
Client/Server Architectures for Business Information Systems Page 1

Client/Server Architectures for Business
Information Systems

A Pattern Language

Klaus Renzel

sd&m GmbH & Co. KG

Project ARCUS1

Thomas-Dehler-Str. 27
D-81737 München, Germany
email: Klaus.Renzel@sdm.de

Phone: +49-89-63812-251
http://www.sdm.de/g/arcus

Wolfgang Keller

EA Generali
Reumannplatz 7

A-1100 Vienna, Austria
email: WofgangWKeller@compuserve.com

Phone: +43-1-53401-0

Copyright 1997, Klaus Renzel, Wolfgang Keller
Permission granted to copy for PLoP’97 Conference.

All other rights reserved.

Abstract: This paper presents several patterns for distributing business informa-
tion systems that are structured according to a layered architecture.2 Each distri-
bution pattern cuts the architecture into different client and server components. All
the patterns presented give an answer to the same question: How do I distribute a
business information system? However, the consequences of applying the patterns
are very different with regards to the forces influencing distributed systems de-
sign.

1 Introduction

Distribution brings a new design dimension into the architecture of information systems. It
offers great opportunities for good systems design, but also complicates the development of a
suitable architecture by introducing a lot of new design aspects and trapdoors compared to a
centralized system.

1 This work is sponsored by the German Ministry of Research and Technology under project name ENTSTAND.

2 The paper is part of a larger effort to collect patterns for business information systems, currently under development by
the ARCUS team.

Client/Server Architectures for Business Information Systems Page 2

While constructing the architecture for a business information system, which will be deployed
across a set of distributed processing units (e.g. machines in a network, processes on one ma-
chine, threads within one process), you are faced with the question:

How do I partition the business information system into a number of client and server compo-
nents, so that my users’ functional and non-functional requirements are met?

There are several answers to this question. The decision for a particular distribution style is
driven by users’ requirements. It significantly influences the software design and requires a
very careful analysis of the functional and non-functional requirements. Therefore, we present
a list of general forces that you can check against your users’ requirements. Requirements de-
termine the strength of these forces. We then discuss some solutions in pattern form. The con-
sequences will guide you in checking whether a particular solution fulfills your requirements.
Throughout the patterns we briefly motivate and illustrate each solution by using a library ap-
plication as a running example.

2 Scope of the pattern language

2.1 General Context

You are designing a business information system, in which many (spatially distributed) users
work in parallel on a large amount of data. The system supports distributed business processes
which may span a single department, a whole enterprise, or even several enterprises. Gener-
ally, the system must support more than one type of data processing, such as on-line transac-
tion processing (OLTP), off-line processing or batch processing.

Typically, the application architecture of the system is a Three Layer Architecture: Most ar-
chitectures for information systems derive from a layered architecture [BMR+96, p. 31,
Den91] as depicted in Figure 1.

Dialog Control

Application Kernel

Database

Presentation

Database Access

User Interface

Business Logic

Data Management C
om

m
on

 S
er

vi
ce

s

Figure 1: Three layer architecture for business information systems

The user interface handles presentational tasks and controls the dialog (e.g. see [CK97]), the
application kernel performs the domain specific business tasks and the database access layer

Client/Server Architectures for Business Information Systems Page 3

[KC96] connects the application kernel functions to a database.3 Our distribution view focuses
on this coarse-grain component level.

In developing a distributed system architecture we mainly use the Client/Server Style (see
[Wei97] for discussion of this style in pattern form), which defines a model for distributed
processing. Within this model components of a distributed system are classified by two roles:
client and server. Clients and servers communicate via a simple request/response protocol. We
avoid to talk about hybrid (application) architectures, which combine different communication
styles, even though the overall system architecture will often be a hybrid architecture.

2.2 General Forces

• Business needs vs. construction complexity: On the one hand allocating functionality and
data to the places where it is actually needed supports distributed business processes
very well, but on the other hand distribution raises system’s complexity. Client server
systems tend to be far more complex than conventional host software architectures. To
name just a few sources of complexity: GUI, middleware, and heterogeneous operating
system environments. It is clear that it often requires a lot of compromises to reduce the
complexity to a level where it can be handled properly.

• Processing style: Different processing styles require different distribution decisions.
Batch applications need processing power close to the data. Interactive processing
should be close to input/output devices. Therefore, off-line and batch processing may
conflict with transaction and on-line processing.

• Distribution vs. performance: We gain performance by distributed processing units exe-
cuting tasks in parallel, placing data close to processing, and balancing workload be-
tween several servers. But raising the level of distribution increases the communication
overhead, the danger of bottlenecks in the communication network, and complicates per-
formance analysis and capacity planning. In centralized systems the effects are much
more controllable and the knowledge and experience with the involved hardware and
software allows reliable statements about the reachable performance of a configuration.

• Distribution vs. security: The requirement for secure communications and transactions is
essential to many business domains. In a distributed environment the number of possible
security holes increases because of the greater number of attack points. Therefore, a dis-
tributed environment might require new security architectures, policies and mechanisms
(e.g. encryption, authentication protocols).

3 The architecture represents a simplified view, which does not cover all possible components of an information system

(e.g. interfaces to other applications, workflow components, batch interface).

Client/Server Architectures for Business Information Systems Page 4

• Distribution vs. consistency: Abandoning a global state can introduce consistency prob-
lems between states of distributed components. Relying on a single, centralized database
system reduces consistency problems, but legacy systems or organizational structures
(off-line processing) can force us to manage distributed data sources.

