurrency Through Multiple Synchronous from the network connection:

Threads

S . 4. The requestis parsed;
Perhaps the most intuitive way to implement a concurrent

Web server is to useynchronous multi-threadingin this 5. The requested file is synchronously read;

model, multiple server threads process HTGETrequests 6. The file is synchronously sent to the client.

from multiple clients simultaneously. Each thread performs

connection establishment, HTTP request reading, requestA C++ code example that applies the synchronous threading
parsing, and file transfer operations synchronously. As a re-model to a Web server appears in Appendix A.1.

sult, each operation blocks until it completes. As described above, each concurrently connected client

The primary advantage of synchronous threading is theis serviced by a dedicated server thread. The thread com-
simplification of application code. In particular, operations pletes a requested operation synchronously before servicing
performed by a Web server to service client As request are other HTTP requests. Therefore, to perform synchronous
mostly independent of the operations required to service |/O while servicing multiple clients, the Web server must
client B's request. Thus, it is easy to service different re- spawn multiple threads. Although this synchronous multi-
quests in separate threads because the amount of state shar@tteaded model is intuitive and maps relatively efficiently
between the threads is low, which minimizes the need for onto multi-CPU platforms, it has the following drawbacks:
synchronization. Moreover, executing application logic in
separate threads allows developersto utilize intuitive sequen
tial commands and blocking operations.

Figure 2 shows how a Web server designed using syn-
chronous threads can process multiple clients concurrently.
This figure shows &ync Acceptor object that encapsu-
lates the server-side mechanism for synchronously acceptin
network connections. The sequence of steps that each threa
uses to service an HTTBETrequest using a Thread Pool e Increased synchronization complexity: Threading can
concurrency model can be summarized as follows: increase the complexity of synchronization mechanisms nec-
essary to serialize access to a server’s shared resources (such
as cached files and logging of Web page hits);

_e Threading policy is tightly coupled to the concurrency

policy: This architecture requires a dedicated thread for

each connected client. A concurrent application may be bet-

ter optimized by aligning its threading strategy to available

resources (such as the number of CPUs via a Thread Pool)

%:ther than to the number of clients being serviced concur-
ntly;

1. Each thread synchronously blocks in thecept
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Figure 3: Client Connects to Reactive Web Server Figure 4: Client Sends HTTP Request to Reactive Web

Server
e Increased performance overhead: Threading can per- 1. The Web Server registers akcceptor with the
form poorly due to context switching, synchronization, and Initiation Dispatcher to accept new connec-
data movement among CPUs [3]; tions:
e Non-portability:  Threading may not be available on all 2. The
OS platforms. Moreover, OS platforms differ widely in Web Server invokes event loop of theitiation
terms of their support for pre-emptive and non-preemptive Dispatcher ;

threads. Consequently, it is hard to build multi-threaded 3

; . A client connects to the Web Server;
servers that behave uniformly across OS platforms.

. o 4. The Acceptor is notified by the Initiation
As a result of these drawbacks, multi-threading is often not Dispatcher  of the new connection request and the
the most efficient nor the least complex solution to develop Acceptor accepts the new connection;

concurrent Web servers. 5. TheAcceptor creates atiTTP Handler to service

the new client;

2.2.2. Concurrency Through Reactive Synchronous 6. HTTP Handler registers the connection with the

Event Dispatching

Initiation Dispatcher for reading client re-
Another common way to implement a synchronous Web guest data (that is, when the connection becomes “ready
server is to use areactive event dispatchingnodel. for reading”);
The Reactor pattern [4] describes how applications 7. The HTTP Handler services the request from the
can registerEvent Handlers  with an Initiation new client.
Dispatcher . Thelnitiation Dispatcher notifies
theEvent Handler when it is possible to initiate an op-  Figure 4 shows the sequence of steps that the reactive Web
eration without blocking. Server takes to service an HTTFETrequest. This process

A single-threaded concurrent Web server can use a reac-s described below:
tive event dispatching model that waits in an event loop for 1. The client sends an HTTBE Trequest;
a Reactor to notify it to initiate appropriate operations. 2. Thelnitiation Dispatcher notifies theHTTP

An .ex""”?p'e of a reactive operat|o_n . ng_server is the Handler when client request data arrives at the server;
registration of anAcceptor [5] with the Initiation

Dispatcher . When data arrives on the network con- 3. The requestis read in a non-blocking manner such that
nection, the dispatcher calls back tAeceptor . The the read operation returns EWOULDBLOCK if the op-
Acceptor  accepts the network connection and creates an  €ration would cause the calling thread to block (steps 2
HTTP Handler . This HTTP Handler then registers and 3 repeat until the request has been completely read);
with theReactor to process the incoming URL requeston 4. TheHTTP Handler parses the HTTP request;

that connection in the Web server’s single thread of control. 5 The requested file is synchronously read from the file

Figures 3 and 4 show how a Web server designed using system;
reactive event dispatching handles multiple clients. Figure 3
shows the steps taken when a client connects to the Web ™
server. Figure 4 shows how the Web server processes a client
request. The sequence of steps for Figure 3 can be summa- )¢
rized as follows: ing”);

The HTTP Handler registers the connection with
thenitiation Dispatcher for sending file data
(that is, when the connection becomes “ready for writ-



7. Thelnitiation Dispatcher notifies theHTTP
Handler when the TCP connection is ready for writ- 4 connect Web Server 1. accept

ing; connections
) Web 0
8. TheHTTP Handler sends the requested file to the Browser Acceptor

client in a non-blocking manner such that the write

operation returns EWOULDBLOCK if the operation 6: 2: accept
would cause the calling thread to block (steps 7 and 8: read (connection, accelpt éAccetpthoh
8 will repeat until the data has been delivered com- Handler, Dispatcheyy cOmpiete | Dispatcher

pletely).
Completion,, Operating
. . . Dispatcher 4 System
A C++ code example that applies the reactive event dispatch- 2 _ L
ing model to a Web server appears in Appendix A.2. 3:handle  5: accept
. o . . . L events complete
Since thdnitiation Dispatcher runs in a single

thread, network 1/O operations are run under control of the Figure 5: Client connects to a Proactor-based Web Server
Reactor in a non-blocking manner. If forward progress is

stalled on the current operation, the operation is handed off
to the Initiation Dispatcher , which monitors the 2.3  Solution: Concurrency Through Proac-
status of the system operation. When the operation can make tive Operations

forward progress again, the approprigeent Handler
is notified. When the OS platform supports asynchronous operations,

