
Copyright   1998 Nanyang Polytechnic
Permission is granted to copy for the PLoP-98 conference.

Page 1

Composite as Metamodel: a Design Pattern for
Implementing SIGOBT-style Object Wrappers for HL7

Messages
Frederick KOH, Centre for Medical Informatics, Nanyang Polytechnic, Republic of Singapore

Tel: (65) 550 1675    Fax:(65) 452 0700    Email: Frederick_KOH@nyp.gov.sg

We describe a Design Pattern applicable to the design and
implementation of SIGOBT-style object wrappers for HL7 messages.
The Pattern described is a special case of the Composite Pattern and
is found in ProtoGen, the MS-HUG SIGOBT implementation and in
our own implementation of the SIGOBT recommendations at the
Centre for Medical Informatics.

1. Introduction
As part of our efforts to develop applications for our collaborators in the Singapore healthcare industry,
we have developed a component library for HL7 interfaces [HL7 1997]. This library follows the
recommendations of [SIGOBT1998] in the definition of its software interfaces, and the Encoding Rules
and Lower Layer Protocol recommendations in the implementation of its parsing, generation and
transport of HL7 messages.  The topic of this paper is the design of the library and what its design shares
with that of two other libraries, ProtoGen [Schadow1996a] [Schadow1996b] and the MS-HUG
Implementation of SIGOBT  [MSHUG1997a] [MSHUG1997b]; in other words, the design pattern they all
follow.

2. Context

2.1 Messaging Standards and General Architecture of Message Handling
Applications
Standard message formats facilitate the exchange of data between independently developed computer
applications. The HL7 Standard [HL7 1997] defines a set of abstract messages which healthcare
applications can exchange in order to share data or to notify each other of important clinical events. It also
defines the encoding rules which are used to map instances of abstract messages into a text-based
representation that can actually be transmitted using relatively simple communication technologies and
protocols.

An application that exchanges such messages is best implemented in two software layers:
• a lower layer that does two things :

1) parse a message that has been received into program data structures [Seliger1995]
2) translate program data structures into valid messages and transport them to their

destinations.
• a higher layer client that fills in such program data structures to pass on to the lower layer and also

processes the program data structures it receives (from the lower layer).

2.2 The HL7 Standard
As in most other message formats, HL7 messages have a hierarchical containment structure. Messages are
made up of segment groups, which are made up of other segment groups and also segments and so on. At
the bottom of this hierarchy are the primitive data types. Through its various releases, the HL7 Standard
has introduced new message types and also new message component types and also modified existing
ones. However, the general structure described above, and the primitive data types have remained virtually
unchanged. Also left unchanged are the encoding rules mentioned in 2.1.



Copyright   1998 Nanyang Polytechnic
Permission is granted to copy for the PLoP-98 conference.

Page 2

2.3 Structure of HL7 Messages
A HL7 message is composed of segment groups  and  segments. Segment groups are recursive structures,
i.e., they may contain segment groups (and also segments). Segments are made up of fields, which may
have components. Segment groups and segments may repeat.

In the example of an ADR message in 2.5, each line of text is a segment. The first 3 characters of a
segment is the name of the type of the segment. A PID segment followed by a a PV1 segment forms a
segment group. In the ADR message, this group is a “repeating group” or collection. In this case there are
4 repetitions. Within each segment, fields are delimited by “|”. A field may repeat and repetitions are
separated by “~”. A field or each of its repetitions (depending on its type) may contain components
separated by “̂ ”. Components(depending on its type) may be further subdivided into components
delimited by “&”. There are no sub-subcomponents of fields.

Fields of a primitive type (as opposed to composite types) may not contain components. Examples of
primitive types are NM (numbers), ST, FT and TX (various types of strings).

This does not appear in the message instance itself, but fields in a segment are given names to indicate the
kind of information they contain. For example the fifth field of the PID segment is named “Patient
Name”.

2.4 The SIGOBT Recommendations
Not to be confused with the HL7 Standard itself are the SIGOBT recommendations [Seliger1995]
[SIGOBT1998]. Whereas the HL7 standard defines the message format, the SIGOBT recommendations
define something like the “program data structures” mentioned in 2.1. The Recommendations serve as a
kind of  API specification for random access to any component of a message. The API is in object oriented
form in the sense that message components are modeled as objects. This provides a convenient syntax to
“locate” a message component anywhere in the hierarchy of message components. See next section.