• Software distribution cost: The partitioning of system layers into client and server proc-
esses enables distribution of the processes within the network, but the more software we
distribute the higher the distribution, configuration management, and installation cost.
The lowest software distribution and installation cost will occur in a centralized system.
This force can even impair functionality if the software distribution problem is so big
that the capacities needed exceed the capacities of your network. The most important ar-
gument for so called diskless, internet based network computers is exactly software dis-
tribution and configuration management cost.

• Reusability vs. performance vs. complexity: Placing functionality on a server enforces
code reuse and reduces client code size, but data must be shipped to the server and the
server must enable the handling of requests by multiple clients.

2.3 Pattern Language Overview

To distribute an information system by assigning client and server roles to the components of
the layered architecture we have the choice of several distribution styles. Figure 2 shows the
styles which build the pattern language.

Presentation"
Dialog Control

Database Access
"

Database"

Application Kernel"

"

Distribution Patterns

Distributed Presentation

Remote Database

Distributed Database

Distributed Application Kernel

Remote User Interface

Figure 2: Overview of the patterns resulting from different client/server cuts

To take a glance at the pattern language we give an abstract for each pattern:

• Distributed Presentation: This pattern partitions the system within the presentation compo-
nent. One part of the presentation component is packaged as a distribution unit and is proc-
essed separately from the other part of the presentation which can be packaged together
with the other application layers. This pattern allows of an easy implementation and very

Client/Server Architectures for Business Information Systems Page 5

thin clients. Host systems with 3270-terminals is a classical example for this approach.
Network computers, internet and intranet technology are modern environments where this
pattern can be applied as well.

• Remote User Interface: Instead of distributing presentation functionality the whole user
interface becomes a unit of distribution and acts as a client of the application kernel on the
server side.

• Distributed Application Kernel: The pattern splits the application kernel into two parts
which are processed separately. This pattern becomes very challenging if transactions span
process boundaries (distributed transaction processing).

• Remote Database: The database is a major component of a business information system
with special requirements on the execution environment. Sometimes, several applications
work on the same database. This pattern locates the database component on a separate node
within the system’s network.

• Distributed Database: The database is decomposed into separate database components,
which interact by means of interprocess communication facilities. With a distributed data-
base an application can integrate data from different database systems or data can be stored
more closely to the location where it is processed.

The next figure summarizes the effects of the patterns on the design objectives mentioned in
chapter 2.2:

D
istributed

P
resentation

A
rchitecture

R
em

ote U
ser

Interface

R
em

ote
D

atabase

D
istributed

D
atabase

D
istributed

A
pplication
K

ernel

Distribution Level

Security

Complexity

Processing Type
OLTP, Batch

Offline, Interactive

Reusability

Distribution Cost

Bottlenecks

Balanced Workloads
Performance

Consistency

Figure 3: Patterns’ resolution of the architectural forces.

In the patterns and examples we use the following notation to visualize solutions’ structures:

Client/Server Architectures for Business Information Systems Page 6

Component A

Component B

...

XQLW�RI�GLVWULEXWLRQ

�GRXEOH�OLQH

V\PEROL]HV

SURFHVV�ERXQGDU\�

DSSOLFDWLRQ�FRPSRQHQW

�FODVV��SDFNDJH�

FOXVWHU���ZKLFK�LV�SDUW

RI�D�GLVWULEXWLRQ�XQLW

�LQWHUSURFHVV

FRPPXQLFDWLRQ

1

1..n

UHSUHVHQWV�D

SK\VLFDO

FRPSXWLQJ�GHYLFH

DVVLJQV�XQLW�WR�D

SURFHVVLQJ�QRGH

�FRQILJXUDWLRQ�

/$1�:$1

FRPPXQLFDWLRQ

OLQN

(partial) distribution view
(partitioning) of the application

architecture

(partial) structural view of the
technical architecture

Each pattern presents a partial distribution view of the application architecture and maps this
to a physical system structure. As a solution addresses only a part of the application compo-
nents the whole distribution model may result from applying more than one distribution pat-
tern. Instances of application components can „live“ on different nodes of the technical
architecture, because of components being part of more than one distribution unit or distribu-
tion units mapped to different nodes.

Remote
Database

Dialog Control

Application Kernel

Presentation

Database Access

Database

Client

Server

Two Distribution Layers

Dialog Control

Application Kernel

Presentation

Database Access

Database

Remote
User

Interface

Client

Server

Client

Server

User Workstation
(PC)

Application Server

1..n

Database Server

1

1
1

Three Physical Distribution NodesThree Distribution Layers

Three-Tiered-Architecture

User
Workstation

(PC)

Application
Server

1..n

1

Two Physical Nodes

Two-Tiered-Architecture

Presentation

Dialog Control

Database Access

Database

Application Kernel

Logical Layers

Figure 4: Building a Three-Tiered-Architecture applying the Remote User Interface pattern and the
Remote Database pattern.

Client/Server Architectures for Business Information Systems Page 7

The patterns are orthogonal to each other. They may therefore be combined within a single
design of a distributed information system (e.g. to build a Three Tier Architecture [Hir96] as
illustrated in Figure 4).4

3 Description of the Solutions

Each solution presents a macro-level architecture for system distribution. These architectures
can not resolve every force impacting client/server design. Many of them are only partially
resolved and have to be reified or resolved further in the implementation of the architecture
(e.g. by applying other patterns and use of technical infrastructure).