The main advantages of the reactive model are portabil-an efficient and convenient way to implement a high-

ity, low overhead due to coarse-grained concurrency control P€rformance Web server is to ueactive event dispatch-
(that is, single-threading requires no synchronization or con- iNg- Web servers designed using a proactive event dispatch-

text switching), and modularity via the decoupling of appli- N9 model handle theompletiorof asynchronous operations

cation logic from the dispatching mechanism. However, this With one or more threads of control. Thus, the Proactor pat-
approach has the following drawbacks: ternsimplifies asynchronous Web servers by integrating com-

pletion event demultiplexing and event handler dispatching
An asynchronous Web server would utilize the Proac-
tor pattern by first having the Web server issue an asyn-
chronous operation to the OS and registering a callback
with a Completion Dispatcher that will notify the
Web server when the operation completes. The OS then

e Complex programming: As seen from the list above,
programmers must write complicated logic to make sure that
the server does not block while servicing a particular client.

e Lack of OS support for multi-threading: ~ Most op- performs the operation on behalf of the Web server and
erating systems implement the reactive dispatching modelg,psequently queues the result in a well-known location.
through theselect  system call [6]. Howeverselect The Completion Dispatcher is responsible for de-

does not allow more than one thr'ead to wait in the eyent loop queueing completion notifications and executing the appro-

on the same descriptor set. This makes the reactive modejyjate callback that contains application-specific Web server

unsuitable for high-performance applications since it does ¢y ge.

not utilize hardware parallelism effectively. Figures 5 and 6 show how a Web server designed using
proactive event dispatching handles multiple clients concur-

e Scheduling of runnable tasks: In synchronous multi-  rently within one or more threads. Figure 5 shows the se-

threading architectures that support pre-emptive threads, it isquence of steps taken when a client connects to the Web

the operating system’s responsibility to schedule and time- Server.

slice the runnable threads onto the available CPUs. This ) o

scheduling support is not available in reactive architectures 1. The Web Server instructs theceptor  to initiate an

since there is only one thread in the application. Therefore, asynchronous accept;

developers of the system must by careful to time-share the 2. The Acceptor initiates an asynchronous accept with Op-

thread between all the clients connected to the Web server.  erating System and passes itself a€@ampletion

This can be accomplished by only performing short duration, Handler and a reference to the&€ompletion

non-blocking operations. Dispatcher ~ that will be used to notify the

Acceptor upon completion of the asynchronous ac-
As a result of these drawbacks, reactive event dispatching cept;

is not the most efficient model when hardware parallelism
is available. This model also has a relatively high level of
programming complexity due to the need to avoid blocking
I/O. 4. The client connects to the Web Server;

3. The Web Server invokes the event loop of the
Completion Dispatcher ;
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Figure 6: Client request to a Proactor-based Web Server

A C++ code example that applies the proactive event dis-
patching model to a Web server appears in Section 8.

The primary advantage of using the Proactor pattern is that
multiple concurrent operations can be started and can runin
parallel without necessarily requiring the application to have
multiple threads. The operations are started asynchronously
by the application and they run to completion within the I/O
subsystem of the OS. The thread that initiated the operation
is now available to service additional requests. For instance,
in the example above, th€ompletion Dispatcher
could be single-threaded. When HTTP requests arrive, the
single Completion Dispatcher thread parses the re-
guest, reads the file, and sends the response to the client.
Since the response is sent asynchronously, multiple re-
sponses could potentially be sent simultaneously. Moreover,
the synchronous file read could be replaced with an asyn-

5. When the asynchronous accept operation completeschronousfile read to further increase the potential for concur-

the Operating System
Dispatcher ;

notifies theCompletion

6. TheCompletion Dispatcher
tor;

notifies the Accep-

7. TheAcceptor creates adTTP Handler ;

8. TheHTTP Handler initiates an asynchronous opera-

rency. If the file read is performed asynchronously, the only
synchronous operation performed bylhTP Handler is
the HTTP protocol request parsing.

The primary drawback with the Proactive model is that
the programming logic is at least as complicated as the Re-
active model. Moreover, the Proactor pattern can be diffi-
cult to debug since asynchronous operations are often non-

tion to read the request data from the client and passeSdeterministic. Section 7 describes how to apply other pat-

itself as aCompletion Handler and a reference
to theCompletion Dispatcher that will be used
to notify theHTTP Handler upon completion of the
asynchronous read.

terns (such as the Asynchronous Completion Token [7]) to
simplify the asynchronous application programming model.

3 Applicability

Figure 6 shows the sequence of steps that the proactive Web

Server takes to service an HTTGETrequest. These steps
are explained below:
1. The client sends an HTTBETrequest;

2. The read operation completes and thperating
System notifies theCompletion Dispatcher ;

3. TheCompletion Dispatcher notifies theHTTP
Handler (steps 2 and 3 will repeat until the entire re-
guest has been received);

4. TheHTTP Handler parses the request;

5. The HTTP Handler
guested file;

synchronously reads the re-

6. TheHTTP Handler initiates an asynchronous oper-
ation to write the file data to the client connection and
passes itself as @ompletion Handler and a ref-
erence to the&Completion Dispatcher that will
be used to notify theITTP Handler upon completion
of the asynchronous write;

7. When the write operation completes, the Operating Sys-

tem notifies theCompletion Dispatcher ;

8. The Completion Dispatcher then notifies the
Completion Handler (steps 6-8 continue until the
file has been delivered completely).

