
Override Current Processing
Philip Eskelin

Credit Suisse First Boston Corp.
Eleven Madison Avenue, 11th Floor

New York, NY 10010
+1 212-325-7955

philip.eskelin@csfb.com

Abstract
Sometimes applications that execute commands with unpredictable response times need to
process those commands asynchronously so the user can continue to perform functions in other
parts of the application. In a multi-threaded system, worker threads or asynchronous calls can be
used to mitigate delays in response times to commands operating over the network, printing,
faxing, or other types.

However, if done improperly, this can introduce race conditions, deadlocks, data corruption,
floods, hurricanes, or misuse of finite resources. Under systems without threading, long
commands are sometimes executed in a manner such that a small fraction of processing is
performed, followed by the retrieval and dispatching of all queued messages, before processing
the next fraction.

Also, when these commands are executing and their completion is pending, the user may request
the invocation of additional commands that are intended to interrupt the processing of the current
command in favor of executing the new command, in effect overriding the execution of a
currently processing command.

Override Current Processing is a design pattern that can be used to delegate and interrupt the
asynchronous execution of commands under a LIFE (Last In, First Execute) idiom in languages
such as Java and C++.

Name: Override Current Processing Pattern

Intent
To provide a mechanism for efficiently interrupting a currently executing command in favor of
the execution of a new command.

Also Known As
Interruptible Command

Motivation
In a web browser, the user can click on a hyperlink to request the download of an HTML page
from a web server. While the browser is downloading it, the user can continue using the browser,
and even perform additional requests if desired. For example, clicking on another link, reloading
the current page, going back, or going home will cause the browser to cancel the current
download in favor of carrying out the new request. When requests occurring in rapid succession,
all requests except the last one are interrupted and the new request is executed.

The most obvious solution in a multi-threaded system is to create a thread that handles request so
the browser can download the page independent of the thread dispatching events for the user
interface, and notify the user interface upon completion. If new requests come in while the
download is pending completion, the thread is terminated and a new one is created in its place to
execute the new request. A major drawback is that thread termination can leave the system in a
corrupt or ambiguous state, and result in abnormal termination of the program.

Another alternative is to poll for incoming data and cancel retrieval when a new request occurs.
This works in the case of a browser using sockets that has the ability to poll for the status of read
and/or write sockets. Close the currently open socket when the new request occurs will cancel
retrieval and a new socket can be created to download the page associated with the new request.

If an asynchronous paradigm is being used for downloading the page from the web server, a third
way of solving this problem is to store the very last request and compare it against arriving
responses. However, the number of pending requests accumulates quickly and consumes limited
network resources and bandwidth.

The situation for the above three solutions is complicated further by the requirement to retrieve
web content from multiple forms of media. Many browsers implement both in-memory and file-
based caching mechanisms. A general design solution is desired that brings the following forces
into equilibrium:

• Commands of the same type that take an inordinate amount of time should be executed in
parallel to allow the user to continue using the program.

• Only the most recently invoked command should be permitted to execute in the event of
multiple invoked commands.

• The solution should be generic enough to support retrieval on multiple forms of media
because caching techniques are typically implemented to improve response time.

• System integrity must be maintained while concurrently overriding current command
processing with new commands.

• Conservation of valuable thread and network resources can be critical.

Solution
The Override Current Processing pattern and our web browser example in a multi-threaded
system containing an event-driven graphical user interface that is capable of exception handling
will be used to demonstrate how these forces can be resolved. A BrowserWindow class represents
the graphical display of a web page and its associated content elements. It is implemented with
member functions responsible for handling dispatched events from the main thread's message
loop. Since web page requests can take an inordinate amount of time, it delegates the invocation
of requests to a RequestController class. A HistoryList is used to track history and allow the
user to navigation through requests.

While BrowserWindow is initializing, it calls the Execute method in RequestController to
start a worker thread that processes requests and fires events back to BrowserWindow upon
completion. It manages a queue of requests that accumulate while requests are incoming and
before the currently processing request can be interrupted.

A HttpRequest derived from the Command class implements the execution of the web page
request. While processing, it frequently checks with the associated RequestController to
determine whether it has been interrupted by additional requests. If so, the RequestController
throws an exception that results in firing an event to the BrowserWindow, notifying it that the
request has been interrupted. If not, the request is successfully completed an event is fired to the
BrowserWindow notifying it that the request has been completed. If many requests are sitting in
the requestQueue when the currently processing request checks for interrupts, the most recently
invoked request is made the current request, and all remaining requests are destroyed.