3.1 Pattern: Distributed Presentation Architecture

$OVR�.QRZQ�$V

Host-Terminal Style

6ROXWLRQ

Partition the presentation layer. One part of the presentation layer is packaged as a distribution
unit and is processed separately from the other part which can be packaged together with the
other application layers:

User Terminal
Node

Presentation (Front-End)

Presentation

Dialog Control

Database Access

Database

Application Kernel
Presentation (Back-End)

Server Node
...

1..m, m small

1..n, n large
Presentation Protocol

Figure 5: Structure of a Distributed Presentation Architecture

The back-end presentation (see Figure 5) is an application component which mediates between
the dialog control and the technical front-end presentation. The latter provides an interface for

4 The pattern language can be used to generate a number of different three-tiered architectures.

Client/Server Architectures for Business Information Systems Page 8

presentation services (e.g. graphical primitives for opening a window or displaying fields) and
is typically realized as a user-interface toolkit, library or framework. The presentation compo-
nents interact according to some presentation protocol propagating presentation service re-
quests from the Server Node to the User Terminal Node and input action as well as
data in the opposite direction.

([DPSOH

Imagine the design of a library system using internet technology. The end user can search for
available books and can also see whether a book is borrowed by someone.

A HTML5-Browser and a HTTP6-server are the basic system software for the presentation
layer of the library application (Figure 6). With a subset of HTML we can describe the struc-
ture and content of system’s input and output. The HTML-Browser visualizes the HTML de-
scriptions.

User Node

HTTP-Server
(WWW-Server)

Server Node

HTTP-Client
(WWW-Browser)

1

1..nHTTP

Presentation

Intranet/Internet

Application

CGI

HTML-Pages

1..n 1

1 1

1..n

1

1

1..n

Figure 6: Example for a distribution view of the components responsible for the presentational tasks in a
library system

The application programmer has to know about the Common Gateway Interface (CGI) to re-
alize the communication with the HTTP-server. Most of the other communication and concur-
rency issues are handled by the system infrastructure. The HTTP-client can be running on the
user node as well as on the server node (e.g. Lynx is a textual WWW-browser running under

5 Hpertext Markup Language

6 Hypertext Transfer Protocol

Client/Server Architectures for Business Information Systems Page 9

unix). In the latter case the user node can be a simple terminal or a PC with a terminal emula-
tion.

A search request on the library may cause the following interactions: When the user presses
the submit button after filling a search form with the name of the author etc., the browser
sends a request with a program identifier and the form data to the server. The server starts the
program and passes the data via the Common Gateway Interface. The presentation component
on the application side analyzes the data and deals with transformation of results in HTML.
Finally, the HTTP-server forwards the HTML-page given by the application program to the
client which displays the page to the user.

&RQVHTXHQFHV

• Business needs vs. construction complexity: Combined with elegant class libraries, the
architecture look for the application programmer quite like a central system architecture.
This reduces complexity of application development, because most of the distributed
programming is done on the system level, so that the application programmer is not con-
fronted with it. Besides it prevents complication of application’s testability.

• Distribution vs. performance: Is a tradeoff between user interface functionality and
communication bandwidth of the underlying network. Calling graphical presentation
primitives may cause too much traffic within a slow WAN (Wide Area Network). For a
X-Window System even in 10 Mbit LANs the usage is limited to roughly a hundred X-
Terminals. In case of on-line processing the solution is best suited for form-based user
interfaces in opposite to object-oriented user interfaces [CK97]. Thus, either the concrete
technical infrastructure constrains the design of the user interface or vice versa.

• Processing style: A Distributed Presentation Architecture facilitates batch and transac-
tion processing, because it does not split data processing and transaction control between
different nodes of the system’s network. However, it does not support off-line process-
ing, because it requires continuous real-time communication between the user’s node
and the server.

• Distribution vs. security: Centralized processing and data eases security, but nevertheless
user authentication, authorization and secure communication have to be considered care-
fully (e.g. internet application such as home banking).

• Distribution vs. consistency: As no data is stored on the client side consistency is not af-
fected.

• Software distribution cost: As all domain specific software resides on the application
nodes, distribution cost is limited to the system software required on the terminal nodes
(e.g. installation and update of the X-Window System).

Client/Server Architectures for Business Information Systems Page 10

• Reusability vs. performance vs. complexity: The solution does not produce any reusable
application components.

'HVLJQ

• Openness: A Distributed Presentation Architecture can lead to very portable software.
The front-end presentation requires little software and is enabled by a variety of techni-
cal infrastructure. For example, the X-Window protocol is open, machine-independent,
and portable. X-Server emulators are available for many platforms. But note that port-
ability is a product of the disciplined use of the architecture and not of the architecture
itself. Communication APIs for the communication between graphical terminals and ap-
plication servers tend to be complex. Therefore, shield the protocol with a application
framework (e.g. ET++) , a toolkit, or a class libraries.

• Reliability: This depends on the choice of the hardware and software used on the appli-
cation node and the middleware used to implement the presentation protocol. For exam-
ple, the use of X-Window software on simple UNIX machines may result in poor
reliability.

• Scalability: There is a limit to scalability due to high network traffic. You can tackle
these problems with LAN segmentation and high speed LANs. The scalability of the
server node depends on the system platform (hardware and system software).