Use the Proactor pattern when one or more of the following
conditions hold:

e An application needs to perform one or more asyn-
chronous operations without blocking the calling
thread;

e The application must be notified when asynchronous
operationgomplete

e The application needs to vary its concurrency strategy
independent of its I/0 model;

e The application will benefit by decoupling the
application-dependent logic from the application-
independent infrastructure;

e An application will perform poorly or fail to meet
its performance requirements when utilizing either the
multi-threaded approach or the reactive dispatching ap-
proach.

4  Structure and Participants

The structure of the Proactor pattern is illustrated in Figure 7
(OMT notation). The key participants in the Proactor pattern
include the following:
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Figure 7: Participants in the Proactor Pattern

Proactive Initiator
main thread ):

(Web server application’s

e A Proactive Initiator
plication

is any entity in the ap-

that initiates anAsynchronous Operation . The
Proactive Initiator registers aCompletion
Handler and aCompletion Dispatcher with
aAsynchronous Operation Processor , which
notifies it when the operation completes.
Completion Handler (the Acceptor and HTTP
Handler ):
e The Proactor pattern us€osmpletion Handler in-

terfaces that are implemented by the application for
Asynchronous Operation completion notifica-
tion.

Asynchronous Operation (the methodsAsync _Read,
Async Write , andAsync _Accept ):

e Asynchronous Operations are used to exe-
cute requests (such as 1/0O and timer operations) on
behalf of applications. When applications invoke
Asynchronous Operations , the operations are
performedwithout borrowing the application’s thread
of control? Therefore, from the application’s per-
spective, the operations are perfornasgnchronously
When Asynchronous Operations complete, the
Asynchronous Operation Processor dele-
gates application notifications to &ompletion
Dispatcher

Asynchronous Operation Processor (the Operating
System):

e Asynchronous Operations are run to completion
by the Asynchronous Operation Processor
This component is typically implemented by the OS.

31n contrast, the reactive event dispatching model steals the application’s
thread of control to perform the operation synchronously.

Asynchronous
Proactive Operation
Initiator ~ Processor

Asynchronous Completion Completion
Operation ~ Dispatcher ~ Handler

f I I
register (operation, handler, dispatcher’
—.4

Asynchronous
operation initiated

execute

Operation performed

asynchronously

dispatch

Operation completes

Completion Handler handle event

notified

|

Figure 8: Interaction Diagram for the Proactor Pattern

Completion Dispatcher (theNotification Queue ):

e The Completion Dispatcher is responsible
for calling back to the application’Completion
Handlers when Asynchronous Operations
complete. When thésynchronous Operation
Processor completes an asynchronously initiated
operation, theCompletion Dispatcher performs
an application callback on its behalf.

5 Collaborations

There are several well-defined steps that occur for all
Asynchronous Operations . At a high level of ab-
straction, applications initiate operations asynchronously
and are notified when the operations complete. Figure 8
shows the following interactions that must occur between the
pattern participants:

1. Proactive Initiators initiates operation: To perform
asynchronous operations, the application initiates the opera-
tion on theAsynchronous Operation Processor

For instance, a Web server might ask the OS to transmit
a file over the network using a particular socket connec-
tion. To request such an operation, the Web server must
specify which file and network connection to use. More-
over, the Web server must specify (1) whiCompletion
Handler to notify when the operation completes and (2)
which Completion Dispatcher should perform the
callback once the file is transmitted.

2. Asynchronous Operation Processor performs oper-
ation: When the application invokes operations on the
Asynchronous Operation Processor it runs them
asynchronously with respect to other application operations.
Modern operating systems (such as Solaris and Windows
NT) provide asynchronous I/O subsystems with the kernel.

3. The Asynchronous Operation Processor noti-
fies the Completion Dispatcher: When operations com-
plete, theAsynchronous Operation Processor re-
trieves theCompletion Handler and Completion
Dispatcher  that were specified when the operation was



initiated. TheAsynchronous Operation Processor

then passes thEompletion Dispatcher the result of
the Asynchronous Operation and theCompletion
Handler to call back. For instance, if a file was trans-
mitted asynchronously, thesynchronous Operation
Processor may report the completion status (such as suc-
cess or failure), as well as the number of bytes written to the
network connection.

4. Completion Dispatcher notifies the application: The
Completion Dispatcher calls the completion hook on
the Completion Handler , passing it any completion
data specified by the application. For instance, if an asyn-
chronous read completes, thf@ompletion Handler

will typically be passed a pointer to the newly arrived data.

6 Consequences

This section details the consequences of using the Proacto
Pattern.

6.1 Benefits
The Proactor pattern offers the following benefits:

Increased separation of concerns: The Proactor pattern

Threading policy is decoupled from the concur-
rency policy: Since theAsynchronous Operation
Processor completes potentially long-running operations
on behalf ofProactive Initiators , applications are
not forced to spawn threads to increase concurrency. This
allows an application to vary its concurrency policy inde-
pendently of its threading policy. For instance, a Web server
may only want to have one thread per CPU, but may want to
service a higher number of clients simultaneously.

Increased performance: Multi-threaded operating sys-
tems perform context switches to cycle through multiple
threads of control. While the time to perform a context
switch remains fairly constant, the total time to cycle through
a large number of threads can degrade application perfor-
mance significantly if the OS context switches to an idle
thread. For instance, threads may poll the OS for completion
status, which is inefficient. The Proactor pattern can avoid
the cost of context switching by activating only those logical
threads of control that have events to process. For instance,
a Web server does not need to activate an HTTP Handler if
there is no pendinGETrequest.

Simplification of application synchronization: As long
as Completion Handlers do not spawn additional
threads of control, application logic can be written with lit-
tle or no regard to synchronization issueSompletion
Handlers can be written as if they existed in a conven-

decouples application-independent asynchrony mechanismsional single-threaded environment. For instance, a Web

from application-specific functionality. The application-

server's HTTPGET Handler can access the disk through

independent mechanisms become reusable components thain Async Read operation (such as the Windows NT

know how to demultiplex the completion events associated
with Asynchronous Operations and dispatch the ap-
propriate callback methods defined by t@empletion
Handlers . Likewise, the application-specific functional-
ity knows how to perform a particular type of service (such
as HTTP processing).

