Deconstructing the Domain:

A Pattern Language for Handling Large
Object Models

(Draft July 14, 1999)
Eric Evans

Table of Contents

TabIE O COMLENESeeutiiiiiiiieiieiierce ettt sttt ettt sbe e e e
INEEOAUCTION. ...ttt et ettt st st sb et e e
UNI{ICAtION COMIEXL.c..eeutiiiiiriiiiiieitieicee ettt ettt sttt e ae st st esbe et eanesiee s
Unifying an EIephantccocoiiiiiiiiinieccccee et
Patterns for Applying Unification CONteXtccccoevererirereeienieienienieneneeeeeeeeeennes
Resulting Context of Unification CONEXL........ccueoveriirerirenererieieienieneneneeeeeeeeeeennes
DD T 50) TP
Domain ViSion StatMENLcceiiereerieeiieeieeierie et eeeeeeeteesie et etesstesseesseesseesessesneeens
Highlighted COre.....c..ooviriiiiiiiiieicet ettt st
SEETEZALEA COTE...ecuvieeiiieeiieeiieeiteetteeteeetee et et eeteesbeesbeessbeeesbeesabeesnseessseesnseesnseennseens
IMOAUIATIEY ©.evvvieiieeiie ettt ettt e st e st e e e bt e st e e ssbeesebeesnseessseesnseeansaesnseesnsaesnseennns
Large-sCale StIUCIUIEeeevieiiieeiie ettt ettt et e et e et e st eeaeesbaeesbeesnbaeeseessaeeaeeenne
Layers of ReSPONSIDIIILYeevvieeiieiiieeiie ettt ettt e e e e e eens
CONCIUSION .ttt ettt ettt et b e b e s bt et et s et satesbeenbeebeenbeennens
Vocabulary of the Pattern Language..........cccevvevuieoiieiieieeieseeee et
5T) 1. SRR
05T (010] (<3 PP
005 T 1T PR
LSS (<3 11T TP
ACKNOWICAZEMENLSeieieiieiieieeie ettt ettt ettt st e saeete et e sseenseenseeneeas

Copyright © 1999, Eric Evans. Permission is granted to copy
for the PLoP 1999 conference. All other rights reserved.

Introduction

As systems grow too complex to know completely at the level of individual objects, we need
new techniques for manipulating and comprehending large models. This paper presents
principles that enable the modeling process to scale up to very complicated domains.

The goal of the most ambition enterprise systems is a tightly integrated system spanning the
entire business. Yet the entire business model for almost any such organization is too large
and complex to manage or even understand as a single unit. The system must be broken into
smaller parts, in both concept and implementation. The challenge is to accomplish this
modularity without losing the benefits of integration, allowing different parts of the system
to inter-operate to support the coordination of various business operations. It is important to
strike a balance, avoiding pitfalls such as an unworkable, single, spaghetti-like, all-
encompassing domain model with no barriers, or a far less powerful set of distinct
subsystems, stove-piped together.

A good domain model captures an abstraction of the business in a form defined enough to be
coded into software. Domain architecture must provide a guide to design decisions for the
business model that reduce interdependence of parts and improve clarity and ease of
understanding and analysis without reducing their interoperability and synergy. It must also
capture the conceptual core of the system, the "vision" of the system. The four broad themes
explored in this article can help accomplish these goals: unification context, distillation,
modularity, and large-scale structure.

Unification context, the least obvious of the four principles, is actually the most fundamental.
A successful model, large or small, has to be logically consistent throughout, without any
contradictory or overlapping definitions. Enterprise systems sometimes integrate subsystems
with varying origins or have applications so distinct that very little in the domain is viewed in
the same light. It may be asking too much to unify the conceptual models implicit in these
disparate parts. By explicitly defining a unification context within which a model applies, and
then, when necessary, defining its relationship with other contexts, the modeler can avoid
bastardizing the model.

Distillation is not so much a design technique as a way of focusing the attention
appropriately. Often a great deal of effort is spent on peripheral issues in the domain. The
overall domain model needs to make prominent the most value-adding and special aspects of
your system and be structured to give that part as much power as possible. While some
supporting components can be critical, they must be put into their proper perspective. This
not only helps to direct efforts toward vital parts of the system, but it keeps the vision of the
system from being lost. Distillation can bring incredible clarity to an overall model.

Modularity is certainly not a new concept. If the full domain is modeled as a single web of
objects it is almost impossible to understand and will surely be impossible to implement. The
domain must be broken into many smaller models, each of which has a clear focus and can be
easily described.

Large-scale structure completes the picture. In a very complex model, even though modular,
you may not see the forest for the trees. Distillation helps, by focusing the attention on the
core and presenting the other elements in their supporting roles, but the relationships can still
be too confusing without some /arge-scale structure that allows system-wide design elements
and patterns to be applied. The principle of large-scale structure is explored here by
examining one such pattern, layers of responsibility, in which a small but powerful set of
fundamental responsibilities are identified that can be organized into layers with defined
relationships between layers, such as modes of communication and allowed references. Such
structure can bring a uniformity to the design that can accelerate the design process and
improve integration.

© Eric Evans, 1998

These principles, useful separately but particularly powerful taken together, help us to
produce good designs even when systems become too big to understand as a whole while
thinking about individual objects. With unification contexts and large-scale structure, we can
bring consistency to the disparate parts that will help those parts mesh together. Structure and
distillation let us make the complex relationships between the parts comprehensible while
keeping the big picture in view.

© Eric Evans, 1998

Unification Context

It was six men of Indostan

To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation

Might satisfy his mind.

The First approached the Elephant,
And happening to fall

Against his broad and sturdy side,
At once began to bawl:

*God bless me! but the Elephant

Is very like a wall!'

The Third approached the animal,
And happening to take

The squirming trunk within his hands,
Thus boldly up and spake:

‘I see,' quoth he, “the Elephant

Is very like a snake.'

The Fourth reached out his eager hand,
And felt about the knee.

"What most this wondrous beast is like
Is mighty plain,' quoth he;

"'Tis clear enough the Elephant

Is very like a tree!'

The Sixth no sooner had begun
About the beast to grope,

Than, seizing on the swinging tail
That fell within his scope,

‘| see,' quoth he, "the Elephant
Is very like a rope!'

And so these men of Indostan
Disputed loud and long,

Each in his own opinion

Exceeding stiff and strong,

Though each was partly in the right,
And all were in the wrong!

John Godfrey Saxe (1816-1887), based on a story in the Udana, a

Hindu text.

Although we seldom think about it explicitly, the unification context is the most fundamental
of the principles presented here, indispensable even for small models, because a model is
meaningless unless it is logically consistent. In the ideal world, we would have a single
conceptual model spanning the whole domain of the enterprise. This model would be unified,
without any contradictory or overlapping definitions. Every logical statement in the domain
would be consistent. But the world of large systems development is not the ideal world.

