Courler Patterns

Robert Switzer*
Mathematisches Institut
Bunsenstr. 3-5
37073 Goettingen

Germany

July 24, 1998

*email: switzer@math.uni-goettingen.de

1 Courier Pattern

1.1 Intent

Define an object that encapsulates the interaction of two or three obects. Courier promotes
loose coupling by keeping objects from referring to each other explicitly, and it lets you vary
their interaction independently.

1.2 Motivation

An object-oriented program can be complex, because a large number of classes is involved.
Or it can be complex, because the interconnections between the classes are complicated. If
such complicated interconnections are implemented by having the classes refer explicitly to one
another, the program becomes difficult to understand and maintain but also (and almost worse)
the reusability of the classes involved is severely impaired.

As an example consider the situation that a Button in the graphical user interface (GUI)
is supposed to cause two application domain objects — say a FileFinder and a TextEditor to
interact with one another. It is not unlikely that a MenuItemin the GUI will have the same job.
It would clearly be a poor idea to have the Button and the MenuItem objects refer explicitly to
the FileFinder and the TextEditor objects. This kind of thing can be achieved by subclassing
the classes Button and MenulItem, which would lead to a plethora of specialized Button and
MenuItem classes. It is unlikely that these specialized GUI classes would be reusable in other
contexts. Even worse would be a solution that has the Filefinder object know that it is
finding a file to be used by a particular TextEditor, because a FileFinder is prima facie quite
general purpose; it is willing to find files of all sorts for use by any object that needs a file as
material to work on.

The general problem is that we have a group of objects (like our FileFinder) that need
to send messages to another group of objects (like our TextEditor) but we want to decouple
the first group from the second as much as possible. The solution using courier objects will
typically look as follows. As the name implies a courier has the task of transporting a message
of some kind (e. g. the path of a file the user has chosen) from an object in the first group
that we call a producer (e. g. the FileFinder) to an object in the second group that we call a
consumer (e. g. the TextEditor). The courier is not interested in the contents of the message
and does not transform the message in any way. The courier “knows” its producer and its
consumer, but the only thing it knows about it’s producer is that it is of type Producer and
thus has a method produce. An analogous statement holds for the consumer. The producer
does not know or care about which courier will transport the message it produces, and it
certainly does not know or care about the consumer that will eventually consume it’s message.
The consumer does not know or care about the courier from wich it receives a message and
cares even less about the producer from which the message originally stems. Using this pattern
it is possible to connect multiple producers to a single consumer and also multiple consumers
to a single producer. The pattern is extremely flexible as we will see in further examples.

In addition to the three participants mentioned so far: courier, producer, consumer there
is almost always a fourth object involved: the invoker. The invoker is typically a widget in
the user interface. The invoker tells the courier when to start the ball rolling. A courier
object has a method execute. The sequence of events is as follows:

1. The invoker (a Button or Menultem object) calls the execute method of its Courier.

2. The courier calls the produce method of its producer.

3. The courier object calls the consume method of its consumer and hands it the message
it was given; if the producer produced nothing the message will be null.

1.3 Applicability

Use the Courier pattern when

e many objects communicate with many other objects, whose identity they should not
know.

e a behavior that’s distributed among many classes should be customizable witout extensive
subclassing.

e The additional indirection implied by couriers will not significantly impair performance.

e It is not imperative that the matching of message type and recipient type (Consumer in
our terminology) must be statically checked at compile time. (In the section Implemen-
tation we will see how to achieve dynamic type checking.)

1.4 Structure

The static class strucure of the pattern Courier is shown as a UML diagram in Fig. 1.

1.5 Participants
e Invoker (Button, Menultem)
— Asks the Courier to start the communication process.
e Courier
— Carries messages from a ConcreteProducer to a ConcreteConsumer.
e Producer
— Provides an interface for creating messages to be consumed.
e Consumer
— Provides an interface for consuming messages.
e ConcreteProducer (FileFinder)
— Generates the messages the Courier is to transport.
e ConcreteConsumer (TextEditor)
— Accepts the messages the Courier transports.
e Message

— Can be of any type. This is what the Producer produces,the Consumer consumes
and the Courier transports.

e Client

— Creates a Producer P, a Consumer C and a Courier ¢ connecting P to C. Will almost
certainly also create an Invoker and tell it about c.