Improved application logic portability: It improves ap-
plication portability by allowing its interface to be reused in-
dependently of the underlying OS calls that perform event
demultiplexing. These system calls detect and report the
events that may occur simultaneously on multiple event

sources. Event sources may include I/O ports, timers, syn-

chronization objects, signals, etc. On real-time POSIX plat-
forms, the asynchronous I/O functions are provided by the
aio family of APIs [8]. In Windows NT, I/O comple-
tion ports and overlapped I/O are used to implement asyn-
chronous I/0 [9].

The Completion Dispatcher encapsulates the con-
currency mechanism: A benefit of decoupling the
Completion Dispatcher from the Asynchronous
Operation Processor is that applications can config-
ure Completion Dispatchers with various concur-
rency strategies without affecting other participants. As dis-
cussed in Section 7, th@ompletion Dispatcher can

be configured to use several concurrency strategies includ
ing single-threaded and Thread Pool solutions.

TransmitFile function [1]).

6.2 Drawbacks
The Proactor pattern has the following drawbacks:

Hard to debug: Applications written with the Proactor
pattern can be hard to debug since the inverted flow of con-
trol oscillates between the framework infrastructure and the
method callbacks on application-specific handlers. This in-
creases the difficulty of “single-stepping” through the run-
time behavior of a framework within a debugger since appli-
cation developers may not understand or have access to the
framework code. This is similar to the problems encountered
trying to debug a compiler lexical analyzer and parser writ-
ten with LEX and YACC In these applications, debugging
is straightforward when the thread of control is within the
user-defined action routines. Once the thread of control re-
turns to the generated Deterministic Finite Automata (DFA)
skeleton, however, it is hard to follow the program logic.

Scheduling and controlling outstanding operations:
Proactive Initiators may have no control over
the order in whichAsynchronous Operations are
executed. Therefore, th&synchronous Operation
Processor must be designed carefully to support prioriti-
zation and cancellation @fsynchronous Operations
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The Proactor pattern can be implemented in many ways.
This section discusses the steps involved in implementing
the Proactor pattern.

Implementation

7.1 Implementing the Asynchronous Opera-

tion Processor

The first step in implementing the Proactor pattern is build-
ing the Asynchronous Operation Processor

The Asynchronous Operation Processor is re-
sponsible for executing operations asynchronously on be-
half of applications. As a result, its two primary re-
sponsibilities are exportingsynchronous Operation

APIs and implementing aAsynchronous Operation

Engine to do the work.

7.1.1 Define Asynchronous Operation APIs

The Asynchronous Operation Processor must
provide an API that allows applications to request
Asynchronous Operations . There are several forces
to be considered when designing these APlIs:

e Portability: The APIs should not tie an application nor
its Proactve Initiators to a particular platform.

¢ Flexibility:  Often, asynchronous APIs can be shared for
many types of operations. For instance, asynchronous I/O
operations can often be used to perform 1/0O on multiple

class Asynch_Stream
/Il = TITLE
A Factory for initiating reads
1 and writes asynchronously.

{
/I Initializes the factory with information

/I which will be used with each asynchronous

/I call. <handler> is notified when the

/I operation completes. The asynchronous

/I operations are performed on the <handle>

/I and the results of the operations are

/I sent to the <Completion_Dispatcher>.

Asynch_Stream (Completion_Handler &handler,
HANDLE handle,
Completion_Dispatcher *);

/I This starts off an asynchronous read.
/I Upto <bytes_to_read> will be read and
/I stored in the <message_block>.
int read (Message_Block &message_block,
u_long bytes_to_read,
const void *act = 0);

/I This starts off an asynchronous write.
/I Upto <bytes_to_write> will be written
/I from the <message_block>.
int write (Message_Block &message_block,
u_long bytes_to_write,
const void *act = 0);

-

7.1.2 Implement the Asynchronous Operation Engine

The Asynchronous Operation Processor must

mediums (such as network and files). It may be beneficial contain a mechanism that performs the operations asyn-
to design APIs that support such reuse. chronously. In other words, when an application thread
e Callbacks: TheProactive Initiators mustreg-  invokes anAsynchronous Operation , the operation
ister a callback when the operation is invoked. A com- Must be performed without borrowing the application’s
mon approach to implement callbacks is to have the call- thread of control. Fortunately, modern operating systems

ing objects (clients) export an interface known by the caller Provide mechanisms foksynchronous Operations
(server). ThereforeProactive Initiators must (for example, POSIX asynchronous 1/0O and WIinNT over-

inform the Asynchronous Operation Processor lapped I/O). When this.is the case, implementing this part of
which objectsCompletion Handler ~ should be called the pattern simply requires mapping the platform APIs to the
back when an operation completes. Asynchronous Operation APIs described above.

If the OS platform does not provide support for
Asynchronous Operations , there are several im-
plementation techniques that can be used to build an
Asynchronous Operation Engine Perhaps the
most intuitive solution is to use dedicated threads to per-
form theAsynchronous Operations for applications.

To implement a threadedsynchronous Operation
Engine , there are three primary steps:

e Completion Dispatcher: Since an application may use
multiple Completion Dispatchers , the Proactive
Initiator also must indicate whichCompletion
Dispatcher  should perform the callback.

Given all of these concerns, consider the following API
for asynchronous reads and writes. Thgy/nch _Stream
class is a factory for initiating asynchronous reads

and writes. Once constructed, multiple asynchronous o ] ) )
reads and writes can be started using this class. Anl- Operation invocation: Because the operation will be

Asynch Stream::Read _Result will be passed back to performed in a different thread of control from the invok-

thehandler when the asynchronous read completes via the N9 @pplication thread, some type of thread synchronization
must occur. One approach would be to spawn a thread

handle _read callback on theCompletion _Handler . k _
Similarly, an Asynch Stream::Write  _Result  will for each operation. A. more common approach is for the
be passed back to teandler when the asynchronous ASynchronous Operation Processor to control a
write completes via thehandle write  callback on pool of dedicated threads. This approach would require that

the application thread queue the operation request before
continuing with other application computations.