Total unification may not be cost effective for various reasons. Our system may have to be
integrated with external systems that were developed based on a different conceptual model
and that cannot be changed. Older parts of our own system that are too expensive to change
in the short term may have used earlier conceptual models that are subtly different from our
current model. Different teams may have been working on different parts of the problem and
come up with divergent models that suit their part of the business problem well. Yet, for an
object model to be powerful, it must be logically unified.

This belongs to the class of problems for which a major part of the solution lies in simply
seeing the problem. Explicitly define one or more “unification contexts” in each of
which the model will be strictly consistent, but between which there can be
inconsistencies in representation. By drawing an explicit boundary, you can keep each
part pure, and therefore potentially powerful, and avoid confusion when we shift our
attention to other contexts.

This introduces a new problem: How can you integrate such distinct models? This is the
tradeoff. Deep integration between different unification contexts is impractical. The

© Eric Evans, 1998

integration is limited to those parts of one model that can be rigorously stated in terms of the
other model, and even this level of integration may take a considerable effort. This makes
sense when there will be a small interface between two systems. It may be adequate for some
needs to view an elephant as a wall, held up by tree trunks, with a rope at one end and a snake
at the other.

Example: Contextual confusion on a shipping project

There are multiple teams on the project to develop the shipping system
introduced in the previous examples. A few of the teams have been working
closely together to produce the model presented above. Another team has
been working on the related problem of sales allocation.

This model supports yield management by allowing the sales management to
allocate how much cargo of specific types they will attempt to book based on
the type of goods, the origin and destination, or any other factor they may
choose that can be entered as a category name. These constitute goals of
how much will be sold of each type, so that more profitable types of business
will not be crowded out by less profitable cargoes, while at the same time
avoiding under-booking, (not fully utilizing their shipping capacity) or excessive
overbooking (so that so much cargo gets bumped that it affects customer
relationships). Their model looks something like this.

<<put allocation model here>>

In one scenario, they attempt, with the best of intentions, to integrate with the
other teams at the design level without realizing their conceptual models were
not unified. In the name of reuse, they take from the other team
implementations of those objects that are named the same in both models.
That would be <<...>>. Since some of the objects don’t do all that theirs do,
they add those operations, along with the attributes and associations needed
to support them. The result is something like this (in the design, though
perhaps they never realize its impact on the model):

<<show overloaded model>>

The consequence of this sort of weird, overloaded objects is unpredictable
software that no one can understand or make reliable. What can be done?

There are two choices:

1. Refactor the models and fully unify them. Full integration will then be
yours.

2. Declare two separate contexts. Decide what must pass between them
and define translations for those parts of the model.

Our teams by now acknowledge they are not good at coordinating.
Furthermore, they realize that the essential points of contact between their
parts of the system are going to be small. They decide on the less ideal but
more practical, for them, option to declare two contexts.

<<show their separate models side-by-side>>

Now both teams can continue their independent development, coordinating
carefully on a small and clearly delineated part of their overall work.

The decision to separate contexts is not irrevocable. Sometimes two contexts can be unified
into one by refactoring one or both models. Finding a deeper level of abstraction may make it

© Eric Evans, 1998

easier to express both in the same language. Or it may just require the hard work of
eliminating synonyms and choosing one factoring over another.

The decision is usually a cost benefit trade-off. If tight integration is required, there is a high
benefit to unifying the contexts and a high cost to interfacing two separate contexts. If your
project is poorly coordinated or you do not have very advanced modelers, the risk of
attempting more integration is high, and you may be better off with separate contexts.

Sometimes you may have subsystems with varying origins or have applications so distinct
that very little in the domain is viewed in the same light. It may be asking too much to unify
the conceptual models implicit in these disparate parts. And if you must integrate with an
entirely separate system, you clearly cannot refactor both to unify them. All you can do is
define the translation between the two models at the essential contact points.

Unifying an Elephant

The various blind men can still do useful work, even if they don’t fully agree on the nature of
the elephant. If no integration is required, then it doesn’t matter that they the models are not
unified. If they require some integration, they may not actually have to agree on what an
elephant is, but they will get a lot of value from merely recognizing that they don’t agree.
This way, at least they don’t unknowingly talk at cross-purposes. They can learn to
communicate with each other about the few aspects they care about in common — the location
of the elephant, perhaps.

As more integration is required, the value of unifying the models goes up, but unification
probably does not mean that all but one person gives up his model and adopts the remaining
one. After all, the man who touched the trunk knows the elephant is not like a tree, and that
model would be useless to him. Unification almost always means creating a new model.

In this particular case, unification of the various elephant models is easier than most because
we can eventually recognize that blind men have been describing and modeling different parts
of the whole. For many purposes, a part-whole unification may not require much additional
work. At least the first stage of integration only requires figuring out how the parts are related.
It may be adequate for some needs to view an elephant as a wall, held up by tree trunks, with
a rope at one end and a snake at the other.

Unfortunately, it is the exception when two models purely describe different parts of the
whole. Matters are more difficult when two models are looking at the same part in a different
way. If two men had touched the trunk and one described it as a snake and the other
described it as a fire-hose, they would have more difficulty. If one tried to accept the other’s
model, he could get into trouble. In fact, they need a new abstraction that incorporates the
“aliveness” of a snake with the water shooting functionality of a fire-hose, but leaves out
inappropriate implications of the first models, such as the expectation of possibly venomous
fangs, or the ability to detach it and roll it up in a compartment in a truck.

This second pass of integration tends to slough off incidental or incorrect aspects of the
individual models and creates new concepts — in this case, “animal” with parts “trunk”, “leg”,
“body”, and “tail” that each have their properties and are connected in a particular
relationship. Successful model unification to a large extent hinges on minimalism. A trunk is
both more and less than a snake, but the “less” is probably more important than the “more”.

© Eric Evans, 1998

Four Separate Contexts: No integration

Wall Tree Snake Rope

Four Contexts: Minimal Integration

Elephant

i
| | | |

Wall Tree Snake Rope

| location | location . | location

-

[
|
|
I
a
|
|
|
|
|
| —

{wall location=Tree place} {all locations = Wall location}

One Context: Crude Integration

Wall

location |

attached attached
Snake Elephant Rope

supported by

Tree

One Context: Deeper Model

i Animal
Tail Leg
attached location . supported by
attached
Trunk Elephant

The recognition of multiple clashing domain models is really just accepting reality. By
explicitly defining a context within which each model applies, you can maintain the integrity
of each, and clearly see the implications of any particular interface you want to create
between the two. There is no way for the blind men to see the whole elephant, but their
problem would be made manageable once they recognize the fact that they cannot.

© Eric Evans, 1998

Patterns for Applying Unification Context

Since unification contexts must always exist, and should always be declared explicitly, the
question is where to draw them. There are an unlimited variety of situations that would lead
to different decisions. The following set of patterns cover some of the most common and
important cases, which should give a good idea of how to approach other cases. They are
particular resolutions of a set of forces common to the basic problem of where to draw the
boundary of a unification context.