Producer Consumer
Bl Invoker
. * }
action -
procucef) 1 consumey)
ConcreteProducer 1 ConcreteConsumer
Courier *
*
producer .
consumer
produce() consume)
execute -

if (producer !=null)
m = producer.produce();

if (consumer != null)
consumer.consume(m);

Figure 1: The static class structure

1.6 Collaborations

e Producers produce messages to be consumed by consumers they don’t even know.
e Consumers consume messages from Producers they don’t know.

e Couriers transport messages from Producers to Consumers without transforming the con-
tents in any way.

o Invokers start the ball rolling by activating their couriers.

The typical communication among participants in the pattern Courier is shown as a UML
sequence diagramm in Fig. 2.

1.7 Consequences

The Courier pattern has the following benefits:

. _newProdueer) b >
newConsumer() L »
._newCouier(c,p) o >
setAction(co) >
m = produce()
consume(m)

Figure 2: The communication between objects

1. It can help you achieve a maximal decoupling. With some care it should be possible
to decouple the user interface from the application classes to such a degree that user
interface and application can be developed completely independently — for example by
two different development teams.

2. The pattern is easy to apply and shouldn’t lead to complex monoliths of the sort the
Mediator pattern tends to generate.

On the other hand the Courier pattern has the following drawbacks:

1. The high degree of indirection involved in the Courier pattern may lead to a certain
degradation of efficiency. Having the Invoker call the produce method in the Producer
directly and the consume method of the Consumer directly would undoubtedly improve
efficiency but at the price of the disadvantages listed at the beginning of this section. On
the other hand this interaction Invoker-Producer-Consumer is right at the user interface,
where the decisive speed factor is the reaction time of the human user. There inefficient
software seldom hurts.

2. In order to use the Courier pattern the application classes involved will have to subclass
Producer or Consumer, which may seem a nuisance. In languages that support multiple
inheritance this isn’t too serious. In Java you can make Producer and Consumer into
interfaces and let your application classes implement one or the other of these interfaces.

3. A courier can connect only two colleagues, whereas a mediator can connect arbitrarily
many. See, however, the Implementation section.

1.8

1.

Implementation

We can make the way a consumer reacts to a message variable by passing not only the
message but also a message type to the method consume. The message type could take
values defined as (static) constants in the class of the consumer. Thus a TextEditor
could be induced to execute a BlockCopy, a BlockCut or a BlockPaste depending on the
message type; in all three cases the actual message could be null, since it plays no role in
this example. Here a Producer would also be superfluous. Three different Couriers could
connect three different Invokers with one and the same Consumer; depending on which
Menultem the user chose the TextEditor would carry out one of its three operations. If
we choose this path, then the constructor for the class Courier will accept an argument
of type int that specifies the message type the courier will always pass to its Consumer.
Used in this way a courier is just a variation on the Command pattern [Gamma-+95].

In [Gamma+97] Gamma and Helm describe a Courier pattern that has great similarity
to the one described here in many points. One significant difference, however, is that
[Gamma+97] suggests providing a suitable message type for every consumer (the con-
sumers are called “recipients” in that paper); this provides greater type safety since a
consumer (recipient) is then guaranteed to understand any message it receives. [ICE94]
achieved the same degree of (runtime) type safety by giving consumers a boolean function

boolean validMessageType(Object m, int type);

that a courier can call before passing its consumer a message. If the consumer rejects the
message the courier should raise an uncaught exception: ‘uncaught’ because this kind of
thing represents a logical error on the part of the programmer, who has obviously tried
to pair up a producer and a consumer that don’t fit together. An uncaught exception
will cause the program to abort with a suitable error message during the testing phase.
This is not as good as the static type checking provideed by pairing message types to
consumer types but it serves the purpose.

It might be worth considering (if only for reasons of symmetry) letting the produce
method accept an argument

int messageType

so that it could produce different messages for different couriers.

A courier as previously described can only initiate a single communication between col-
leagues Producer and Consumer. In many situations this will not be enough; The Me-
diator [Gamma+95] is capable of managing a much more complex set of actions. But in
some cases this complex set of actions reduces to a sequence of simple communications
Producer to Consumer.

Fxample. Let us illustrate this situation by revisiting the example that [Gamma+95]
uses for motivating the Mediator pattern. We have a dialog box with an entry field, a
list box and several buttons that may be deactivated depending on the selection in the
entry field. The sequence of simple communications involved here can be described as
follows:

(a) The list box as Producer produces its selection.

(b) The entry field as Consumer consumes the selection as the text that it displays.

(¢) Several Couriers with the entry field as Producer activate or deactivate some buttons
(their Consumers) depending on the selection. Here filter consumers (see 5. below)
can be used to decide whether activation or deactivation is the right choice.