Completion _Handler .



2. Operation execution: Since the operation will be per- 7.2.2 Defining Completion Dispatcher Concurrency
formed in a dedicated thread, it can perform “blocking” oper- Strategies

ations without directly impeding progress of the application. ) . . B

For instance, when providing a mechanism for asynchronous® Completion Dispatcher will be notified by the

/O reads, the dedicated thread can block while reading fromASynchronous Operation Processor when  op-
socket or file handles. erations complete. At this point, th€ompletion

Dispatcher  can utilize one of the following concurrency

3. Operation completion: When the operation completes, strategies to perform the application callback:

the application must be notified. In particular, the dedicated
thread must delegate application-specific notifications to the pynamic-thread dispatching: A thread can be dynami-
Completion Dispatcher - This will require additional ¢4y allocated for eactCompletion Handler by the
synchronization between threads. Completion Dispatcher . Dynamic-thread dispatching
can be implemented with most multi-threaded operating sys-
7.2 Implementing the Completion Dispatcher  tems. Onsome platforms, this may be the least efficient tech-
nique of those listed fo€ompletion Dispatcher im-
plementations due to the overhead of creating and destroying
thread resources.

The Completion Dispatcher calls back to the
Completion Handler that is associated with the appli-
cation objects when it receives operation completions from

theAsynchronous Operation Processor . Thereare  post-reactive dispatching: An event object or condition

two issues involved with implementing tf@mpletion variable established by tHeroactive Initiator can

Dispatcher : (1) implementing callbacks and (2) defining pe signaled by theCompletion Dispatcher Al

the concurrency strategy used to perform the callbacks. though polling and spawning a child thread that blocks
on the event object are options, the most efficient method

7.2.1 Implementing Callbacks for Post-reactive dispatching is to register the event with a

Reactor . Post-reactive dispatching can be implemented

TthompIetlon Dlgpatcher . mustimplement a mgch with aio _suspend in POSIX real-time environments and
anism through whichCompletion Handlers are in- . . . : . : .

. . . . with WaitForMultipleObjects in Win32 environ-
voked. This require®roactive Initiators to spec- ments

ify a callback when initiating operations. The most common
way is to establish some form of callback interface. The fol-

4 ’ Call-through dispatching: The thread of control from the
lowing are common callback alternatives:

Asynchronous Operation Processor can be bor-
Callback class: TheCompletion Handler exports an rowed by theCompletion Dispatcher to execute the
interface known by th€ompletion Dispatcher . The Completion Handler . This “cycle stealing” strategy
Completion Dispatcher calls back on a method inthis  can increase performance by decreasing the incidence of idle

interface when the operation completes and passes it infor-threads. In the cases where older operating systems will con-
mation about the completed operation (such as the numbettext switch to idle threads just to switch back out of them, this
of bytes read from the network connection). approach has a great potential of reclaiming “lost” time.

Function pointer: The Completion Dispatcher in- CaII-.through dispaf[ching can be implgmented in Windows
vokes theCompletion Handler  via a callback function ~ NT using theReadFileEx and WriteFileEx ~ Win32
pointer. This approach effectively breaks the knowledge functions. For example, a thread of control can use these

dependency between t@mpletion Dispatcher and calls to wait on a semaphore to become signaled. When
the Completion Handler . This has two benefits: it waits, the thread informs the OS that it is entering into

_ _ a special state known as an “alertable wait state.” At this
1. TheCompletion Handler is not forced to exporta  point, the OS can seize control of the waiting thread of con-

specific interface; and trol's stack and associated resources in order to execute the
2. There is no need for compile-time dependencies Completion Handler
between theCompletion Dispatcher and the ) .
Completion Handler . Thread Pool dispatching: A pool of threads owned
. N by the Completion Dispatcher can be used for

Rendezvous: The Proactive Initiator can estab- Completion Handler execution. Each thread of con-
lish an event object or a conditionn varia_ble, which serves o in the pool has been dynamically allocated to an avail-
as a rendezvous between fempletion Dispatcher able CPU. Thread pool dispatching can be implemented with
and theCompletion Handler . This is most common  \windows NT’s I/O Completion Ports.
when the Completion Handler is the Proactive
Initiator . While the Asynchronous Operation When considering the applicability of tl@ompletion
runs to completion, th€ompletion Handler processes Dispatcher techniques described above, consider the
other activity. Periodically, th&€ompletion Handler possible combinations of OS environments and physical
will check at the rendezvous point for completion status. hardware shown in Table 1.



signaled. This is illustrated by imagining a dinner party at-

Threading model System Type tended by a group of philosophers. The diners are seated
Single-processof Multi-processor around a circular table with exactly one chop stick between

Single-threaded A B each philosopher. When a philosopher becomes hungry, he

Multi-threaded c D must obtained the chop stick to his left and to his right in or-

der to eat. Once philosophers obtain a chop stick, they will
not release it until their hunger is satisfied. If all philsophers
pick up the chop stick on their right, a deadlock occurs be-
cause the chop stick on the left will never become available.