.QRZQ�8VHV

X-Window Architecture: The most popular implementation of this architecture is the interac-
tive network graphics provided by the X-Window System [SG86]. In the X-Window System
the presentation protocol is known as the X-Protocol.

IBM 3270-Terminal: This may be seen as an early form of the Distributed Presentation
Architecture in the world of alpha terminals.

HTML-Browser: Offer a modern alternative to 3270 terminals, terminal emulation or screen
scraping (as shown in the example). Browser solutions are more economical in terms of net-
work bandwidth than X-Window solutions, because functions such as mouse movements and
screen updates cause no network traffic.

Client/Server Architectures for Business Information Systems Page 11

6HH�$OVR

In context of a mainframe with connected terminals the pattern corresponds to the Host-
Terminal Style [Wei97].7 The X-Window System and HTML-Browsers use the Client-Server
Style [Wei97].

3.2 Pattern: Remote User Interface

$OVR�.QRZQ�$V

Thin Client

6ROXWLRQ

Apply a client server cut between dialog control and application kernel. On the client node the
dialog control recognizes domain level actions and issues the necessary commands to the ap-
plication kernel on a server node to perform these actions.

User Node
Dialog Control

Presentation

Dialog Control

Database Access

Database

Application Kernel
Application Kernel

Server Node
...

1..m, m small

1..n, n largeApplication Dependent
 Access Protocol

Figure 7: Structure of a Remote User Interface architecture

The Application Kernel Access Protocol is implemented by some middleware which propa-
gates service requests from the client to an appropriate server and delivers the results.

([DPSOH

Instead of using HTML-forms for the user interface of the library application, we can imple-
ment the user interface as a Java applet. This applet can utilize the features of the Abstract
Window ToolKit (AWT) to increase the usability of the application interface compared to the

7 Sometimes this architecture is also called One-Tiered-Architecture, because all application code remains central on the

host.

Client/Server Architectures for Business Information Systems Page 12

form-based variant. The application kernel can be implemented in Java as well, so that Remote
Method Invocation (RMI) is applicable for the communication between the user interface run-
ning within the browser on the client side and the application kernel running on the server
side.

&RQVHTXHQFHV

• Business needs vs. construction complexity: A Remote User Interface is more complex
than a Distributed Presentation Architecture, because the client/server interaction can not
be implemented by off-the-shelf system components and a standardized communication
protocol. The communication issues have to be addressed by the application program-
mer. On the other hand this allows of advanced user interfaces more related to business
need’s.

• Processing style: A Remote User Interface runs smoothly with batches, as batches may
run on powerful servers close to their data.

• Distribution vs. performance: Network traffic is low compared to a Distributed
Presentation Architecture, because all interaction intensive processing can be performed
on the client side. Therefore, the Remote Presentation Architecture has a potential for
very good performance if the design of the application layers is done coherently (see de-
sign issues in the following section). In this respect the architecture constrains the design
space and requires performance to be reified while implementing this architecture. For
example, the user gets prompted with some information, enters some data, which is often
subject to plausibility checks (single fields only, no checks depending on the application
kernel), and finally hits some button that causes an application kernel command to be
performed. To trigger a command in the application kernel, a Remote User Interface ar-
chitecture transports just the data that are needed to identify the command and to provide
it with parameters. In most cases much more than these data are needed from the data-
base in order to perform the actual function. Only a Distributed Application Kernel can
be tuned to cause even less network traffic by allocating parts of the application kernel to
the client machine.

• Distribution vs. security: Does not differ very much from a Distributed Presentation
Architecture, except that application code is spread to the clients and therefore more
open to possible attacks.

• Software distribution cost: This architecture has higher software distribution costs than a
Distributed Presentation Architecture. Often you can parameterize plausibility checking
and dialog control using table driven meta systems (Reflection [BMR+96]. This will re-
duce the need for software updates, as tables are easier to distribute than dynamic link li-
braries and whole software releases. In any case, a Remote User Interface needs a full
fledged operating system plus a graphical presentation system plus some communication
software to cope with the middleware.

Client/Server Architectures for Business Information Systems Page 13

• Reusability vs. performance vs. complexity: The solution enables other application inter-
faces to access the same application kernel components. Thus, it facilitates the develop-
ment of standardized domain-level components, but only on the level of the domain
access interface offered to the remote user interface. A Distributed Application Kernel
provides more flexibility and a more fine-grained level of reuse.

'HVLJQ

• Choose a dialog paradigm: The architecture works best with a Form-Based User Inter-
face [CK97]. Other forms of dialogs, especially direct manipulation may be better for
some purposes in advanced applications, but will result in more network traffic. There-
fore advanced information systems that cause heavy data transfer between user interface
and data are better off with some form of off-line architecture. Off-line architectures load
data onto a client machine once, may keep them for hours and write them back in a
batch.

• Have your primitive plausibility checks done on the client: Plausibility checking may oc-
cur on a screen each time a user leaves a field. If plausibility checking is done entirely on
the server machine, this results in heavy network traffic for remote procedure calls and
also results in poor performance. Therefore, put as much plausibility checks on the client
as possible.

• Choose middleware: You may choose any kind of middleware that allows some form of
RPC to call application kernel functions remotely via the network. There are different
RPC environments available on the market:

− Plain RPCs like provided by all kinds of DCE compliant products and also
some custom RPCs.