2.5 Example of SIGOBT style of accessing message components
Below is an example of how the SIGOBT specifications allow random access to HL7 message
components. Given the message instance

MSH|^~\&|||||||ADR^A19|server48492727644|P|2.3
MSA|AA|v-fred223@4541
QRD|19980519023725|R|I|red845467|||100^RD|*|APN|*
PID|||SF   7244487||^TOM|||||||||||||19985090018I
PV1||E||||||||||||||||||||||||||||||||||||||||||19980109135400
PID|||SA   1234546||^DICK|||||||||||||19985090026Z
PV1||E||||||||||||||||||||||||||||||||||||||||||19980109140500
PID|||SI   0007255||^CHEOK KIAT HUAT|||||||||||||19972915369F
PV1||E||||||||||||||||||||||||||||||||||||||||||19971018143800
PID|||SA   7689081||^GEOGRE FARNADES|||||||||||||19978060125J
PV1||E||||||||||||||||||||||||||||||||||||||||||19971102084900

the SIGOBT specifications allow the following expressions (in Visual Basic 5 through OLE Automation):

Message.RepGrpPatientRecord returns the object encapsulating the message from the fourth
segment onwards. The returned object is of type HL7RepGrpADRA19Record . (The naming convention
requires the prefixes HL7RepGrp, HL7Grp etc according to the “metatype” of the class)

Message.RepGrpPatientRecord.Item(1) returns the object encapsulating the group containing
the sixth and seventh segments. The returned object (no matter what the index in Item) is of type
HL7GrpADRA19Record .



Copyright   1998 Nanyang Polytechnic
Permission is granted to copy for the PLoP-98 conference.

Page 3

Message.RepGrpPatientRecord.Item(1).PatientIdentification returns the object
encapsulating the sixth segment. The returned object is of type HL7SegPID.

Message.RepGrpPatientRecord.Item(1).PatientIdentification.PatientName
returns the object encapsulating the fifth field of the sixth segment. (Containing the value “̂ DICK”). The
returned object is of type HL7RepFldXPN.

Message.RepGrpPatientRecord.Item(1).PatientIdentification.PatientName.Item(0).GivenName
returns the object encapsulating the second component of the fifth field of the sixth segment. (Containing
the value “DICK”). The Item(0) before GivenName is due to the fact that the fifth field is a repeating
field. The object returned is a primitive string type.

2.6 Two different models for two different levels/layer of programming
The motivation for the SIGOBT way of modeling a message is that it is a convenient and natural way of
referring to the various components of a message. It is not a recommendation on how to design the lower
layer mentioned in 2.1. Its emphasis, rather, is on providing a domain (healthcare) level view of the
messages parsed, translated and transported by the lower layer.

Whereas the tasks of the lower layer are the parsing, translation, and transport of messages, the tasks of
the higher layer vary greatly from application to application. These include GUI-based applications where
information from the messages are displayed and user entry is written into messages, “server” applications
which update a (hospital or clinical) database with information from messages and which retrieve
database information to write to messages.

The thought processes involved in writing these higher layer applications are in the “domain” level terms
mentioned in the first paragraph of this section (2.6): in our case, in terms of “Lab Results” information,
“Next of Kin” information, “Insurance” information etc. The SIGOBT specification provides such a way
of referring to the information contained in these messages. Not only that, the message component
containment hierarchy reflects the relationships in the domain. For example the segment group that
contains a PID segment (demographic data) for a particular patient also contains the PV1 (admission
information) segment for that patient.

What this paper wishes to accomplish is to show a pattern which allows for efficient implementation of
the lower layer and yet provide the sort of interface specified by SIGOBT to programmers programming at
the higher layer. The interest of this pattern is the sheer number of classes required for this at the higher
layer (due to the number of types of messages and their components defined by SIGOBT). Also of interest
is the fact (mentioned in 2.2) that while the new message types may be introduced and existing ones
modified, the general structure remains unchanged.