Table 1: Completion Dispatcher Concurrency
Strategies

If your OS only supports synchronous I/O, then refer to the 7.3.3 Preemptive Policy
Reactor pattern [4]. However, most modern operating sys-
tems support some form of asynchronous I/O. The Completion Dispatcher type determines if a

In combination A and B from Table 1, the Post-reactive Completion Handler  can be preemptive while execut-
approach to asynchronous I/O is probably the best, assuming"d- When attached to Dynamic-thread and Thread Pool dis-
you are not waiting on any semaphores or mutexes. If you PatchersCompletion Handlers  are naturally preemp-
are, a Call-through implementation may be more responsive.tive. However, when tied to a Post-react@empletion
In combination C, use a Call-through approach. In combina- Dispatcher , Completion Handlers  are not preemp-
tion D, use a Thread Pool approach. In practice, systematictive With respect to each other. When driven by a Call-

empirical measurements are necessary to select the most aghrough dispatcher, th€ompletion Handlers ~  are not
propriate alternative. preemptive with respect to the thread-of-control that is in the

alertable wait state.
In general, a handler should not perform long-duration

7.3 Implementing Completion Handlers synchronous operations unless multiple completion threads
are used since this will significantly decrease the over-
all responsiveness of the application. This risk can be
alleviated by increased programming discipline. For in-
stance, allCompletion Handlers are required to act
7.3.1 State Integrity as Proactive Initiators instead of executing syn-

chronous operations.

The implementation ofCompletion Handlers raises
the following concerns.

A Completion Handler may need to maintain state in-

formation concerning a specific request. For instance, the

OS may notify the Web Server that only part of a file was 8§ Samp|e Code

written to the network communication port. As a result, a

Completion Handler ~ may need to reissue the request This section shows how to use the Proactor pattern to develop
until the file is fU"y written or the connection becomes in- a Web server. The examp|e is based on the Proactor pattern
valid. Therefore, it must know the file that was originally implementation in the ACE framework [3].

specified, how many bytes are left to write, and whatwasthe \when a client connects to the Web server, the

file pointer position at the start of the previous request. HTTP.Handler ’s open method is called. The server then
There is no implicit limitation that prevenBroactive initializes the asynchronous I/O object with the object to call-

Initiators from assigning multipleAsynchronous back when theAsynchronous Operation completes

Operation  requests to a singl@ompletion Handler . (which in this case ighis ), the network connection for

As a result, theCompletion Handler ~ must tie request-  transferring the data, and t@@mpletion Dispatcher

specific state information throughoutthe chain of completion to be used once the operation complefgsgctor ). The
notifications. To do thisCompletion Handlers ~ can uti- read operation is then started asynchronously and the server
lize the Asynchronous Completion Token pattern [7]. returns to the event loop.

The HTTP.Handler::handle read _stream s
called back by the dispatcher when thsync read op-
eration completes. If there is enough data, the client request
As with any multi-threaded environment, the Proactor pat- is then parsed. If the entire client request has not arrived yet,
tern does not alleviat€ompletion Handlers from en- another read operation is initiated asynchronously.
suring that access to shared resources is thread-safe. How- In response to aGET request, the server memory-
ever, aCompletionHandler ~ mustnotholdontoashared maps the requested file and writes the file data asyn-
resource across multiple completion notifications. If it does, chronously to the client. The dispatcher calls back
it risks invoking the dining philosopher’s problem [10]. onHTTP.Handler::handle _write _stream when the

This problem is the deadlock that results when a logical write operation completes, which frees up dynamically allo-
thread of control waits forever for a semaphore to become cated resources.

7.3.2 Resource Management

10



The Appendix contains two other code examples for im-
plementing the Web server using a synchronous threaded

model and a synchronous (non-blocking) reactive model.

class H

TTP_Handler

: public Proactor::Event_Handler
/Il = TITLE

I =

L
public:
void

1

Implements the HTTP protocol
(asynchronous version).

PATTERN PARTICIPANTS

Proactive Initiator = HTTP_Handler
Asynch Op = Network 1/O
Asynch Op Processor = OS
Completion Dispatcher = Proactor
Completion Handler = HTPP_Handler

open (Socket_Stream *client)

Initialize state for request

request_.state_ = INCOMPLETE;

1

Store reference to client.

client_ = client;

1

Initialize asynch read stream

stream_.open (*this,

1

client_->handle (),
proactor_);

Start read asynchronously.

stream_.read (request_.buffer (),

}
nT

request_.buffer_size ());

his is called by the Proactor

/I when the asynch read completes

void

handle_read_stream

(u_long bytes_transferred)

if

e

}

void

1

(request_.enough_data
(bytes_transferred))
parse_request ();
Ise
/I Start reading asynchronously.
stream_.read (request_.buffer (),
request_.buffer_size ());

parse_request (void)

Switch on the HTTP command type.

switch (request_.command ()) {

1

Client is requesting a file.

case HTTP_Request::GET:

1
1

/I Memory map the requested file.
file_.map (request_.filename ());

/I Start writing asynchronously.
stream_.write (file_.buffer (),

file_.buffer_size ());
break;

Client is storing a file
at the server.

case HTTP_Request::PUT:

}
}

void

I ..

handle_write_stream
(u_long bytes_transferred)
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{
if (file_.enough_data
(bytes_transferred))

/I Success....

else
/I Start another asynchronous write
stream_.write (file_.buffer (),

file_.buffer_size ());

}

private:
/I Set at initialization.
Proactor *proactor_;

/I Memory-mapped file_;
Mem_Map file_;

/I Socket endpoint.
Socket_Stream *client_;

/I HTTP Request holder
HTTP_Request request_;

/I Used for Asynch 1/O
Asynch_Stream stream_;

9 Known Uses

The following are known uses of the Proctor pattern:

I/O Completion Ports in Windows NT: The Windows

NT operating system implements the Proactor pattern. Var-
ious Asynchronous Operations such as accepting
new network connections, reading and writing to files and
sockets, and transmission of files across a network connec-
tion are supported by Windows NT. The operating system is
theAsynchronous Operation Processor . Results

of the operations are queued up at the 1/O completion port
(which plays the role of th€ompletion Dispatcher ).