When the web browser is closed, BrowserWindow destroys its RequestController, instructing
it to inform the thread to interrupt the currently processing request, expire all currently pending
requests, and exit the thread gracefully. The following class diagram depicts the static
relationships between each of the classes involved:

Figure 1 Participants in a web browser example

The diagram fails to illustrate the existence of multiple threads because RequestController
privately encapsulates its implementation of thread creation, request retrieval and processing,
and thread termination. The benefit of this is that the safety and responsibility of request
processing and interruption is managed internally. Synchronization objects are used to lock
requestQueue in critical sections of code, and an event object is used after a request has been
processed or interrupted to allow the thread to block until the main thread signals that more
messages have arrived. Another benefit is that only the internal implementation of Execute
changes for systems that do not support threads.

The requestQueue is used to record all BrowserWindow-invoked requests, and only the most
recently invoked request is processed in the event of more than one invoked request.

HttpRequest is free to use blocking or non-blocking network-, file-, or memory-based I/O at its
discretion to retrieve the web content associated with the request. Its only responsibility is to
frequently allow the RequestController to throw an exception if the request should be
interrupted in favor of a more recent request. Therefore, the only responsibility placed upon
HttpRequest is that it perform all necessary clean-up and post-processing when the exception
unwinds itself out of CheckInterrupt and into Execute.

Resource conservation is enforced by RequestController through thread-safe management of a
queue in conjunction with a single worker thread which processes requests that are not
interrupted until the request itself has allowed it to do so.

Applicability
Use the Override Current Processing pattern when:

• An invoker in one thread executes commands in another. Even if your system doesn't
include threading, you may want to use this pattern to simulate the concurrent execution
of a command. Cooperative multitasking is an alternative implementation that can be
used in the RequestController class.

• Currently executing commands should be interrupted in favor of new commands. If
you don't need this behavior, then this pattern is overkill. Use the MacroCommand object
to execute Command objects in batch if interruption is not required.

• A command is executed often. You may not need this pattern if the command isn't
executed often and merely creating an additional thread that handles the request is
sufficient.

• A command takes an inordinate amount of time to execute. There may not be a need for
this pattern if your commands are instantaneous or have predicable execution times that
are acceptable to the user when synchronously executed.

Structure & Participants
Figure 2 illustrates a class model of the participants involved. The following is a list of
participants and their responsibilities for the Override Current Processing pattern:

• Command:

− The Command class is an interface class that defines an operation to decouple
execution from invocation.

• InterruptibleCommand (HttpRequest):

− Provides a default implementation of the Execute method that is overridden
by subclasses.

− Allows CommandController to set a pointer to the controller responsible for
processing the InterruptibleCommand in question before it is executed.

− Declares a CheckInterrupt method that should be frequently called.
Delegates to controller's CheckInterrupt method.

• CommandController (RequestController):

− Defines Execute method to allow clients to start command-processing loop. If
multi-threaded, it begins the worker thread.

− Defines Invoke used by invoker to delegate responsibility of executing
Command object. Internally, it places it on a queue and signals the processing

loop to proceed.

− Events are fired back to invoker for both completion and exception cases.
Expired and interrupted Command objects are both classified as exceptional
cases.

− In multi-threaded systems, CommandController is responsible for guarding
its commandQueue member with queueMutex so it can synchronize state
changes between each thread involved in invoking and processing commands.

• InvokingWindow (BrowserWindow):

− Composed of a CommandController object used to delegate invocation of
Command objects.

− Should only delete Command objects once the completion or exception event
for that object has been received.

Figure 2 Structure of participants in the Override Current Processing pattern

Collaborations
Coming! And a cool sequence diagram will be done soon too!!!

Consequences
The following are the benefits and liabilities regarding usage of the Override Current Processing
pattern:

• Termination of active thread. While the worker thread is processing the command, it is
not possible to terminate the thread on most platforms without the risk of placing the
system in an abnormal state. Therefore, when the command is blocking on a synchronous
call (e.g., lengthy RPC or database query), it is designed to only interrupt the
InterruptibleCommand object currently being processed once it calls the
CheckInterrupt method implemented in CommandController.