− Distributed transaction processing environments that add transaction capabili-
ties and administration features to plain RPC environments.

− Distributed object oriented Middleware (CORBA) that add object orientedness
to distributed transaction processing environments.

• Load balancing: Most distributed programming environments offer run time load bal-
ancing by replicating application servers at run time. Some distributed transaction envi-
ronments [ACD+96] also offer advanced techniques such as priority queues, data
dependent request routing and other scheduling techniques.

• Manageability: Depending on the middleware used, a Remote User Interface may be the
best manageable architecture of all. Distributed transaction processing environments
have brought many mainframe administration features to client server networks.

Client/Server Architectures for Business Information Systems Page 14

.QRZQ�8VHV

A lot of all client server architectures implemented today are Remote User Interface architec-
tures with their share rising.

The OASIS framework [Moo97] implements a Remote User Interface within a Three-Tier-
Architecture.

3.3 Pattern: Distributed Application Kernel

6ROXWLRQ

Apply a client server cut through the application kernel. The architect may distribute the appli-
cation kernel freely at her or his whim, following certain rules. One part of the application
kernel functionality is placed on a client node and another part on a server.

Client Node
Application Kernel A

Presentation

Dialog Control

Database Access

Database

Application Kernel

Application Kernel B

Server Node

1..m, m ≤ n

1..nApplication Dependent Protocol
(Remote Method/Procedure Calls)

Figure 8: Structure of a Distributed Application Kernel architecture

The client server cut is bridged with some remote procedure call (RPC) based middleware,
which propagates service requests from the client to the server and delivers results back to the
client.

([DPSOH

Imagine, the application kernel of the library system is composed of several components
building a DAG. Some of the low-level domain objects should become server objects shared
by the more specific library objects running on the client nodes. The server part of the applica-
tion kernel is implemented in C++, whereas the client part together with the user interface is
an applet which uses an object request broker implemented in Java to access and interact with
the application server.

Client/Server Architectures for Business Information Systems Page 15

&RQVHTXHQFHV

• Business needs vs. construction complexity: A distributed application kernel is a very
flexible architecture. It is suited for complex, highly interactive applications (e.g. deci-
sion support systems with object oriented user interfaces), provides good utilization of
the underlying hardware. Unfortunately, the solution is also the most challenging one
for application design and implementation.

• Distribution vs. performance: The performance of the architecture depends on how well
the cut has been chosen. A good cut offers excellent performance while a bad cut may
have a devastating effect. There is no simple distribution rule for the application kernel
objects. The distribution must be tailored to the call and traffic structures of the business
logic. The criteria for this are similar to modularization: Minimum coupling and maxi-
mum cohesion.

• Processing style: Batches add additional complexity to the Distributed Application Ker-
nel Architecture. On one side you want to avoid replicating parts of the application ker-
nel. On the other hand the traffic and call structures for batches are completely different
from dialog processing. To achieve sufficient performance for batches and dialog proc-
essing, you might be forced to replicate some portions of the application kernel.

As a solution consider the three-tier-architecture discussed on page 19. Furthermore,
some RPC environments, such as distributed transaction processing environments or
CORBA, allow you to replicate functions making the redundancy problem at least better
manageable.

• Distribution vs. security: Generally, this architecture is more sensitive to security holes
than a Remote User Interface architecture, because of spreading data processing func-
tionality over a client/server network. For example, think of Java applets or ActiveX in
the context of internet applications.

• Distribution vs. consistency: In the context of transactions across clients and servers we
enter the field of distributed transaction processing. For this field the normal RPC is in
some environments extended to a transactional RPC, such that it becomes a unit of con-
sistency (the PRC is either totally committed or rolled back).

• Software distribution cost: Depends much on the configuration within the network. If the
client part is running on end-users’ machines, you achieve management as good as in a
Remote User Interface, but you still have a harder software distribution problem because
of more specific and complex configuration dependencies. If the client part of the appli-
cation kernel acts itself as a server for the user-interface and is distributed to a small
number of server machines, distribution cost can be reduced.

Client/Server Architectures for Business Information Systems Page 16

• Reusability vs. performance vs. complexity: The solution promotes reusability of appli-
cation components at the cost of complexity and possibly performance. In combination
with open middleware application servers can be built which offer services (e.g. in form
of common business objects) to a number of clients even for different applications.

'HVLJQ

• Openness: Interoperability and portability depends on the openness of the middleware.
For example, with CORBA you can use different programming languages on the client
and server side and different CORBA implementations can communicate via the stan-
dardized Internet Inter-ORB Protocol (IIOP). To achieve portability in case of proprie-
tary APIs (e.g. ActiveX, DCOM) requires much more discipline and work for the
application programmer.

• Stored procedures: In combination with a Remote Database architecture stored proce-
dures can be used to shift application functionality to the database server. The main force
driving a stored procedure implementation is performance, but you possibly have to pay
for it with a number of disadvantages such as proprietary language, no portability across
vendor platforms and architectural mismatches. Besides performance stored procedures
may also be attractive from a security point a view: many database systems support con-
trol and administration of access rights for stored procedures (e.g. rights to execute a
stored procedure can be granted to specific database users).

• Manageability: Depending on the middleware, a Distributed Application Kernel is suffi-
ciently manageable. You should consider using distributed TP environments for better
manageability.