ACE Proactor: The Adaptive Communications Environ-
ment (ACE) [3] implements a Proactor component that en-
capsulates I/0 Completion Ports on Windows NT. The ACE
Proactor abstraction provides an OO interface to the stan-
dard C APIs supported by Windows NT. The source code for
this implementation can be acquired from the ACE website
atwww.cs.wustl.edu/ ~schmidt/ACE.html

The UNIX AIO Family of Asynchronous I/O Operations:

On some real-time POSIX platforms, the Proactor pattern
is implemented by thaio family of APIs [8]. These OS
features are very similar to the ones described above for
Windows NT. One difference is that UNIX signals can be
used to implement an truly asynchronoGsmpletion
Dispatcher  (the Windows NT API is not truly asyn-
chronous).

Asynchronous Procedure Calls in Windows NT: Some
systems (such as Windows NT) support Asynchronous Pro-
cedure Calls (APC)s. An APC is a function that executes
asynchronously in the context of a particular thread. When
an APC is queued to a thread, the system issues a software
interrupt. The next time the thread is scheduled, it will run



the APC. APCs made by operating system are c&létedel-
modeAPCs. APCs made by an application are callsér-
modeAPCs.

Business processes of mail order companiesA real-life
example comes from the domain of mail order companies.
In these companies, Marketing publishes well-know asyn-
chronous APIs know as Mail Order Catalogs. A poten-
tial customer becomesRroactive Initiator when
they utilizes the defined phone number to initiate an or-
der operation asynchronously. At this time, the customer
specifies theCompletion Handler to be “cash on de-
livery” and theCompletion Dispatcher to be “next-
day-air.” The mail order company’s order fulfillment pro-
cess is theAsynchronous Operation that would be
executed on the customer’s behalf. The Workflow Direc-
tor/Workflow Management System is tlesynchronous
Operation Processor that drives the order fulfillment
process to completion. When the order is filled, the Work-
flow Director hands off the item ordered and the bill of sale
to the pre-define@€ompletion Dispatcher

Notice that an exception occurs if the customer does
not have any money at the time of delivery. This excep-
tion is specific to theCompletion Dispatcher cho-
sen by theProactive Initiator . This implies that
Completion Dispatchers should be prepared to ex-
pect exceptional conditions. In this instance, the item is re-
turned to the mail order company.

Natural instantiations of the Proactor pattern exists in most

systems that employ asynchronous interaction across their ' ; .
gcution from method invocation.

system boundaries. In many of these systems, the system

Asynchronous
. Reactor
Completion
Token /P
completion
dispatcher
to track implementation
completion
information / to decouple Active
concurrency Object
épfrum threading
Proactor
to centralize to hreak
dispatching source knowledge
/ of target handler
‘ Chain
Singleton Of
Respansibility

Figure 9: Proactor Pattern’'s Related Patterns

to initiate an operatiorsynchronouslyvithout blocking. In
contrast, the Proactor supports the demultiplexing and dis-
patching of multiple event handlers that are triggered by the
completionof asynchronousvents.

The Active Object pattern [12] decouples method ex-
The Proactor pat-

actors are Proactive Initiators and the system’s use-case scel€n 1S similar becauseisynchronous Operation

narios are Asynchronous Operations.

10 Related Patterns

Figure 9 illustrates patterns that are related to the Proactor.
The Asynchronous Completion Token (ACT) pattern [7]
is generally used in conjunction with the Proactor pattern.

WhenAsynchronous Operations complete, applica-
tions may need more information than simply the notifica-
tion itself to properly handle the event. The Asynchronous
Completion Token pattern allows applications to efficiently
associate state with the completion Asynchronous
Operations

Processors  perform operations on behalf of application
Proactive Initiators . That is, both patterns can be
used to implemenfisynchronous Operations . The
Proactor pattern is often used in place of the Active Object
pattern to decouple the systems concurrency policy from the
threading model.

A Proactor may be implemented as a Singleton [11]. This
is useful for centralizing event demultiplexing and com-
pletion dispatching into a single location within an asyn-
chronous application.

The Chain of Responsibility (COR) pattern [11] decouples
event handlers from event sources. The Proactor pattern is
similar in its segregation d?roactive Initiators and
Completion Handlers However, in COR, the event

The Proactor pattern is related to the Observer pattern [11]source has no prior knowledge of which handler will be
(where dependents are updated automatically when a sin-executed, if any. In ProactoProactive Initiators

gle subject changes). In the Proactor pattern, handlers arehave full disclosure of the target handler. However, the two

informed automatically when events from multiple sources
occur.
chronously demultiplex multiple sources of input to their as-

In general, the Proactor pattern is used to asyn-

patterns can be combined by establishinGanpletion
Handler that is the entry pont into a responsibility chain
dynamically configured by an external factory.

sociated event handlers, whereas an Observer is usually as-

sociated with only a single source of events.
The Proactor pattern can be consideredagynchronous

11 Concluding Remarks

variant of the synchronous Reactor pattern [4]. The Reactor
pattern is responsible for demultiplexing and dispatching of The Proactor pattern embodies a powerful technique that
multiple event handlers that are triggered when it is possible supports both efficient and flexible event dispatching strate-
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The A.1 Multiple Synchronous Threads

Proactor pattern provides performance benefits of executingT . ]
operations concurrently, without constraining the developer ' N€ following code shows how to use synchronous I/O with

to synchronous multi-threaded or reactive programming. & pool of threads to develop a_Web server. When a client con-
nects to the server a thread in the pool accepts the connec-

tion and calls thepen method in classHTTP.Handler .
References The server then synchronously reads the request from the
network connection. When the read operation completes,
[1] J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact the client request is then parsed. In response GEdre-
of Event Dispatching and Concurrency Models on Web Server quest, the server memory-maps the requested file and writes
Performance Over High-speed Networks,"Rroceedings of  the file data synchronously to the client. Note how block-
the2"* Global Internet ConferenceEEE, November 1997.  jng 1/0 allows the Web server to follow the steps outlined in

[2] J. C. Mogul, “The Case for Persistent-connection HTTP,” in Section 2.2.1.
Proceedings of ACM SIGCOMM '95 Conference in Computer
Communication ReviewBoston, MA, USA), pp. 299-314,
ACM Press, August 1995.

gies for high-performance concurrent applications.

class HTTP_Handler

/I = TITLE
[3] D. C. Schmidt, “ACE: an Object-Oriented Framework for I Implements the HTTP protocol
Developing Distributed Applications,” iRroceedings of the I (synchronous threaded version).