3. COMPOSITE and the SIGOBT metamodel
We refer the reader to [GoF 1995] for a description of COMPOSITE.
In the SIGOBT metamodel (see section 2.3 of [SIGOBT1998]), messages, segment groups, segments,
composite fields and their repetitions are Composites. The primitive types are Leaves.
If the metamodel describes messages, segments etc. in general, then the model describes particular
message types, segment types etc. such as QRD, MSH etc.
[Martin+1995] defines metamodels as models of models: types in a metamodel have instances which are
also types. HL7MsgADRA19 (the message used in the example in 2.5), an instance of Message type, is
itself a type.  In other words, a class in the metamodel describes classes in the model, or more precisely,
the characteristics they (the classes described) share.



Copyright   1998 Nanyang Polytechnic
Permission is granted to copy for the PLoP-98 conference.

Page 4

3.1 Example: ProtoGen
In ProtoGen the Structure class is a Component. The Segment class is a Leaf and the SegStruc
class is a Composite. All segment types (MSH, PID, PV1 in the example in 2.5) are subclasses of
Segment. Segment groups are subclasses of Group, itself a subclass of SegStruc. Message types (like
ADR) are subclasses of Message, itself a subclass of SegStruc. A different hierarchy is used to
implement the aggregation aspects of Segments because its containment nesting level is limited.

4. The Pattern: Implement Metamodel and Maintain Large Model

4.1 The Problem
All the SIGOBT types or classes (except those modeling repeating segment groups, repeating segments,
repeating fields and primitive field types) in the model (as distinguished from those in the metamodel) are
wholes whose parts are exposed as class methods . This is why there is one class modeling the MSH
segment and another modeling the QRD segment even though both are wholes containing parts that are
fields and are therefore structurally the same. The need to expose individual parts as differently named
methods requires them to be distinct classes. To model and implement this (exposing parts as methods)
is not only trivial, it is also, tedious, repetitive, error prone (transcribing from one notation (e.g., the
HL7 Standard), to another, (e.g., UML) then to the implementation language) and formidable (the
sheer number of different message, segment group, segment, and field types).

4.2 Some observations
We can make the following remark: the problems of hierarchical message component containment
(part/whole relationships) and serialization/deserialization into HL7 encoded ASCII can be modeled and
solved in the metamodel whereas the problem of exposing parts of wholes as class methods is expressed
in the model.
We clarify and expand on this remark by the following observations about the metamodel and the model.
1. It is possible to describe in the metamodel not only what is structurally similar (part-whole

relationships) among the types in the model, but also how the collaboration between the whole and its
parts work during serialization/streaming and the reverse process (parsing and generation).

2. The metamodel is relatively rich in its structural and behavioral descriptions. It also contains a
relatively small number of types.

3. The model is large in terms of the number of types it describes; but it is also simple since all it needs
to record are which parts are contained in which wholes, the metamodel having already described the
containment structure and streaming behavior completely. This means we can use a much simpler
formalism (than that used for the metamodel) to completely describe it (not quite yet, see 4.). An
example of this formalism is the one given below to describe the ADR message type (definitions for
segments and finer grained components not shown). It needs only a table of four columns: the first,
the type of the part, and the second, the name of the method that exposes it.

 
 MESSAGE ADR^A19
 MessageHeader MSH OBJECT REQUIRED
 MessageAcknowledgment MSA OBJECT REQUIRED
 Error ERR OBJECT OPTIONAL
 QueryDefinition QRD OBJECT REQUIRED
 QueryFilter QRF OBJECT OPTIONAL
 RepGrpPatientRecord ADRA19Record COLLECTION REQUIRED
 ContinuationPointer DSC OBJECT OPTIONAL
 
 GROUP ADRA19Record
 EventType EVN OBJECT OPTIONAL
 PatientIdentification PID OBJECT REQUIRED
 AdditionalDemographics PD1 OBJECT OPTIONAL
 RepSegNextOfKinAssociatedParties NK1 COLLECTION OPTIONAL



Copyright   1998 Nanyang Polytechnic
Permission is granted to copy for the PLoP-98 conference.