Forces Favoring Larger Unification Contexts
e Integration improves flow between tasks
e Itis easier to understand one model than two

e Translation between two models can be difficult (sometimes
impossible)

e Shared terminology fosters clear communication
Favoring Smaller Unification Contexts

e Developing unified models requires a large overhead of
communication between developers

e Developing unified models requires a high skill level of modelers
to maintain the absolute consistency required

e Specialized terminology and models of subdomains can be
optimized for particular needs

Fully Integrate Interrelated Processes
Context

Problem A system is being built which must manage a range of business
processes that are interrelated. Although some interfaces to other
systems will be needed, but the dominant concern is the tightly
integrated heart. How can the new model maximize integration?

Forces Additional Forces Particular to Full Integration
e Unifying a complex model requires high modeling skill

Solution Define a single unification context for any part of the total system for
which tight integration is the dominant concern and develop a model
that is self-consistent and can be used for all needs within that context.

The project must be organized to provide very good communication
between the people working within the context, and it must be
recognized that additional skill and effort will be required to fully unify
the model. Unified models are often found in a deeper level of
abstraction, which requires a high skill level on the team.

This choice favors smoothness of integration over independence of
parallel development efforts.

Related Sometimes, in spite of best intentions, subdomains within the boundary

© Eric Evans, 1998

Patterns

of what was intended at a unification context may diverge. When this
is recognized, it can be rectified by refactoring the models, but it is also
valid to decide to split the context into two, allowing the two models to
evolve in their own directions. (See Parallel Development in Separate
Contexts and Cater to Special Needs in Separate Contexts)

Parallel Development in Separate Contexts

Context

Problem

Solution

Related
Patterns

Multiple Design Teams

If a large modeling project is divided between teams, subtle
discrepancies in the semantics of related model elements creep in.
These differences may not be obvious, but introduce incorrectness
when the output of these different groups are brought together in
attempts to integrate or to reuse elements. How can these errors be
prevented while maximizing the speed of parallel development?

Declare a separate unification context for each team and allow them to
develop in parallel with minimum coordination overhead.

The integration needs must be identified between each of the resulting
models, and a translation layer must be defined. No reuse of model
elements should be attempted between unification contexts.

Where integration is not needed, or is relatively limited, this allows
maximum parallel development and avoids corruption of the models
with a minimum of cost.

Where integration requirements are extensive, the cost of translation
goes way up. It may be necessary to increase coordination of the teams
to make choices in the modeling to make translation easier, while still
not requiring full unification.

Like any other aspect of modeling and design, decisions are not
irrevocable. When integration needs or difficulties turn out to be more
than expected, two contexts may be merged into a single unified
model, at the cost of the additional modeling work and migration
effort. (See Fully Integrate Interrelated Processes.)

Cater to Special Needs in Separate Contexts

Context

Problem

Serving Many Masters

How much do you need to tailor individual parts of the system to meet
specialized needs? Different groups within the same business have
often developed their own specialized terminologies, which may have
diverged from one another. These local jargons may be very precise
and tailored to their needs. Changing them (for example, by imposing
a standardized, enterprise-wide terminology) requires extensive
training and extensive analysis to resolve the differences. Even then,
the new terminology may not serve as well as the finely tuned version
they already had. How can modeling proceed, using the original local
jargons, without introducing errors?

© Eric Evans, 1998

Forces

Solution

Related
Patterns

Context

Problem

Forces

Solution

Additional Forces Particular to Catering to Special Needs
e Jargon that is tuned to a particular need can be powerful
e Shared language improves communication and integration

Declare a separate unification context for each part of the system that
is to be based on a distinct terminology.

The integration needs must be identified between each of the resulting
models, and a translation layer must be defined. No reuse of model
elements should be attempted between unification contexts.

Where integration is not needed, or is relatively limited, this allows
continued use of customary terminology and avoids corruption of the
models with a minimum of cost.

Where integration requirements are extensive, the cost of translation
goes way up. It may be necessary to increase coordination of the teams
to make choices in the modeling to make translation easier, while still
not requiring full unification.

Like any other aspect of modeling and design, decisions are not
irrevocable. When integration needs or difficulties turn out to be more
than expected, two contexts may be merged into a single unified
model, at the cost of the additional modeling work and migration
effort. (See Fully Integrate Interrelated Processes.)

Segregate Alien Components
Alien Components

When distinct systems are being meshed, the problem appears as
developers try to match related model terminology between systems.
When a new system is being built that must have a large interface with
a legacy system, the difficulty of relating the two models can
eventually overwhelm the intent of the of the new model altogether,
causing it to be modified to resemble the other system’s model, in an
ad hoc fashion. How can the new model be preserved without giving
up necessary integration?

Additional Forces Particular to Alien Components

e New functionality often requires modifying preexisting parts of the
model

e The models of many systems is weak

You have only two choices: you either adhere completely to the other
system’s model or you go your separate way.

It is seldom practical to adhere to model of a legacy or external system
(after all, why are you building a new system?) but in the case that you
do, you must do it wholeheartedly. You restrict yourself to extension
only, with no modification. This might be appropriate in the case of
peripheral extensions to a large system that will continue to be the
dominant system. Examples of this choice include the light-weight
decision-support tools that are often written in Excel or other simple

© Eric Evans, 1998

10

tools. This is not the problem context we are dealing with, though.

Typically, you will define a unification context for each alien
component of the overall system. The system under design will be
made up of one or more unification contexts. The integration needs
must be identified between each of these and each alien component. A
translation layer must be defined between each pair of models that have
integration needs.

Where integration is not needed, or is relatively limited, this avoids
corruption of the models with a minimum of cost.

Where integration requirements are extensive, the cost of translation
goes way up. It may be necessary to make choices in the model of the
system under design to make translation easier, without compromising
the integrity of the model.

Resulting Context of Unification Context

Resulting
Context

Related
Patterns

Unification context comes first and foremost because it is necessary to
provide for a correct model. Logical consistency is now theoretically
protected, and its related communication issues can now be managed.
Powerful and correct models are possible. But if any large unification
contexts are defined, they may still be too complex to fully
comprehend as a whole, or to analyze completely. If many small
unification contexts arise, the overall understanding may be difficult.
This pattern should NOT be used to break down a model simply
because it is too big to manage. This pattern is strictly for solving the
logical consistency problem.

Managing complexity is the focus of the remaining patterns in this
paper. Distillation and Large-scale Structure address the problems of
understanding the big picture, while Modularity allows analysis of
isolated parts without considering the whole. (Other patterns are
needed for translation between contexts, which is not covered in depth
in this paper.)

© Eric Evans, 1998

11

Distillation

divD=p
divB=10
curlE =—@
at
curlH=J+@
ot

--- James Clerk Maxwell, A Treatise on Electricity and Magnetism, 1873.

These four equations, along with the definitions of their terms and the body of mathematics they rest on,
express the entirety of classical, nineteenth century, electromagnetism.

How do you focus on your central problem and keep from being drowned in a sea of side
issues? Cutting across all unification contexts is the “vision” of the system — that which
makes it valuable.