6" USENIX C++ Technical Conferenc¢Cambridge, Mas- Z - DESCRIPTION

sachusetts), USENIX Association, April 1994. Il This class is called by a

[4] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for  // thread in the Thread Pool.
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Desigd. O.
Coplienand D. C. Schmidt, eds.), pp. 529-545, Reading, MA:
Addison-Wesley, 1995.

{
public:
void open (Socket_Stream *client)

HTTP_Request request;
[5] D.C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” iRattern Languages
of Program Desigr{R. Martin, F. Buschmann, and D. Riehle,

eds.), Reading, MA: Addison-Wesley, 1997.

/I Store reference to client.
client_ = client;

/I Synchronously read the HTTP request

[6] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man, The Design and Implementation of the 4.4BSD Operat-
ing SystemAddison Wesley, 1996.

[7] 1. Pyarali, T. H. Harrison, and D. C. Schmidt, “Asynchronous
Completion Token: an Object Behavioral Pattern for Efficient
Asynchronous Event Handling,” iRattern Languages of Pro-
gram Design(R. Martin, F. Buschmann, and D. Riehle, eds.),
Reading, MA: Addison-Wesley, 1997.

[8] “Information Technology — Portable Operating System Inter-
face (POSIX) — Part 1: System Application: Program Inter-
face (API) [C Lanaguage],” 1995.

[9] Microsoft Developers Studio, Version 4.2 - Software Develop-
ment Kit 1996.

[10] E. W. Dijkstra, “Hierarchical Ordering of Sequential Pro-
cesses,Acta Informaticavol. 1, no. 2, pp. 115-138, 1971.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissifesign Pat-
terns: Elements of Reusable Object-Oriented SoftwRead-
ing, MA: Addison-Wesley, 1995.

[12] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent ProgrammingPioceed-
ings of the2™® Annual Conference on the Pattern Languages
of Programs (Monticello, lllinois), pp. 1-7, September 1995.

A Alternative Implementations

This Appendix outlines the code used to develop alterna-
tives to the Proactor pattern. Below, we examine both syn-

chronous /O using multi-threading and reactive 1/0O using
single-threading.
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/I from the network connection and
/I parse it.
client_->recv (request);

parse_request (request);

}
void parse_request (HTTP_Request &request)

/I Switch on the HTTP command type.
switch (request.command ())

/I Client is requesting a file.

case HTTP_Request::GET:
/I Memory map the requested file.
Mem_Map input_file;
input_file.map (request.filename());

/I Synchronously send the file

/I to the client. Block until the

/I file is transferred.

client_->send (input_file.data (),
input_file.size ());

break;

/I Client is storing a file at

/I the server.

case HTTP_Request::PUT:
..

}

}

private:
/I Socket endpoint.

Socket_Stream *client_;

I ..



A.2 Single-threaded Reactive Event Dispatch-
ing

The following code shows the use of the Reactor pattern to
develop a Web server. When a client connects to the server,
the HTTP.Handler::open method is called. The server
registers the 1/0 handle and the object to callback (which in
this case ighis ) when the network handle is “ready for
reading.” The server returns to the event loop.

When the request data arrives at the serverghetor _
calls back theATTP.Handler::handle Jinput method.
The client data is read in a non-blocking manner. If there is
enough data, the client request is parsed. If the entire client
request has not yet arrived, the application returns to the re-
actor event loop.

In response to aGET request, the server memory
maps the requested file and registers with the reactor
to be notified when the network connection becomes
“ready for writing.” Thereactor _ then calls back on
HTTP.Handler::handle -output method when writ-
ing data to the connection would not blocking the calling
thread. When all the data has been sent to the client, the
network connection is closed.

class HTTP_Handler :
public Reactor::Event_Handler

/I = TITLE

I Implements the HTTP protocol
I (synchronous reactive version).
I

/I = DESCRIPTION

I The Event_Handler base class
I defines the hooks for

1 handle_input()/handle_output().
I

/I = PATTERN PARTICIPANTS

I Reactor = Reactor

1 Event Handler = HTTP_Handler

{
public:
void open (Socket_Stream *client)

/I No more progress possible,

/I blocking will occur

if (request_.state INCOMPLETE
&& errno == EWOULDBLOCK)

reactor_->register_handler

(client_->handle (),
this,
Reactor::READ_MASK);

else
/I ' We now have the entire request
parse_request ();

void parse_request (void)

{
/I Switch on the HTTP command type.
switch (request_.command () {
/I Client is requesting a file.
case HTTP_Request::GET:
/I Memory map the requested file.
file_.map (request_.filename ());

/I Transfer the file using Reactive 1/0.

handle_output ();
break;

/I Client is storing a file at
/I the server.

case HTTP_Request::PUT:
...

}
}

void
{
/I Asynchronously send the file
/I to the client.
if (client_->send (file_.data (),
file_.size ())

handle_output (void)

== SOCKET_ERROR

&& ermo == EWOULDBLOCK)_
/I Register with reactor...
else

/I Close down and release resources.

handle_close ();

}

private:

/I Initialize state for request
request_.state_ = INCOMPLETE;

/I Store reference to client.
client_ = client;

/I Register with the reactor for reading.
reactor_->register_handler
(client_->handle (),
this,
Reactor::READ_MASK);

} h

/I This is called by the Reactor when
/I we can read from the client handle.
void handle_input (void)

int result = 0;

/I Non-blocking read from the network
/I connection.
do
result = request_.recv (client_->handle ());
while (result '= SOCKET_ERROR
&& request_.state INCOMPLETE);
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/I Set at initialization.
Reactor *reactor_;

/I Memory-mapped file_;
Mem_Map file_;

/I Socket endpoint.
Socket_Stream *client_;

/I HTTP Request holder.
HTTP_Request request_;