• CommandController Flexibility. The CommandController is intentionally designed to
be associated with the Command interface class as opposed to the InterruptibleCommand
class. This allows CommandController the freedom to process both interruptible and
non-interruptible commands.

• Conservation of resources. Multiple requests in a short amount of time will only result in
the processing of one InterruptibleCommand . Undesirable data transmission for an
interrupted command is alleviated.

Implementation
1. Waiting for commands. In multi-threaded implementations under Win32, the worker

thread will block until an event synchronization object is set to signaled (for POSIX
implementations, conditional variables can be used for equivalent behavior). The worker
thread calls the controller's Get method to retrieve the next command for processing. The
first thing should do is wait for the event to enter a signaled state.

There are two places in CommandController where the event can be set to signaled in the
main thread that allow Get to proceed. The first and most place is when an invoker
delegates invocation of a Command object to CCommandController, it places it on the end
of its commandQueue and sets the event to signaled. The second place is in the destructor
for CommandController. Here, the boolean value endingThread is set to true and the
event is signaled to instruct Get to empty the queue, exit the loop, and end the worker
thread. The destructor waits for the thread to exit before continuing.

2. Creating and deleting commands. The Command object, if dynamically created, whether
implemented as interruptible or not, should be created and destroyed in the context of
only one thread. Many times caching strategies, history lists, or other features require that
the Command object stay in memory for the duration of the application. Therefore, if the
main thread creates it and delegates invocation to a CommandController object, it should
remove them if and only if a completion or exception event has been received for that
Command. If this is not acceptable, the Memento and/or State [Gamma+95] pattern can be
used to externalize the state of a given Command. Another alternative is the
Asynchronous Completion Token [Pyarali+98].

3. Multiple threads in CommandController. Implementing CommandController with
multiple worker threads for command processing and retrieval can be accomplished with
a few modifications. Rather than creating multiple instances of CommandController, a
single instance utilizes multiple worker threads that compete for commandQueue and
process commands independently. This is a good alternative if high invocation

throughput is expected or if response time when overriding the processing of commands
can be lengthy or not granular enough to achieve the responsiveness the user desires.

Known Uses
• Web browsers. Most popular web browsers (e.g., Internet Explorer and Netscape

Navigator) operate in this fashion. If the browser is retrieving the contents of a web page,
and the user hyperlinks several times, the browser will cancel its command and only
retrieve the contents of the last hyperlink clicked.

• Global investment bank contact management application.

Related Patterns
Command, Thread Per Request (Douglas Schmidt)

Sample Code
TO DO: Add commentary around sample code and add client code.

 ///
 // CInterruptibleCommand

 class CCommandController;

 class CInterruptibleCommand : public CCommand
 {
 DECLARE_DYNAMIC(CInterruptibleCommand)

 public:
 virtual ~CInterruptibleCommand();

 virtual void Execute();
 void SetController(CCommandController * pController)

 protected:
 CInterruptibleCommand();
 virtual void CheckInterrupt();

 private:
 CCommandController * m_pController;
 };

 IMPLEMENT_DYNAMIC(CInterruptibleCommand, CCommand)

 void CInterruptibleCommand::SetController(CCommandController * pController)
 {
 m_pController = pController;
 }

 void CInterruptibleCommand::CheckInterrupt()
 {
 if (m_pController != 0)
 {
 m_pController-CheckInterrupt();
 }
 }

Add more commentary here...

 ///
 // CCommandController

 typedef CList<CCommand *, CCommand *&> CCommandQueue;

 class CCommandController : public CCommand
 {
 DECLARE_DYNAMIC(CCommandController)

 private:
 class InterruptedCommand {};

 public:
 CCommandController(HWND hwndSink);
 virtual ~CCommandController();

 void Execute();
 void Invoke(CCommand * pCommand);
 void CheckInterrupt();

 protected:

 bool Get(CCommand *& rpCommand);
 void Process(CCommand * pCommand);

 void FireComplete(CCommand * pCommand);
 void FireExpired(CCommand * pCommand);
 void FireAborted(CCommand * pCommand);

 private:
 static void ThreadEntry(void * pvData);
 unsigned long m_threadHandle;
 bool m_endingThread;
 CEvent m_loopEvent;
 CCriticalSection m_queueMutex;
 CCommandQueue m_commandQueue;
 HWND m_sinkWindow;
 };