Page 5

 PatientVisit PV1 OBJECT REQUIRED
 PatientVisitAdditionalInfo PV2 OBJECT OPTIONAL
 RepSegDisabilityInformation DB1 COLLECTION OPTIONAL
 RepSegObservationResult OBX COLLECTION OPTIONAL
 RepSegAllergyInformation AL1 COLLECTION OPTIONAL
 RepSegDiagnosisInformation DG1 COLLECTION OPTIONAL
 DiagnosisRelatedGroup DRG OBJECT OPTIONAL
 RepGrpProcedures PR1_ROL COLLECTION OPTIONAL
 RepSegGuarantor GT1 COLLECTION OPTIONAL
 RepGrpInsurance IN1_IN2_IN3 COLLECTION OPTIONAL
 AccidentInformation ACC OBJECT OPTIONAL
 UniversalBillInformation UB1 OBJECT OPTIONAL
 UniversalBill92Information UB2 OBJECT OPTIONAL GROUP
 
 GROUP PR1_ROL
 Procedure PR1 OBJECT REQUIRED
 RepSegRole ROL COLLECTION OPTIONAL
 
 GROUP IN1_IN2_IN3
 Insurance IN1 OBJECT REQUIRED
 AdditionalInfo IN2 OBJECT OPTIONAL
 AdditionalInfoCert IN3 OBJECT OPTIONAL
 
4. So that it is possible to use the simpler formalism described in 3) to fully express the model, it is

necessary to move the descriptions of the primitive data types (NM, ST, TX etc.) from the model to
the metamodel. The description of these types requires the specification of their storage and encoding
scheme for streaming, hence the impossibility of using the simpler notation to model them.

5. The metamodel is much more stable than the model: the HL7 committees are likelier to change the
specification of particular message or segment types than their general structure. This leverages the
simpler formalism that we use for the model: being simpler, it is also easier to maintain when
changes occur.

6. Classes in the model inherit from the classes in the metamodel.

Metamodel
small number of types/classes
describes part/whole hierarchy

describes serialization/deserialization
describes primitive types (NM,ST etc.)

expressed in full modeling language e.g. UML or program code
ProtoGen examples: SegStruc, Segment, Group, IDtyp

Model
large number of types/classes

describes exposing parts as methods
expressed in very simple formalism e.g. tables with 4 columns

ProtoGen examples: ACKmsg, PIDseg, PNtyp

structure
inheritance +
implementation
inheritance



Copyright   1998 Nanyang Polytechnic
Permission is granted to copy for the PLoP-98 conference.

Page 6

4.3 The solution
Part of the solution is actually already hinted at in the SIGOBT recommendations. By constructing a
metamodel, a model is implied: the problem of size and tediousness is isolated to the model. The non
trivial aspects of implementation reside in the metamodel.
There are two variations to the solution. The first is for situations where the client language is a statically
typed language like C++, Java and Eiffel, where methods of classes are fixed at compile time. The second
is for client languages like Visual Basic 5 and Perl where the methods of an instantiated object can be
determined at runtime (we describe the mechanism further below).
In both cases the metamodel is implemented first, and independently, of the model.

4.3.1 When the client language is statically typed: the code generation solution
As was remarked above, the model is expressed in a simple formalism. The implementation of the model
is nothing more than the wrapping of Composite descended classes to expose parts as individual methods.
This means that it is not difficult to write a program that reads the model and generates the corresponding
wrapper classes. The generated code is the implementation of the model.
For the convenience of the rest of this exposition, we call this the code generation solution.
The diagram below summarizes this.

4.3.2 When the client language is dynamically typed: the reflection solution
In Visual Basic 5 (VB5), the underlying implementation object model is based on OLE Automation
[Brockschmidt1995]. All VB5 classes are implementations of the IDispatch interface. It is also
possible to implement VB5 classes in C++ by deriving classes from IDispatch and implementing
them; these classes would be, from the client point of view, indistinguishable from VB5 “native” classes.
The interest of using C++ to implement classes for VB5 clients is the full access the language has to
IDispatch methods. The IDispatch interface defines methods that support a limited form of
reflection [Buschmann1996], [Buschmann+1996]. This allows the runtime definitions of an objects
methods: methods are not fixed a compile time. Thus it is possible for a C++ class to load method
definitions from an external source (a file, say)  at runtime and allow VB5 clients to invoke them.
We elaborate a little more on the mechanism here. If a VB5 object reference obj is bound, the method
invocation expression obj.Foo would first call the IDispatch::GetIDsOfNames  member function
(the method name Foo is passed as argument)of the implementation of the object to see if the method is
indeed implemented and also to get the identifier of the method. This identifier is then passed as argument

Implementation of
Metamodel

(program code)

Coded “by hand”

Model in
machine-readable form

(possibly specially
formatted text file)

Implementation of Model
(machine-generated program code)

Code generation

implementation
and structure

inheritance



Copyright   1998 Nanyang Polytechnic
Permission is granted to copy for the PLoP-98 conference.