In designing a large system, there are so many contributing components, all complicated
and all absolutely necessary to success, that the real essence of the system can be
obscured and neglected.

How can we keep the focus on the aspects of the total system that are most valuable and grasp
the vision of the system? Many of the model elements needed to support a large system are
not central to the vision, and the primary value-added, of the system, yet these components
can divert resources from the conceptual core of the system. Worse, it may become difficult
to see the forest for the trees, and the conceptual core can be lost entirely.

Often a great deal of effort is spent on peripheral issues in the domain. I personally have
witnessed two projects who have employed their best developers for weeks in redesigning
dates and times with time-zones. While such components must work, they are not the
conceptual core of the system. Even if some such generic model element is deemed critical,
the overall domain model needs to make prominent the most value-adding and special aspects
of your system and be structured to give that part as much power as possible. This distillation
depends on the point of view of the designers, but can bring incredible clarity to an overall
model.

The whole process of modeling is an exercise in distillation. An abstract model is a
simplification of the reality it represents. It should capture the aspects of the domain that are
relevant to solving the problem at hand and ignore extraneous detail. This is of a piece with
that, but applied on a larger scale to the whole domain model, to bring into sharp relief the
most valuable and least general features.

© Eric Evans, 1998

12

Boil the model down to the core domain, retaining only those aspects of the model that
are distinctive and central to the purpose(s) of the intended applications. Be sure this
core is particularly clear, and as powerful as is needed to accomplish the vision of the
system. Keep other parts of the model as generic as practical, ideally using standard
components. Justify and judge these other parts by how they support the distilled core.

This can be done in a variety of ways, that may be called for under different circumstances.
These range from a simple vision statement to a segregated core that requires refactoring the
model itself...

Domain Vision Statement

At the beginning of a project, the model doesn’t exist, yet the need to focus its
development is already there. Even in later stages of development there is a need for an
explanation of the value of the system that does not require a significant study of the
model.

Most projects write “vision statements” for management. The best of these documents clearly
lay out the specific value the application will bring to the organization. Some of these
describe the creation of the domain model as a strategic asset. Usually the vision statement
document is abandoned after the project gets funding, and is never used in the actual
development process or even read by the technical staff. These documents, or closely related
ones that emphasize the nature of the domain model, can be used directly by the management
and technical staff during all phases of development to guide resource allocation, to guide
modeling choices, and to educate team members. If the domain model serves many masters,
you can use this document to show how their interests are balanced.

Write a short (~1 page) description of the core of your domain and the value it will
bring. Ignore those aspects that do not distinguish this domain model from others. Show
how the domain model serves and balances diverse interests. Keep it narrow. Write this
statement early and revise it as you gain new insight.

This still leaves the work of relating the vision to the specifics of the model to the
interpretation of each individual...

Highlighted Core

It would be better not to leave the identification of the core elements up the vagaries of
individual interpretation. Yet a very intrusive method that reorganizes the model is not
feasible on all projects. Adding a UML stereotype or a special comment might be more suited
to the situation.

Flag each element in the model that contributes to the essence, without particularly
trying to elucidate that contribution.

The core of the domain is now clearly visible to those working with the model, with a fairly
small effort and low maintenance, to the extent that the model is factored fine enough to
distinguish the contributions of parts.

Segregated Core

Although the vision statement and highlighted core inform and guide, they do not actually
modify the model itself. Now we come to the most aggressive form of distillation.

© Eric Evans, 1998

13

Elements in the model may partially serve the core and partially play supporting roles.
Core elements may be tightly coupled to generic ones. The conceptual cohesion of the
core may not be strong or visible.

This next step is not for everyone, but when appropriate, can be very powerful.

The model itself can be refactored in such a way as to separate the core from supporting
players and strengthen the cohesion of the core.

To see how this can be accomplished, let’s first examine the fractions we’ll drive off on our
way to distilling the essence of the domain model.

Generic Models

There is a part of your model that you would like to take for granted. It is undeniably of the
domain model, but it abstracts concepts that would probably be needed for a great many
businesses. For example, a corporate organization chart is needed in some form by businesses
as diverse as shipping, banking, or manufacturing. For another example, many applications
track receivables, expense ledgers, and other matters that could all be handled using a generic
accounting model. Distillation calls for you to identify all generic aspects of your model and
factor them out, with the result being a general model of the generic subdomain that has no
trace of your specialties.

There are practical considerations when devising these generic models. While the concept of
such a model may be applicable to many situations, you do not have to develop the model in
its full generality. You can model only the part you need for your business, but you must be
strict about keeping within the generic concept. Introducing industry-specific model elements
will have two costs. First, you may need to expand the model later. Although you need only a
small part of it now, your needs will grow. By introducing anything to the design that is not
part of the concept, you make it much more difficult to expand the system cleanly without
completely rebuilding the older part and redesigning the other modules that use it.

The second, and more important, reason is that those industry-specific concepts belong in
their own models, and those models are even more valuable than these are.

There are some incidental advantages to this factoring. Sometimes it may be possible to find
generic models in literature or even buy implementations in the form of frameworks, which
implement a very abstract model which can be integrated with and specialized for your
application.

Another advantage is that sometimes you can hire out-side design expertise to help in creating
them, since it does not require deep understanding of your specialized domain. And
confidentiality is less of a concern, since little proprietary information or business practice
will be involved in these modules.

Over time, I believe our ideas of what constitutes the core model will narrow, and more and
more generic models will be available as implemented frameworks, or at least as published
analysis models as in [Fowler96]. For now, we still have to develop most of these ourselves,
but there is great value in not confusing them with the core models.

Mechanism

No doubt about it, the mechanism by which the operations modeled in the domain are
accomplished present some of the difficult problems in software development. But in most
cases, these simply do not belong in the domain model. Mechanism should be factored out of
the domain objects and then, if at all possible, should be encapsulated behind an abstracted
interface that speaks in terms of the intention, rather than the means.

Take, for example, a system that must respond to real-world events. The domain model must
define the nature of those events, and the manner of response, but the mechanism by which

© Eric Evans, 1998 14

those events are registered and propagated to the interested respondents belongs in a separate
infrastructural framework.

A different sort of example is presented by a model of an organization chart. This model will
represent that one person works for another, and will declare an interface by which such
questions may be asked and answered. But the means by which this answer is obtained is of
no concern to the domain model. Perhaps a generalized directed graph traversal mechanism is
being used. The organization model could then simply state, using standard graph
terminology, that each person is a node, and each relationship between people is an edge
(arc) connecting those nodes. After that, presumably, mechanisms within the graph module
can find the relationship between any two people. If this mechanism is incorporated into the
domain model, you pay in two ways. The model is now coupled to a particular method of
solving the problem, limiting future options, and, more importantly, the model of organization
is greatly complicated and muddied. Keeping mechanism and model separate should result in
more reuse of the intricate code for graph manipulation and a much clearer model of
organizations.