We can chain an arbitrary number of Couriers together by letting each Courier have a
successor. The last step in the execute method of a Courier is to check whether its
successor is non-null. If so, the execute method of the successor is called. (See the
sample code below.)

. In many applications it seems too restrictive to forbid the couriers to work in some
appropriate fashion on the messages they are transporting. Shouldn’t we allow them
to transform their messages or at least check that the message fulfills some minimal
requirements? But there are at least two arguments against giving in to this temptation:

(a) The couriers are very easy to understand as long as they merely transport the mes-
sage. It weould be a pity to sacrifice this clarity.

(b) The manner in which a message should be ‘handled’ tends to be application-specific.
Until now the couriers were completely application-neutral and they ought to stay
that way!

Eramples.

(a) In the first section we had the example of a FileFinder that produces a path for a file
to be consumed by a TextEditor; shouldn’t we at least check that the TextEditor
will have read permission for the file before passing it the path? This looks like
an ideal task for an “active courier”. But carefull We are in danger of generating
a whole slew of courier classes each of which handles its messages differently and
mostly in an application-specific fashion. Let’s stop and think again.

(b) A courier connecting the entry field in a dialog box with a button that should
be activated or deactivated depending on the text in the entry field might want
to inspect the message (the text from the entry field) and set its message type
accordingly (see 4. above).

Let’s just make the Consumer do any necessary filtering. But what about the real Con-
sumer (the TextEditor in our example)? We can give each Filter a partner of type
Consumer to which it passes its filtered message. Since Filter will subclass Consumer,
we can stick together as many filters as we want to an arbitrarily long pipe in the well-
known Unix fashion. We simply have to make the second Filter the partner of the first
and so on.

For example in addition to checking that the TextEditor will have read permission for
the path we pass it we might also want to look inside the file to make sure it contains
ASCII text. Then we would place an AsciiChecker between the PermissionChecker
and the TextEditor.

. The idea with the filters and particularly the PermissionChecker raises a problem that
still needs a solution. What should a Filter do, if for some reason it can’t filter its message
properly?

In addition to the Filters we define a new subcategory of Consumers, the Error Handlers.
Each Filter gets two partners of type Consumer: one of them is the next link in the filter
chain, the other one is an error handler to be called upon if the filter process somehow goes
wrong. The message passed to the error handler somehow describes what went wrong so
that the user can be appropriately informed. An error handler might pop up a dialog box
with a text supplied as message.

1.9 Sample Code

We will illustrate the use of the Courier pattern by giving a partial implementation for the
communication between a user and a TextEditor. As programming language we will use
Java, which is in the process of replacing C++ as lingua franca in the OO community. C++
programmers will have no difficulty in understanding the Java code.

As example we take the case of the FileFinder and the TextEditor as originally described.
Let us suppose we already have classes FileFinder and TextEditor that we don’t want to
touch; we begin with some basic interfaces:

public interface Producer

{
public Object produce();

b

[k ok ok ok ok ok skok s skok ok ok ok sk ok s skok ok sk ok ok sk ok sk skok sk sk ok ok ko ok ok ok k ok ok ok /

public interface Consumer

{

public void consume(Object message, int messageType);

b

[k ok ok ok ok ok skok s skok ok ok ok sk ok s skok ok sk ok ok sk ok sk skok sk sk ok ok ko ok ok ok k ok ok ok /

public interface Command

{

public void execute();

Note for C++ programmers: Java interfaces are like C+4 abstract classes that have no data
members and in which all methods are pure virtual. Interfaces must be subclassed to provide
an implementation.

And now our class Courier. As the reader will see, we have already incorporated the idea
with message types as well as the possibility of chaining — both described in the previous section.

public class Courier implements Command
{

private int type;

private Producer producer;

private Consumer consumer;

private Courier successor;

public Courier(Producer prod,Consumer cons,int type)

// constructor

{
producer = prod;
consumer = cons;
successor = null;
this.type = type;
}
public void setSuccessor(Courier aCourier)
{
successor = aCourier;
}
public void execute()
{
Object m = null;
if (producer !'= null)
m = producer.produce();
if (consumer '= null)
consumer.consume(m, type);
if (successor '= null)
successor.execute();
}

by
We follow with a minimalistic class Button to show how an invoker might look.