Page 7

in a call to IDispatch::Invoke  for the actual invocation of the method. From this, it is clear that the
definition of VB5 object methods at runtime is within the control of a C++ implementation.
In contrast to the code generation solution, no code generation is required. Whereas in the case of the code
generation solution the instances are of classes in the model, here, the instances are of the metamodel
classes. In the case of VB5, the metamodel classes are implementations of IDispatch. The signature
and names of methods to exposes are loaded from the model by the metamodel class implementations; in
our case, the model was in the form of a specially formatted text file (in the spirit of the four column
tables mentioned above).
For the convenience of the rest of this exposition, we call this the reflection solution.
The diagram below summarizes this.

4.4 Consequences
• Once the metamodel is elaborated, implementation can start even before the model is completed (it

can even start without a model, testing can be done on a “dummy” model). This was indeed the case
with us.

• Changes, removals, and additions of new message types can be made without any change to the
implementation code. Only the model needs to be changed.

• Maintenance, in the sense of changes, removals, and additions of new message types, can be done by
non-software professionals and is totally clerical rather than technical in nature.

• There is no need to maintain consistency between model and implementation (both equally huge), or
rather, the maintenance of consistency is computerized.

5. Known Uses

5.1 The ProtoGen Implementation
Client language for ProtoGen is C++, hence it uses the code generation solution. What is interesting about
ProtoGen is that it includes tools to extract the model (in the form of Prolog predicates) from the HL7
Standard in Microsoft Word format. The generated code supports streaming through sockets and
iostreams.

Implementation of
Metamodel

(program code)

Model in
machine-readable form

(possibly specially
formatted text file)

instantiation

Loaded at runtime to
provide definition of
methods and specification
of concrete types of parts

Runtime instances of
metamodel classes.



Copyright   1998 Nanyang Polytechnic
Permission is granted to copy for the PLoP-98 conference.

Page 8

5.2 The MS-HUG Implementation
In the MS-HUG implementation (ATL based and coded in C++), SIGOBT classes are exposed as DCOM
dual interfaces [Brockschmidt1995]. These are still implementations of IDispatch but the OLE
Automation methods are determined at compile time. This allows efficient access for both C++ and VB5
clients because a given method has two means of access: OLE Automation through
IDispatch::Invoke  and also as C++ virtual member functions.
The need to implement individual methods as C++ member functions means the code generation solution
is used. A caveat is appropriate here. Our inclusion of MS-HUG in this paper is based on a rational
reconstruction after careful inspection of the code. We are able to isolate the modules that can be
reasonably interpreted as being implementations of the metamodel and also to discern a repetitive pattern
in the modules (which allows the conclusion that they can be program generated) that we recognize as
implementing  the classes in the model. But, we do not know if the modules were in fact program
generated.

5.3 The HL7 Implementation in NYP-CMI
Among the three implementations studied, ours is the only one using the reflection solution. The
metamodel is implemented in C++. As indicated above, the model is in the form of a simply formatted
text file and is loaded at runtime. Whereas the MS-HUG implementation uses dual interfaces, we use
dispinterfaces [Brockschmidt1995], i.e., the SIGOBT class methods are not required to be C++ virtual
member functions.
To ease the development work on the VB5 client side, we have also used the code generation solution to
create the ODL file to generate a DCOM type library [Brockschmidt1995] from the same text file (the
model).
See Appendix A for our interest in this approach.

6. Related work

6.1 ASN.1
Not having found a use of this pattern outside of wrapping HL7 messages, we have perhaps unnecessarily
restricted its exposition as such. This was the case until recently, when we found another use of the code
generation solution, this time for ASN.1 [Lavender+1994]. By then it was too late to study and
incorporate it into our paper. We believe this pattern is applicable to any message format with recursive
structures.