Another way of saying this is that the domain model should be “declarative”. It should state
relationships and rules, but not how they are enforced; describe events and actions, but not
how they are carried out; formulate the equation but not the numerical method to solve it. It
should pose the question but not present the means by which the answer shall be found.

The one exception is when a mechanism is itself proprietary and key part of the value of the
software. This is sometimes the case with highly specialized algorithms. For example if one
of the distinguishing features of a shipping logistics application was a particularly effective
algorithm for working out schedules, that mechanism stays.

Core Domain (Essence)

Factoring out the general mechanisms and generic business models leaves behind a focused
model of your business, without distractions that add no particular value to the way you do
your business. Finally we are looking at those parts of the model particular to representing
your business domain and solving your business problems. This is where the most value
should be added.

In a shipping application, these would be the model of how cargoes are consolidated for
shipping, how liability is transferred when containers change hands, or how a particular
container is routed on various transports to reach its destination. In investment banking, these
would include the models of syndication of assets among assignees and participants.

Which aspects of the model constitute the essence is circumstantial. One application’s
generic model is another application’s core. Many applications need a generic model of
money that could represent various currencies and their exchange rates and conversions. But
an application to support currency trading might need a more elaborate model of money, and
would consider it part of the core. Even in such a case, there may be a part of the money
mode that is very generic. That part would ideally be separated from the specialized part,
continuing the distillation.

It is often not practical to hire out-side design expertise to help in creating the core domain,
although there may be value in hiring domain experts, who know your business deeply and
are experienced in analysis in that area. And if some aspect of your system is to be kept
secret as a competitive advantage, this is it.

It is unlikely that the core domain can be purchased, although in the future, such industry-
specific models may become available as frameworks. Some efforts in that direction have
been made by specific industry groups, as with Sematech’s CIM framework for
semiconductor wafer fabs, and by technology companies, as with IBM’s “San Francisco”
project, which is an attempt to develop frameworks for a wide range of businesses. But the
greatest contribution of such off-the-shelf software will be to supply you with the generic

© Eric Evans, 1998

15

models you need. Even if a framework is available for your core domain, it should be used
with caution, and probably serve as a guideline. At best, a well-designed framework may be
able to provide high-level abstractions that you can specialize for your use. If it does more
than that, you should question whether this aspect of the model belongs in the core, or, if it
does, why you are developing custom software in the first place.

Choosing your weapon
When to use this most aggressive distillation?

The greatest value-added of enterprise software comes from the enterprise specific aspects of
the model. The segregated core will let you enhance the cohesion of the core. On the other
hand, some elements of the conceptual core can have high cohesion and coupling with more
generic elements, and these relationships will be made harder to understand. And it is more
work.

The time to use this is when you have a large unification context that is critical to the system,
but where the essential part of the model is being obscured by a great deal of supporting
capability.

Therefore, when you decide to go down this path,

Separate the core concepts into separate objects in the model and place them in separate
modules (applying the “Modularity” pattern) identified as the “core domain”. Factor all
generic or supporting elements into other objects and place them into other modules,
even if this means refactoring the model in ways that separate highly coupled elements.

This can not usually be done completely, in any case, since distillation spans Unification
Contexts. This pattern adds a consideration to the modularization decision process.

The core domain is the part of your system most focused on your particular business problem.
By cleanly separating it from the other, more generic, business issues, you can express it
powerfully and clearly. Other models can be clearly shown in their supporting role. I believe
that tools will continue to evolve that will automate or prefabricate more and more of the
other layers of an application so that increasingly the effort of modeling will be spent on the
core business problems, greatly improving productivity and quality.

Example: Distilling the Shipping Model

What is the essence of the shipping model? Usually good place to start
looking is the “bottom line”, certainly central to any business. But this
application is not being designed for the CFO. It is going to be used by the
front-line operators of the company. So let’s relegate all money related issues
to (admittedly important) supporting roles. What about customer? Certainly a
customer focus is important to such an operation. Yet the basic model of a
customer is pretty generic. We wish we didn’t have to do this one yet again.
What about those agreements, though? Shipping according to customer
agreement is at the heart of the operation and of what this system is for. If we
accept customer agreement as core, then we would like to separate it from the
generic Customer. This leads us to split the Customer package into two:

© Eric Evans, 1998

16

[Customer Relations

Customer

[Customer Agreement
Customer gugﬁﬁéf
Agreement
Customer

| hate introducing new notation, but | know of no way of laying emphasis on
some packages over others in UML, so | have drawn the core domain
packages in a bolder line. In laying out diagrams of many packages, | attempt
to convey the importance of those packages subjectively by placing them
centrally, but this is only an aide and some notational distinction is needed to
be unambiguous.

As an aside, we are going to end up with packages that show just one class.
One reason for this is that the true complexity of those packages is much
greater than can be shown in this example. Another is that | favor a sharp
definition over an arbitrary size rule.

So, what are we left with? The obvious core domain of a shipping operations
system is the routing and handling of cargo. But many systems might manage
inventories of equipment, and geographic models are certainly potentially
generic. Within the Billing module I've further separated the Money model,
which is a generic model that there may be a lot of value in designing cleanly.
This initial distillation gives us a diagram something like this.

© Eric Evans, 1998

17

Equjpment

Equipment

[Banking Delivery
Bill of
Lading
Router Loader
] »
*
* 5 *
Cusiomer ‘
. . Cartier
E— role
Customer —|: garg Relivaiy History Movement
* ‘ (]
Dalivery Geal i
L Handling Log |_i0ad onto
Entry
[_Biing] —_—
Invoicing Pricing mﬂms_
: [Monev 1 Customer
Delinquent Money Agreement
Collection ol
Ldestination
Money Currency

Inventory

Geography

Lecation

In this case, the classes are the same as before distillation, although
sometimes distillation leads to refactoring to separate the generic and domain
specific responsibilities of the classes themselves. But although the classes
haven’t changed, it is now easier to explain clearly what this model is about,
and think about allocating our efforts to directly support the core domain.

© Eric Evans, 1998

18

Modularity

The entirety of the system was broken down into unification contexts, that insure that a single
consistent model is in force within a given scope. But if the model within a single unification
context is still large and complex, the problem needs to be brought down to size. Modularity
applies within a single unification context.

There is a limit to how many things a person can think about at once. If the full domain
is modeled as a single web of objects it is almost impossible to understand and will surely
be impossible to implement. How can a very large model be made understandable in
detail?

This is well trodden ground, and does not need a great deal of explanation. Something so
large must be partitioned into smaller parts, but not arbitrarily.

Two factors are usually considered in trying to draw lines: low coupling between modules and
high cohesion within a module. These terms have been around for a long time. One patterns-
style explanation can be found in [Larman98].

Whenever two model elements are separated into different modules, the relationships between
them become less direct than they were, which makes them harder to understand and
increases overhead of managing the design (and potentially of run-time performance). At the
same time, the complexity of the relationship between the modules is increased. Enter low
coupling. By keeping strongly interrelated elements in the same module and moving unrelated
elements to other models, the cost of these inter-module relationships is minimized. Low
coupling between modules makes them easier to manage in isolation, without having many
complex interactions to consider. It also makes them easier to unit-test.