// This class is supposed to illustrate a typical invoker.

public class Button

{
protected String label;
protected Command action;

public Button(String label) { this.label = label;}
public void setAction (Command a) { action = a;}

public void press()
{

changeToPressedAppearance() ;

public void release()
{
if (action '= null)
action.execute;
restoreUnpressedAppearance() ;

by
// Undoubtedly dozens of other methods.

b

The next few classes illustrate how we could use the pattern Courier to connect a FileFinder
to a TextEditor.

public class FileFinderAsProducer extends FileFinder
implements Producer

{
public Object produce()
{
return theUsersChoice();
b
b

[k ok ok ok ok ok skok s skok ok ok ok sk ok s skok ok sk ok ok sk ok sk skok sk sk ok ok ko ok ok ok k ok ok ok /

class UnrecognizedMessageException extends RuntimeException

{3

public class TextEditorAsConsumer extends TextEditor
implements Consumer

{

public final static int BlockCopy
public final static int BlockCut
public final static int BlockPaste
public final static int LoadText

o

1]
w N = O

public void consume(Object message,int messageType)
{
/* In the first three cases the message is */
/* ignored; it’s probably null anyway. */

switch(messageType)
{
case BlockCopy:
copyBlock();
break;
case BlockCut:
cutBlock();
break;
case BlockPaste:
pasteBlock();
break;
case LoadText:
String path = (String) message;
loadText (path);
break;
default:
throw new UnrecognizedMessageException();

by
Here we are obviously assuming that the class FileFinder has a method
String theUsersChoice()

Therefore the downcast used in TextEditorAsConsumer will be perfectly safe.
In just the same way we are assuming the class TextEditor already had methods

private void copyBlock()

private void cutBlock()

private void pasteBlock()

private void loadText(String path)

We finish our editor example with a rudimentary client to show how all these classes and
interfaces could be used.

public class SimpleClient

{
FileFinderAsProducer finder = new FileFinderAsProducer();
TextEditorAsConsumer editor = new TextEditorAsConsumer();
Courier loader = new Courier(editor,
finder,
editor.LoadText
);
Courier copler = new Courier(editor,
null,
editor.BlockCopy
);
Button load_button = new Button("Load File");
Button copy_button = new Button('"Copy Block");
load_button.setAction(loader);
copy_button.setAction(copier);
// and so on ...
}

And now we come to the filter classes proposed in the section. Implementation. We give
the general class Filter as well as a subclass PermissionChecker to illustrate the typical use of
filters. This is a version that incorporates the idea with the error handlers

public abstract class Filter implements Consumer
{
private Consumer partner;
protected Consumer errorHandler;
protected Object filteredMessage;
protected int filteredType;

public Filter(Consumer thePartner,

Consumer theErrorHandler)

{

partner = thePartner;

errorHandler = theErrorHandler;
}
public void setPartner(Consumer thePartner)
{

partner = thePartner;
}
public void setErrorHandler (Consumer theErrorHandler)
{

errorHandler = theErrorHandler;
}
public void consume(Object message,int messageType)
{

if (filter(message, messageType))

{

if (partner !'= null)
partner.consume(filteredMessage,
filteredType);
}
else if (errorHandler !'= null)
errorHandler.consume(filteredMessage,
filteredType);

}

protected abstract boolean filter(Object message,
int messageType);
// This method must be suitably redefined in each subclass.
// It should not forget to set filteredType as needed.
// It should return true if the filtering was successful.

b

[Kk ok sk sk ok ok ok ok ok sk skok sk skok ok ok ok ok ok skok ok ok sk sk sk ok sk ok sk ok ok sk sk sk ok skok o kok sk ok sk sk skok ok ok ok kok /

//File : PermissionChecker.java

public class PermissionChecker extends Filter

{
private String permissionString;
/*
* This string may contain any of the characters
e, f, r or w in any order. Their meaning is
e : Does the file described by the path exist?
f : Does the path designate an ordinary file

* ¥ ¥ ¥

as opposed to a subdirectory?

* r : Does this process have read permission
* for this file?

* w : Does this process have write permission
* for this file?