6.2  Implementation of Associations by Inheritance
We would like to bring to the reader’s attention another pattern suggesting the use of code generation. In
pages 129 to 147 of [Soukup1994] and in [Soukup1995], the Association, Aggregation, and Graph
patterns were implemented with code generation (with the input being also another piece of code). This
suggests to us (what may be a triviality to some, but deserves being stated anyway) that in any software
development effort where the same piece of information is maintained in two (or more) deliverables (code,
documentation, etc.) and is in the form of an unambiguous formalism (such as code, modeling language
or specially and rigorously formatted text), then generating one deliverable from the other avoids extra
work in maintaining consistency.
Acknowledgments
I wish to thank Dennis DeBruler for reviewing this paper and helping me make clearer the ideas
presented in it.
References
[Brockschmidt1995] Kraig Brockschmidt. Inside OLE 2nd Edition, Microsoft Press,1995

[Buschmann1996] Frank Buschmann. “Reflection.” In John Vlissides, James Coplien, Norman Kerth
(eds). Pattern Languages of Program Design 2, Addison-Wesley, 1996, pp. 271-294.



Copyright   1998 Nanyang Polytechnic
Permission is granted to copy for the PLoP-98 conference.

Page 9

[Buschmann+1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal.
Pattern -Oriented Software Architecture: a system of patterns, John Wiley and Sons, 1996

[GoF1995] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: elements of
reusable object-oriented software, Addison-Wesley, 1995

[HL7 1997] Health Level 7 Inc. Final Standard version 2.3, 1997

[Lavender+1994] R.G. Lavender, D.G. Kafura, R.W. Mullins. Programming with ASN.1 using
Polymorphic Types and Type Specialization Proceedings of the IFIP TC6/WG6.5 International
Conference on Upper Layer Protocols, Architectures and Applications, Barcelona, Spain,  1994

[Martin+1995] James Martin, James J.Odell. Object-Oriented Methods: a foundation, Prentice Hall, 1995

[MSHUG1997a] Microsoft Healthcare Users Group, ActiveX for Healthcare Committee. ActiveX For
Healthcare Messaging Components Programmer’s Guide Version 1.0, 1997

[MSHUG1997b] Microsoft Healthcare Users Group, ActiveX for Healthcare Committee. Increasing
Interoperability and Lowering Costs with ActiveX For Healthcare: a white paper, 1997

[Schadow1996a] Gunther Schadow. ProtoGen/HL7-An Implementation of HL7, Version 0.9,1996

[Schadow1996b] Gunther Schadow. ProtoGen/HL7User Manual, Version 1.0, 1996

[SIGOBT1998] Health Level Seven, Inc. Recommendations for HL7 Messaging over Component
Technologies Version 1.0 Revision 9, 1998

[Seliger1995] Robert Seliger. Implementing HL7 v2.2 Using the Object Management Group’s Common
Object Request Broker Architecture, Hewlett Packard Medical Products Group, 1995

[Soukup1994] Jiri Soukup. Taming C++ :pattern classes and persistence for large projects, Addison-
Wesley, 1994

[Soukup1995] Jiri Soukup. “Implementing Patterns” In James O. Coplien, Douglas C Schmidt (eds).
Pattern Languages of Program Design 2, Addison-Wesley, 1996, pp. 271-294.

Appendix A - the VB5 IDE and how a SIGOBT-based Library
improves software productivity
A VB5 programmer while going about his work will need to know where to get data from and where to
store data. Usually this requires understanding of  the hospital’s database schema and the formulation of
SQL queries to get or store information required by his program. All this understanding is invalidated
when he moves on to another hospital.
If instead of relying on a particular hospital database schema to program to, the VB5 programmer can use
the model  provided by the SIGOBT specifications. The entities in this model are practically VB5 objects
that the programmer can directly program with. No struggling with database schema or SQL statements,
just ordinary everyday VB5 objects.
Not only is this model stable or unchanging as the programmer moves from hospital to hospital, it is also
an online model available to him in his development environment even as he programs. When he finishes
typing the name of an object declared to be of a type described in the model, a list of possible properties
and method appears before him (this feature is known as Intellisense), freeing him from the task of
looking it up in a reference manual. This is truly software productivity!