• Scalability: As you can use more than one application server, a Distributed Application
Kernel Architecture is very scalable.

• Load balancing: There are many opportunities for performance tuning and for load bal-
ancing between clients and servers. The price you win for the high complexity of the ar-
chitecture are very good performance tuning opportunities.

.QRZQ�8VHV

New client server development tools, such as Dynasty or Forté, support flexible partitioning of
an application kernel into separate application processes and their deployment either on the
client or server side. Forté even supports automated partitioning at run-time.

The OASIS framework [Moo97] allows persistent application kernel objects to be loaded on a
client. This behavior comes close to Half-Object Assembly [Toe97].

Client/Server Architectures for Business Information Systems Page 17

3.4 Pattern: Remote Database (RDB)

6ROXWLRQ

Apply a client server cut below the database access layer. Persistence is provided by a remote
(relational) database that is addressed via some remote database access protocol.

DB-Client Node
Database Access

Presentation

Dialog Control

Database Access

Database

Application Kernel

Database

Server Node

1..m

1..n Remote DB
Access Protocol

Figure 9: Structure of a Remote Database architecture

The client requests database services from the database server. The server node hosts a DBMS
and offers services to the database access layer via some middleware. The services may com-
prise control (establishing an association between the client and server, managing database
connections), transfer of database operations (e.g. in SQL) and parameters, transfer of resulting
data, and transaction management.

([DPSOH

We implement the library application as an applet loading other java classes from the WWW-
Server dynamically. The library data is stored in an SQL-Database which is accessed via a
JDBC-API. The architecture is illustrated in Figure 10.

Client/Server Architectures for Business Information Systems Page 18

WWW-Server WWW-BrowserHTTP

Library-Databasevia JDBC

Application Level

Technical Basis

1..n
Server Machine

11 Client PC1-*1

Library Applet

GUI

App.-Kernel

DB-Access

Library Applet

HTML-Pages

Figure 10: Sample architecture for a library system

&RQVHTXHQFHV

• Business needs vs. construction complexity: One of the main reasons for the success of
RDB architectures is simplicity (e.g. no server software needs to be developed). Rela-
tional database vendors have started very early to bring their remote database protocols,
proprietary stored procedure languages and 4GL tools to the market. The market is com-
plemented by ODBC (Open Database Connectivity) protocols and ODBC adapters for
nearly every client programming language. On the low end of the market, commodity
products such as Visual Basic, and Microsoft Access, and Xbase products offer powerful
support for simple dialog models.

• Distribution vs. performance: Network traffic is reduced compared to a Distributed
Presentation Architecture but high compared to Remote User Interface and Distributed
Application Kernel. The reasons for this have been discussed above. The architecture
causes the least server load of all the C/S cuts discussed in this paper (as long as no
stored procedures are used on the server). On the other hand, it causes the heaviest client
load.

• Processing style: In a pure RDA architecture all data needed for batch processing have to
be moved to a client machine. However, most client machines neither offer any support
for batches nor have the I/O power you need. Additionally, the resulting traffic congests
the network.

Client/Server Architectures for Business Information Systems Page 19

A solution for this problem is a Distributed Application Kernel. For example, we can
replicate (parts of) the application kernel and run it on the database server (e.g. by use of
stored procedures), or batches run on a separate batch server that is connected to the da-
tabase server using a dedicated high speed LAN connection:

Batch
Server

Client 1

Client 2

Client n

Database
Server

LAN 1 Dedicated High Speed LAN 2

 Figure 11: Solving the Batch Problem in RDB architectures

• Distribution vs. security: On the client as well on the server security depends on the op-
erating system and on the quality of administration. Security inside a relational database
is another problem. There are possibilities in SQL to GRANT access rights to users and
user groups. These capabilities are seldom ever used as access control is much easier on
a function level than on a data level. Hence you will often find slack security admini-
stration in relational databases.

• Software distribution cost: In a two-tier configuration you have to replicate the complete
stack of a three layer architecture, except the database. This usually means moving
Mbytes of software to every client machine on each major change of the installation. To
tackle the problem you may use dedicated file servers for application software, auto-
mated software distribution, and configuration management tools. Still the data volume
may exceed the network capacity, causing this solution to fail for large enterprises.

• Reusability vs. performance vs. complexity: The architecture does not promote reuse of
application functionality but data can be shared by different client applications.

Client/Server Architectures for Business Information Systems Page 20

'HVLJQ

• Openness: Most DBMS and protocols (e.g. ORACLE’s SQL*Net) are proprietary prod-
ucts that do not support any portability. You may use a standard API, such as ODBC.
However, there are several levels of ODBC compliance, also resulting in poor portabil-
ity. Additionally, any use of stored procedures effects portability due to proprietary pro-
tocols and languages. RDA (e.g. [Lam94] provides an overview) is a communication
protocol for remote database access that has been adopted as an international standard. It
consists of two parts: The first part [RDA93a] specifies a generic model (services, proto-
col) for arbitrary database connection whereas the second part [RDA93b] specializes the
model for connecting to SQL-databases. The RDA standard does not comprise any
specification for an API, so it promotes interoperability but not portability.

• Scalability: Most RDBMS offer only pure support for multiple servers. We have found
the following rules of thumb to be useful:

− 4GL architectures should not be loaded with more than approximately 50 users.

− RDB architectures without use of a transaction monitor should not be loaded with
more than 100 users. Above that limit, a distributed transaction processing environ-
ment should be considered.