The elements of a good model should have a synergy that makes them more powerful and
expressive together than they are separately. This tends to happen when there is a clear
conceptual connection between them. The principle of high cohesion states that elements
should be grouped with other elements that, together, form a richly expressive, cohesive
whole. In such a case, powerful capabilities can be designed at the micro-level of a module,
a scale of complexity a human mind can handle. Usually, high cohesion coincides with low
coupling, so that there is not much tension between these two goals.

A third factor that comes into play is distillation, especially if a segregated core is being used.
In this case, elements deemed to be at the distinctive conceptual core of the model are
separated from more generic elements. Ideally, this leads to a model with high cohesion
within the core, maximizing the power and clarity of that critical part. On the other hand,
unfortunately, the core modules often end up fairly tightly coupled to generic elements.

Modularity is not an afterthought, as if a fully formed model were taken and breaking it up as-
is. The modules usually co-evolve with the rest of the model. This means that the
responsibilities of model elements will tend to be factored and refactored with low coupling,
high cohesion, and distillation in mind.

Rather than developing a single large model, develop many smaller, interrelated ones,
each of which has a conceptual focus. Show relationships between modules in views that
exclude interior detail of the modules. Choose the boundaries so that there is high
cohesion within each module and low coupling between modules.

Modularity resolves most problems of understanding and analyzing the details of a model. It
may also make analyzing the system as a whole more manageable, since the relationships
between modules can be studied rather than the much more numerous relationships between
individual objects. If the model has been distilled, there will also be focal points to guide
understanding.

© Eric Evans, 1998

19

But beyond a certain size, a model may still be unmanageable. Ensuring logical consistency
within a module may be easy, but throughout a large unification context it may be difficult
when many modules are interacting. For the same reason, it becomes difficult to understand
the role of one small part in the whole, and to make design decisions about small parts that fit
into a “big picture”. It may be necessary to impose a large-scale structure.

Example: Modularizing a Shipping Model

Let's Consider a system for the management of cargo shipping. It will track
cargoes, take bookings, invoice customers, route cargoes onto appropriate
carriers to send them toward their destination, and no doubt many other useful
things. A simplified domain model to serve this purpose might look like this.

Router

Loader

< |
2 Ioad onto :
Delinquent Bill of “a"é’:pg Log Mi:::.leer &
Collection Lading ¥ " 6.
=
Invoicing
Equipment
*
x
x
Customer 4|E Cargo Delivery History
x
Inventory
Customer
Agreement
rinin
| ‘ ‘ Belivery Goal Location destination
Pricing
Money Currency

Even neglecting many associations that would exist but have been left out, this
is pretty confusing. I’'m not even going to try to explain the parts until I've
broken it into modules. Now, | do not mean to imply that these principles,
modularity and the others to follow, should be applied after the fact — far from
it. This is presented more to show the various end-points that might be
reached by applying these principles, which are likely to be used together and
iteratively. Few would present a large model in one piece like this. Here is an
off-the-cuff modularized view of the same model.

© Eric Evans, 1998

20

Delivery
Router Loader
*
- HandlingLeg | 22001 carrier
Bill of Ent M i
Lading iy b 0.1 ovuimel
- o
’
usiomer| —
x
*
Cust e cargo Delivery History
*
Inventory
Customer
Agreement o
Dellivery Goal Location destinaton
i BINTG I
Pricing Invoicing
Delinquent
Meney: |[=—1 BHHo0y Collection

Modularity is used by almost everyone, and is well explained in many places.
Curiously, though, the guidelines are quite abstract. Cohesion and coupling
are the basic principles applied, but it really comes down to an intuitive division
into related objects. The intuition of some is refined by talent and experience,
and iteration also refines the partition of a particular design. This is one
intuitive breakdown. It could be refined, certainly, and the sections to come
will lead to refinement following some additional guidelines.

This is certainly easier to manage and explain. Some objects are fairly self-
explanatory, such as cargo, customer, and location. Carrier movement
represents a ship, train or other carrier moving from one location to another,
potentially carrying cargo. Router and load lister work together to get the right
cargoes onto the right carriers. The router figures out where the cargo should
go, the load lister figures out which cargoes should be loaded onto a carrier
(and which get bumped). The details are not important, since this is not about
shipping but about breaking down a model. It will also become easier to
explain as we apply the remaining principles.

© Eric Evans, 1998 21

Large-scale Structure

Even with a modular breakdown, a large model can be too complicated to grasp. The strict
segregation imposed by unification contexts prevents confusion, but can actually make it
harder to see the system as a whole. Distillation helps, by focusing the attention on the core
and presenting the other models in their supporting roles, but the relationships can still be too
confusing without some overarching principle that allows elements to be interpreted in terms
of their role in patterns that span the whole design.

Can’t see the forest for the trees.

We need to be able to understand the role of an individual part in the whole without delving
into details of the whole.

The forces applying to this pattern are related to those of the unification context, but here the
emphasis is on comprehensibility, whereas there it was on correctness.

e Applying any principle to all parts of a system makes it easier to understand and manage
as a whole.

e Individual parts have natural or useful ways of being organized and expressed that may
not apply to the whole, so imposing global rules makes these parts less ideal.

e Designers may have no control over the model of some parts of the system, in the case of
external or legacy systems.

Structure may be confined to one unification context but will usually span multiple contexts,
providing the conceptual organization to hold them together. A good structure gives insight
into the model and complements distillation.

This pattern favors manageability of the model as a whole over optimal structuring of the
individual parts. Therefore, there will be some compromise between powerful structure and
freedom to express individual components in the most natural way. This can be mitigated by
careful selection of the structure and by avoiding over-constrictive structures. When the
unification contexts were kept separate to allow for the tailoring of models to the needs of
specific applications, a weak structure (if any) is appropriate to avoid forcing a concept upon
the subdomain that is not optimal for it.

Large-scale structure is not needed for systems that are simple enough to be understood when
broken into modules. It should not be applied unless a structure can be found that greatly
clarifies the system without forcing an unnatural constraint into model development.

Strong vs. weak structures

Unlike unification context, a large-scale structure is an optional pattern to be applied when
costs and benefits favor it. There is also a lot of room to trade-off between tight or “strong”
structures and relatively loose or “weak” ones. Because diverse parts of the model have to be
handled, in most cases, such structures need to be loose and conceptual, rather than tight
frameworks, but there are exceptions.

A strong structure affects individual modeling decisions throughout the system. When
dealing with a large, complex unification context, a strong structure can be helpful in
resolving the problem of finding and maintaining a rigorously consistent model of such
complexity. The strong structure can also be helpful when unification contexts were chosen
to facilitate parallel development of new software. It can ease integration and may even leave
the door open to merging contexts in later refactoring. Easing off to a medium strength in
these cases can lower overhead without loosing much of the interpretability that is the main
purpose of the pattern. (This would probably forgo the easy merger of contexts, but that
concern is properly addressed through the unification context pattern, anyway.)