*/

public PermissionChecker (Consumer thePartner,
Consumer theErrorHandler)
{ super(thePartner, theErrorHandler); }

public void setPermissionString(String perms)
{

permissionString = perms;

protected boolean filter(Object message,int messageType)
{

String path = (String) message;
// Check the permissions described by permissionString
// for path.

if (path fails the existence test)

{
filteredType = ...
filteredMessage = "The file " + path +
" does not exist.";
return false;
+

else if (path fails the ordinary file test)
{
filteredType = ...
filteredMessage = path +
" does not specify a file.';

return false;

+
else if (path fails the read test)
{
filteredType = ...
filteredMessage =
"You do not have read permission for " + path;
return false;
+
else if (path fails the write test)
{
filteredType = ...
filteredMessage =

"You do not have write permission for " + path;
return false;

else

{
filteredType = messageType;
filteredMessage = path;
return true;

+

b

[Kk ok sk sk ok ok ok ok ok sk skok sk skok ok ok ok ok ok skok ok ok sk sk sk ok sk ok sk ok ok sk sk sk ok skok o kok sk ok sk sk skok ok ok ok kok /

public class ErrorHandler implements Consumer

{
public void consume(Object message,int messageType)
{
String text = (String) message;
// Display a dialog box with text as content.
by
by

The method consume in our class Filter is an example of the Template Method pattern
[Gamma+95]. Subclasses need only redefine the method filter.

1.10 Related Patterns

The Courier pattern is closely related to the Mediator pattern [Gamma+95]. The Mediator
can mediate communication between arbutrarily many colleagues, whereas the Courier can
prima facie only mediate between two colleagues (but see the section Implementation for
more on this). It is also like the Observer pattern [Gamma+95] in that it permits an object,
typically the consumer, to react to a change in a second object, which in this case would be
simultaneously invoker and producer. If the courier is used in this way we have the same
problem as with the observer: unless the producer knows explicitly what type of consumer
is observing it, it can’t know what information to put into the message. This problem could
be solved by having the producer put a reference this to itself into the message and letting
the consumer call appropriate methods of the producer to get the information it needs (i. e.
‘pulling’ instead of ‘pushing’). But then again this solution would increase the coupling between
producer and consumer.

It would be a mistake to overlook the similarities (at least in the objectives) between the
Courier pattern and the design patterns built into the event modell for Java in the JDK 1.1.
In the JDK 1.1 there are “event sources” that produce or “fire” events and there are “event
listeners” that report their interest in being informed about certain types of events. The classes
that represent potential event sources (typically AWT components) have methods with names
like addXXXListener and removeXXXListener where XXX represents the kind of event a listener
might be interested in: thus there are methods

void addActionlListener(ActionlListener 1);
void addMouselistener(MouselListener 1) ;
void addWindowListener(WindowListener 1) ;
void removeActionListener(ActionListener 1);
void removeMouselListener(MouselListener 1);

void removeWindowListener (WindowListener 1);

A “broadcast source” is willing to register arbitrarily many listeners. When such a source needs
to fire an event of a given type it informs all listeners that have registered an interest in this
type of event. For this purpose there are interfaces

ActionlListener
MouselListener
WindowListener

and so forth that potential listeners can implement. The interface ActionListener declares a
method

void actionPerformed(ActionEvent e);

that is called by a source that fires an ActionEvent In the same vein the interface MouseListener
declares methods

void mousePressed(MouseEvent e);
void mouseReleased(MouseEvent e);
void mouseClicked(MouseEvent e);
void mouseEntered(MouseEvent e);
void mouseExited(MouseEvent e);

Clearly this design pattern achieves some of the goals we wanted to reach with our Courier
pattern. The event source as producer of events “knows” who its consumers (listeners) are in
the sense that it keeps a list of references to them; but it does not even know what their types
are except that the types must implement the appropriate interfaces. On the other hand the
consumer (listener) must explicitly know the source of the events it wants to listen for, in order
to be able to call the addXXXListener method for that source.

1.11 Known Uses

ICE (Interface Classes for Eiffel) [[CE94] a port (or migration?) of InterViews [LCITV92] from
C++ to Eiffel introduced the class COURIER and used it extensively to avoid the C++-typical
callbacks.

The Unidraw graphical editing framework [V1.90] uses this technique to dispatch commands
through its user interface.

References

[Gamma+95] E. Gamma,R. Helm,R. Johnson, and J. Vlissides Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addisdon-Wesley, 1995.

[Gamma+97] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, The Courier Pattern, Dr.
Dobb’s Journal, 1997.

[LCITV92] M. Linton, P. Calder, J. Interrante, S. Tang, and J. Vlissides InterViews Reference
Manual(3.1 ed.) Stanford CA: CSL, Stanford University, 1992.

[ICE94] The Programmer’s Manual The ICE Library, SwisSoft, 1994.

[VL90] John M. Vlissides and Mark A. Linton, Unidraw: A framework for building domain-
specific graphical editors. ACM Transactions on Information Systems, 8(3):237-268,
July 1990.