• Existing legacy applications: It is very hard to integrate existing legacy applications into
a pure RDB architecture. You may couple old and new applications via a common data-
base but this requires custom programming and is hard to do with plain 4GLs (see
[KMW96] for more information).

• Manageability: SQL network protocols do not support management of large networks.
You have to rely on the common products like SNMP.

• Ease of creation: Implementing a simple RDB architecture is easy compared to
Distributed Presentation Architecture and Distributed Application Kernel. Especially
4GL tools will allow easy creation of prototypes and first cut applications. On the other
hand, if it comes to maintenance, minimal code redundancy and elegant architecture,
4GLs are not the first choice. On the one hand, these tools may facilitate rapid applica-
tion development, but on the other hand they are often restricted to two-tier architec-
tures. Two-tier architectures are cut out for homogeneous environments and small span
applications.

5HODWHG�3DWWHUQV

Using stored procedures RDA can be combined with Distributed Application Kernel .

Client/Server Architectures for Business Information Systems Page 21

.QRZQ�8VHV

The RDB architecture can be found in the majority of all client server systems. It is broadly
supported by existing database and 4GL products and tools. ORACLE Forms or Powerbuilder
are two representatives of 4GL tools which allow easy realization of a RDB architecture.

sd&m has built various RDB architectures including the projects Champs, EASY C, EASY
D1, and HYPO.

3.4.1 Pattern: Distributed Database

6ROXWLRQ

Apply a client server cut within the database component, so that application data can be dis-
tributed across several databases located on different nodes. The database access layer strives
for transparency to hide distribution from clients’ data requests. A distributed database man-
agement system (DDBMS) supports this approach very well.

Client Node
Database A

Presentation

Dialog Control

Database Access

Database

Application Kernel

Database B

Server Node

1..m

1..n(Distributed) Database
 Access Protocol

Figure 12: Structure of a Distributed Database architecture

([DPSOH

Consider a library system with a big central library and a number of local branches, which
offer only the most popular books to their local clients. If clients search for a book not avail-
able on the local site it can be ordered from the central library. Instead of a single database
server for the central library, local servers provide library databases for the administration of
the locally available books. Other data such as common data of library users may be kept cen-
tral.

Client/Server Architectures for Business Information Systems Page 22

&RQVHTXHQFHV

• Business needs vs. construction complexity: Organizations with a minor degree of shared
data between geographically dispersed, autonomous departments may require a Distrib-
uted Database architecture although centralized data management is easier. Using a
DDBMS offers a very elegant way to distribute application data without the application
noticing it. Thus, the complexity for the application programmer can be reduced signifi-
cantly.

• Distribution vs. performance: As with distributed file systems, you pay a certain per-
formance penalty. The main factor that determines performance in a Distributed Data-
base architecture is the ratio between data that are stored locally and data that are stored
in remote (mounted) database tables. If all data are stored on the local machine, you have
optimal performance. If all data are stored on a single remote machine, service times for
simple queries (single table insert/update/delete) are longer than in a pure local configu-
ration (a HYPO performance study on DDCS/2 with OS/2 and MVS RDA server shows
an increase of 15-20%). The situation becomes worse for multiserver queries that span
several remote databases. In this case, the local databases query optimizer may become
pretty blind as he lacks the statistical data for an optimal query plan. Before you plan to
implement queries that span multiple server, be sure the query plans are acceptable. The
situation also becomes bad if the network is congested.

• Processing style: A Distributed Database is not suited for OLTP applications where a
huge number of users share current data. Also for batch processing the architecture may
result in poor performance.

• Distribution vs. security: Data being distributed among several nodes makes it more dif-
ficult to ensure data confidentiality, especially, if data is managed by different database
systems.

• Distribution vs. consistency: If an application runs transactions which involve updates
on distributed data, we need some transaction manager who ensures data consistency
(e.g. via a two-phase commit protocol). Such a transaction manager can be part of a
DDBMS or we can use a separate transaction monitor to coordinate updates on a number
of (heterogeneous) databases.

• Software distribution cost: The cost of software distribution is even worse than in
Remote Database architectures. Distributed Databases are heavyweight champions com-
pared to some remote database access protocol proxies. This is the reason why you will
seldom find a distributed database on an end user’s client machine but more likely on a
department server.

• Reusability vs. performance vs. complexity: The same as in a Remote Database archi-
tecture.

Client/Server Architectures for Business Information Systems Page 23

'HVLJQ

• Openness: Protocols like DRDA do not define a common API. Many vendors use pro-
prietary SQL-APIs and protocols and offer DRDA-gateways to translate their protocols
to DRDA.

• Existing legacy applications: Integrating existing legacy applications into a Distributed
Database Architecture can be achieved mounting the old application’s database tables.
Powerful remote database architectures like IBM DRDA even provide gateways for old
hierarchical IMS databases.

On the other hand, integrating legacy applications via their data structures is harder than
integrating them via wrappers.

• Scalability: Distributed Database architectures are not known for their above average
scalability. There are strategies that help you improve overall performance when using a
Distributed Database Architecture:

− Replicate read-only data

− Compress data

− Keep local data local

− Data partitioning via business objects

5HODWHG�3DWWHUQV

A pure Distributed Database architecture is hard to find in practice. It is more common to use a
distributed database in combinations with Remote User Interface or Remote Database to build
a three-tier architecture.