© Eric Evans, 1998

22

When some unification contexts involve external systems with completely distinct models, a
strong structure is completely unworkable. A weak structure may be able to provide some
guide to understanding the system as a whole without demanding the revision of models to fit
its concepts. Even this may not be practical when there is no control of the external model
(the usual case). In such a case, the structure may at least be able to communicate the role of
the interface to the external system in the model being created. Such an “integration model”
can be especially useful in systems that are mostly composed out of preexisting subsystems.

Many structures can be tuned in strength for different parts of the system, so that it could be
applied in a strong way in the main system under design and then weakly to help
communicate the role of external systems that are being integrated.

Devise a pattern of roles and relationships that will span the entire system and which
allows some understanding of a part’s place in the whole even without detailed
knowledge of the part’s responsibility. Then make all affected modules follow a
consistent pattern that can be learned once and used to interpret all.

This is really a pattern for a pattern, so specific patterns for imposing large-scale structure are
needed.

Although a lot of work has been done on large-scale architectural structure for software
systems as a whole, little has been published on the structuring of the domain model. Some
approaches that have been tried weaken the object oriented paradigm, such as those which
break down the domain by an application task being performed.

An approach more harmonious with objects is the dominant metaphor [Kent Beck, ~19997].
This is favored by the Extreme Programming community. A model can be organized around a
dominant metaphor that need not be related to the domain itself (such as structuring a payroll
system based on a manufacturing metaphor). It can provide a weaker structure that may be
easier to apply across contexts.

Abstract Domain Framework is an example of a very strong structure, high-level abstractions
are identified and shared across a breadth of the system while specialization occurs in
modules. This would generally be applied within a unification context (and, indeed, can help
to manage the unification) but it can also apply across contexts when specialization within the
modules diverges or the framework is very conceptual.

Here I’ll explore in depth one such structuring pattern, layers of responsibility, that I have
used to good effect on two large projects. It can range from a strong structure to medium
strength.

Layers of Responsibility

This pattern for structuring a model is built upon /ayering, one of the most successful
architectural design patterns, and responsibility driven design, one of the most fundamental
and successful object design philosophies.

Some domains have a natural stratification. Some concepts and activities take place
against a background of other model elements that change independently and at a
different rate for different reasons.

How can we take advantage of this natural structure, to make it more visible and useful? It
immediately suggests layering. Layers are partitions of a system in which the members of
each partition are aware of and able to use the services of the layers “below”, but unaware and
independent of the layers “above”. (Or vice-versa, but I’ll use the convention that “higher”
layers depend on “lower” layers. Physical arrangement does not have any meaning in UML,

© Eric Evans, 1998

23

only topology does. But the physical layout of the diagram can be suggestive and can help
make the model easier to interpret.)

When the dependencies of modules in the model are drawn, they are often laid out so that a
module with many dependents appears below them. In this way, layers sometimes sort
themselves out in which none of the objects in the lower levels are conceptually dependent on
those in higher layers. The layering pattern that best fits is the variant called Relaxed Layered
System, [BMRSS96], p. 45, which allows components of a layer access to any lower layer, not
just the one immediately below.

But this ad hoc layering, while it can make tracing dependencies easier, and sometimes makes
some intuitive sense, doesn’t give much insight into the model or guide modeling decisions.
We need something more intentional.

Figure 1: Ad hoc layering: What are these packages about?

A fourth or even
fitth layer could
have been drawn
far this. WWhy not?

This could have [
been in a lower
layer.

Fundamentally, most object design principles rest on responsibility driven design, which
entails assigning a narrow set of closely related responsibilities to each object. In conventional
responsibility driven design, each individual object has hand-crafted responsibilities. There
are no guidelines, no uniformity, and no ability to handle large swaths of the domain together.
To give coherence to a large model, it is useful to give some structure to the assignment of
these responsibilities. In a model with a natural stratification, conceptual layers can be defined
around major responsibilities, uniting these two powerful principles.

These responsibilities must be considerably broader than those typically assigned to
individual objects, as shall be seen below. As individual modules and objects are designed,
they are factored to keep them within the bounds of one of these major responsibilities. This
named grouping of responsibilities by itself could enhance the comprehensibility of a
modularized system, since the responsibilities of modules could be more readily understood,
but a jump in power comes when it is combined with the layering principle.

Some widely useful layers

It isn’t necessary to start from scratch in defining layers for each new model. Certain layers
show up in whole families of related domains. At this point it will help to discuss a particular
layered responsibility scheme that has been of value to me in at least three domains.

© Eric Evans, 1998 24

Figure 2: Layering fixed capital operation (e.g. a factory)

= :
. Analytical Mechanisms ~ Very little state, so g:ﬂ%?:emtiﬁitz:gzgsm
@ little change.
g' 5 Reduce cycle-time
=

Strategies [GHJV95]
2 Constraints Priority of products
o X
= (based on business Slow state change. Recipes for parts
s goals or laws)
2
® State reflecting business ; Inventory
E reality (of activities) Rapid state change. Status of unfinished parts
o =
=
0 Z ; Process capability of
% Stalte reﬂfectmg business Moderate rate of state gquipment

reality (of resources : I
2 y() change. Equipment availability
[<Y]

Transport through factory

In a surprising range of typical business enterprise systems, almost all responsibilities can be
placed into the four layers in the figure. The layers have different responsibilities and
different visibility to other layers. They also differ in the their rate of change and the amount
of state they encapsulate. These are guidelines only, though. For most purposes you still
need flexibility in those areas.

Now we need a definition for each layer:

e Potential: What can be done? Never mind what we are planning to do. What could we
do? The resources of the organization, including its people, and the way those resources
are organized are the core of potential. Also contracts with vendors define potentials.
This layer exists in all business domains, but is most prominent in those, like
transportation and manufacturing, that have a relatively large fixed capital investments
that enable the business.

e Operation: What is being done? This is what we really have done with those potentials.
Like Potential, this should reflect the reality of the situation, rather than what we want it
to be, but in this layer we are trying to see our own efforts and activities. It is very
typical of operational objects to reference or even be composed of potential objects, while
a potential object shouldn’t reference the operations layer.

In many, or even most, existing systems, these two layers cover everything. One of the many
advantages of layers is that the lower layers can exist without the higher ones. The higher
layers can later be added, with some change to the lower ones. This is one of the ways
projects phase delivery.

But in more ambitious systems, this simple tracking is not enough. The upper two layers add
the intelligence.

e Policy: What are the rules and goals? Rules and goals are mostly passive, but constrain
applications and decision making components when performing transactions on the
operational level. Goals can often follow the “Strategy” pattern [GHIJV95].

e Decision: What action should be taken or what policy should be set? The final layer is for
analysis and decision making. It can use the state of the Potential and Operations layers,
including historical state, to find opportunities for current operations. The Decision layer
provides the means to seek the goals set by Policy, constrained by the rules set by Policy.