 IMPLEMENT_DYNAMIC(CCommandController, CCommand)

 const UINT WM_CMD_COMPLETE = ::RegisterWindowMessage(_T("CMD_COMPLETE"));
 const UINT WM_CMD_EXCEPTION = ::RegisterWindowMessage(_T("CMD_EXCEPTION"));

 CCommandController::CCommandController(HWND hwndSink) :
 m_endingThread(FALSE), m_sinkWindow(hwndSink), m_threadHandle(0)
 {
 m_sinkWindow = hwndSink;
 ASSERT(IsWindow(m_sinkWindow));
 }

 CCommandController::~CCommandController()
 {
 if (m_threadHandle != 0)
 {
 m_endingThread = TRUE;
 m_loopEvent.SetEvent();
 WaitForSingleObject(HANDLE(m_threadHandle), INFINITE);
 }
 }

 //
 // Member functions called in the context of the main thread.

 void CCommandController::Execute()
 {
 if (m_threadHandle == 0)
 {
 m_threadHandle = _beginthread(ThreadEntry, 0, (void *)this);
 }

 }

 void CCommandController::Invoke(CCommand * pCommand)
 {
 CSingleLock queueGuard(&m_queueMutex, TRUE);

 if (pCommand-IsKindOf(RUNTIME_CLASS(CInterruptibleCommand)))
 {
 STATIC_DOWNCAST(CInterruptibleCommand, pCommand)-SetController(this);
 }

 m_commandQueue.AddTail(pCommand);
 m_loopEvent.SetEvent();
 }

 //
 // Member functions called in the context of the worker thread. UINT

 void CCommandController::ThreadEntry(void * pvData)
 {
 CCommandController * pController = (CCommandController*)pvData;
 ASSERT_KINDOF(CCommandController, pController);
 CCommand * pCommand;

 while (pController-Get(pCommand))
 {
 pController-Process(pCommand);
 }

 _endthread();
 }

 bool CCommandController::Get(CCommand *& rpCommand)
 {
 CSingleLock loopGuard(&m_loopEvent, TRUE);
 CSingleLock queueGuard(&m_queueMutex, TRUE);

 if (!m_endingThread)
 {
 if (!m_commandQueue.IsEmpty())
 {
 rpCommand = m_commandQueue.RemoveTail();
 }
 }

 POSITION pos = m_commandQueue.GetHeadPosition();

 while (pos != 0)
 {
 FireExpired(m_commandQueue.GetNext(pos));
 }

 m_commandQueue.RemoveAll();

 return !m_endingThread;
 }

 void CCommandController::Process(CCommand * pCommand)
 {
 try
 {
 pCommand-Execute();
 FireComplete(pCommand);
 }
 catch(InterruptedCommand&)
 {
 FireAborted(pCommand);
 }
 }

 void CCommandController::CheckInterrupt()

 {
 CSingleLock queueGuard(&m_queueMutex, TRUE);

 if (!m_commandQueue.IsEmpty())
 {
 throw InterruptedCommand();
 }
 }

 void CCommandController::FireComplete(CCommand * pCommand)
 {
 PostMessage(m_sinkWindow, WM_CMD_COMPLETE, WPARAM(pCommand), 0L);
 }

 void CCommandController::FireAborted(CCommand * pCommand)
 {
 PostMessage(m_sinkWindow, WM_CMD_EXCEPTION, WPARAM(pCommand), 0L);
 }

 void CCommandController::FireExpired(CCommand * pCommand)
 {
 PostMessage(m_sinkWindow, WM_CMD_EXCEPTION, WPARAM(pCommand), 0L);
 }

And add more commentary here with some above in between key methods.

Conclusion
We'll find one!

Acknowledgements
Special Thanks to shepherd Aamod Sane for being the bad cop when I needed strongest feedback
the most. Thanks to Steve Berczuk and Frank Wallingford for offering accidental feedback
somewhere in between the first and second drafts. And a very solid thanks to Program
Committeeman Jens Coldewey for bailing me out of the Valley of Despair at the perfect
moment.

References
[Gamma+95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addision-Wesley, 1995.

[Pyarali+98] I. Pyarali, T. Harrison, and D.C. Schmidt. "Asynchronous Completion Token,"
from Pattern Languages of Program Design 3, eds. R. Martin, D. Riehle, and F. Buschmann.
Reading, MA: Addison-Wesley, 1998.