.QRZQ�8VHV

IBM’s DRDA [DRDA] defines an interaction protocol for the communication between data-
base clients and a database server. Client and Server databases complying to DRDA (e.g. via
some gateway) can be combined to a distributed database system.

Hypo Bank in Munich, Germany uses OS/2 department servers, DDCS/2 and a MVS enter-
prise server together with the DB2 family of RDA products.

Client/Server Architectures for Business Information Systems Page 24

The IRIDIUM architecture [IRIDIUM], a very
known project for a satellite based mobile
phone system uses the following trick, to im-
prove distributed database system perform-
ance: business objects are connected via an
Object Request Broker bus and not via the
distributed database. Internal business object
traffic is done using the distributed database.
This approach reduces database traffic with
the Enterprise Server.

Customer
Business

Object

Account
Business

Object

Order
Business

Object

Corba Bus for calls leaving one business object

Distributed DB
Enterprise Server
(Objectivity/DB)

Distributed DB
local copy

Distributed DB
local copy

Distributed DB
local copy

4 Acknowledgements

Thanks to António Rito Silva, the PLoP’97 shepherd for this paper.

5 References

[ACD+96] Juan M. Andrade, Mark T. Carges, Terence J. Dwyer, Stephen D. Felts: The TUXEDO
System, Software for Constructing and Managing Distributed Business Applications; Addison
Wesley, 1996; ISBN 0-201-63493-7

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal:
Pattern-Oriented Software Architecture - A System of Patterns; John Wiley & Sons Ltd.,
Chichester, England, 1996; ISBN 0-471-95869-7

[CK97] J. Coldewey, I. Krüger: Form-Based User Interface - The Architectural Patterns; in Frank
Buschmann, Dirk Riehle (Eds.): Proceedings of the 1997 European Pattern Languages of
Programming Conference, Irsee, Germany, Siemens Technical Report 120/SW1/FB, 1997

[Den91] Ernst Denert: Software-Engineering - Methodische Projektabwicklung; Springer-Verlag,
Berlin Heidelberg New York; 1991, ISBN 3-540-53404-0

[DRDA] IBM: Distributed Relational Database Architecture (DRDA*) - An Open Database Solution;
http://www.software.ibm.com/data/drda.html

[Gam92] Erich Gamma: Objektorientierte Software-Entwicklung am Beispiel von ET++: Design-
Muster, Klassenbibliothek, Werkzeuge; Springer-Verlag Berlin Heidelberg New York, 1992;
ISBN 3-540-56006-8

[Hir96] Robert Hirschfeld: Three Tier Distributed Architecture; Proceedings PLoP 96, Allerton Park,
IL, 1996.

[IRIDIUM] IRIDIUM Homepage: http://www.iridium.com/

[KC96] Wolfgang Keller, Jens Coldewey: Relational Database Access Layers: A Pattern Language;
Proceedings PLoP ‘96, Allerton Park 1996. Actual version can also be downloaded from
http://www.sdm.de/g/arcus/cookbook/.

Client/Server Architectures for Business Information Systems Page 25

[KMW96] Wolfgang Keller, Christian Mitterbauer, Klaus Wagner: Objektorientierte Datenintegration
über mehrere Technologiegenerationen; Proceedings ONLINE, Kongress VI, Hamburg, 1996

[Lam94] Winfried Lamersdorf: Datenbanken in verteilten Systemen: Konzepte, Lösungen, Standards;
Vieweg , Braunschweig, 1994; ISBN 3-528-05467-0

[Moo97] Conor Mooney: A Practical Framework for Distributing Business Objects; Object Expert, Vol
2(2) Jan/Feb 1997.

[Ren96] Paul E. Renaud: Introduction to Client/Server Systems; Second Edition, Wiley 1996; ISBN 0-
471-13333-7

[RDA93a] International Organization for Standardization (ISO): Remote Database Access (RDA) -
Service and Protocol; International Standard 9579-1, ISO/IEC JTC1/SC21, 1993

[RDA93b] International Organization for Standardization (ISO): Remote Database Access (RDA) -
SQL Specialization; International Standard 9579-2, ISO/IEC JTC1/SC21, 1993

[SG86] R. W. Scheifler, J. Gettys: The X Window System; ACM Transactions on Graphics 5(2), pp.
79-109, April 1986.

 [Sim95] David Simpson: A UNIX Server Is No Mainframe; Datamation, December 15, 1995.

[Toe97] Fridtjof Toenniessen: Half-Object Assembly - a Pattern System for Distributed Domain
Objects in Business Applications; in Frank Buschmann, Dirk Riehle (Eds.): Proceedings of
the 1997 European Pattern Languages of Programming Conference, Irsee, Germany, Siemens
Technical Report 120/SW1/FB, 1997

[Wei97] Charles Weir: Architectural Styles for Distribution . Using macro-patterns for system design;
in Frank Buschmann, Dirk Riehle (Eds.): Proceedings of the 1997 European Pattern
Languages of Programming Conference, Irsee, Germany, Siemens Technical Report
120/SW1/FB, 1997

[X/O96] X/Open: Distributed TP: Reference Mode; Version 3, X/Open Company Ltd., 1996; ISBN 1-
85912-170-5

[zAPP] Rogue Wave Software Inc.: zAPP Developer’s Suite; http://www.roguewave.com/products/
zapp/index.html