© Eric Evans, 1998

25

Choosing appropriate layers

While these four layers are applicable to a range of enterprise systems, they do not capture the
salient responsibilities of all domains. In other cases, it would be counterproductive to try to
force the design into this shape, but there may be a natural set of responsibility layers that do
work. For a domain completely unrelated to those we’ve discussed, these might have to be
completely original. But when working with a new domain that has some similarity to those
we’ve worked with before, we can often use responsibility layers we’ve used before, perhaps
with a substitution or modification.

For example, as was mentioned above, the Potential layer is most prominent in businesses
where capability is determined by capital investment, whereas, in financial services or
insurance, to name two, the potential is to a large extent determined by current operations. An
insurance company’s ability to take on a new risk by underwriting a new policy agreement is
based on the diversification of its current business.

In these cases, what often comes to the fore is commitments made to customers. This
suggests the merger of the Potential layer into the Operations layer and the insertion of
another layer, “Commitment”, between the Operational and the Policy layers.

o Commitment: What have we promised? : This layer has the nature of policy, in that it
states goals that direct future operations, but it has the nature of operations in that
commitments come about and are changed as a part of normal business activity.

Figure 3: Layers when operations determine resources (e.g. commercial lending)

Risk analysis
Portfolio analysis
Negociation tools

Analytical Mechanisms Very little state, so
little change.

uoisioeg

Strategies [GHJV95]
Constraints Reserve limits

(based on business Slow state change. Asset allocation goals
goals or laws)

State reflecting business Moderate rate of state Custc_)me_r agreements
reality (of activities) change. Syndication agreements

. .) Status of outstanding loans
State reflecting business Rapid state change. Accruals

reality Payments and distributions

uoneledO uswpwwon Adljod

The rule of four

The Potential and Commitment layers are not mutually exclusive. A domain in which both
were prominent, say a transportation company with a lot of custom shipping services, might
use both. There is a value to keeping the layering system simple, though, and going beyond
four or possibly five becomes unwieldy.

“Strong” structure, constraining relationships between layers

These responsibility categories can help factor the model in a consistent way, but in some
circumstances it is useful to go a step further. In addition to partitioning the responsibilities of

© Eric Evans, 1998

the model, we can describe the relationships and possible communication paths between
members of the different layers.

I’ve stated in a general way that lower layers should not know about higher ones, but until this
point the decision as to how this should be done has been left to be made case-by-case during
the modeling process. This is generally appropriate, but sometimes you may want to
constrain the relationships between the layers more explicitly.

For example, intentional state-changes in the operations layer are made in accordance with
the policy constraints. In a factory, a part will be routed to a machine that has the process
capability called for in its recipe. But operations must reflect the real world, which means
that sometimes the part will be put in the wrong machine. The real-world information must
be accepted unconditionally. At this point we would like the system to strive to realign itself
with policy, perhaps by rerouting the part to a repair process or scrap. But operations does not
know anything about policy. What a spot.

One solution is to use an observer. Following this pattern, the operations objects broadcast
events whenever their state changes. Policy layer objects listen for events from the lower
layers. When an event occurs that violates a rule, the rule executes an action (which is part of
the rule’s definition) that makes the appropriate response.

In the banking example above, the value of assets change (operations), shifting the value of
segments of our portfolio. When these exceed portfolio allocation limits (policy), perhaps a
trader is alerted, who can buy or sell assets to redress the balance.

Now, we could figure this out for each relationship, or we could decide once and for all that
this is how policy and operations objects should interact. If we make a set of such constraints
that govern the interactions, we’ll have what I call a “strong” structure. A strong structure is
not practical in many situations, but it does provide the maximum affect of uniformity.

Figure 4: A structure that strongly constrains the model

Possible References RossibleEvent

Channels
g Analytical Tools
@
g
| |
| \
s Strategies [GHJVE5] | |
=1 Constraints] | | \
g 1
\ | \
sl e
o) - - v |
= State reflecting business
3 reality (of activity) / = |
g T
/ \ I |
7 | V!
E State reflecting business /
o reality (of resources) L= Y
5 7 =
/ Y

By specification By callback sort of
only. Mo refs to B

. mechanism only.
instances.

© Eric Evans, 1998 27

Summing up

Layers of responsibility can be applied in a variety of ways and at different strengths. The
overriding issues are that it should give insight into the domain and that it should make
development easier. Design structures make the complex relationships between the parts
which helps deal with large unification contexts. It can also give shortcuts to design decisions
that could, in principle, be found by working on the individual object level, but which would,
in practice, take too long and have inconsistent results. These layers help to satisfy the various
ends to which the system is being put without randomly pulling the models in different
directions until they fragment into redundant expressions of the same fundamental domain or
become bloated with poorly factored behavior. Of course, continuous refactoring is still
necessary, but this will make it a more manageable process, and can help make different
people come up with consistent solutions.

Identify the natural strata in the domain and assign them broad abstract
responsibilities. Factor the responsibilities of objects and modules to fit within the
responsibility of a specific layer. Define the relationships between layers to a strength
appropriate to your circumstances and then highlight exceptions to these relationships
when they occur in the model.

<<<Put this near beginning of examples>>

Granted that this seems like overkill at this point. There is an inherent
difficulty of demonstrating by example a technique whose primary usefulness
is in the handling of complexity, since any example that can be clear enough to
illustrate the principle without exhausting the reader with detail will necessarily
be too simple to really benefit from the additional layering. But imagine its
application to a system of hundreds of domain objects.

Applying Large-scale Structure to the Shipping Model

Layering seems like a natural fit for our shipping model. It is quite reasonable
to discuss shipping schedules without referring to the cargoes aboard the ship.
It is harder to talk about tracking cargo without referring to a shipping
schedule. The conceptual dependencies tend to be pretty clear. I'll try
applying the first specific layering scheme presented in the text — potential,
operation, policy, and decision.

Identifying “Potential” in the Shipping Model

Scheduled carrier movement is potential, because this is a resource to be
used to accomplish the goal of moving cargo. This is true whether the
vehicles are owned by the company or space is leased on the carriers of other
companies.

Customer is also potential, since the hope is to cultivate ongoing relationships
so that they reflect our ability to make money in the business. (It could be
argued that customer is operation. This would fit better in a business where
repeat business did not dominate and customers were chiefly of interest in a
specific shipment.)

“Operational’ Responsibilities

In our shipping application, the cargoes that are actually booked or in transit
are the main operational objects. Of course, that includes the delivery
history, even though that object is an aggregation of carrier movements, of

© Eric Evans, 1998 28

the potential layer. It is very typical of operational objects to reference or even
be composed of potential objects.

Handling Log {oad oo Carrier
Entry * 0.1 Movement
=
e
X,
N
Customer —E cargo || Delivery History 5
* =
N "%
N %
; S
Destination \\
Specificaﬂion
&
N

T Operation:
Operation Intuitively, Cargo
is operational, but

also all of the

ohjects that onty
existin relationto
it are operational

So, separating the bottom two layers yields this view.

©
. . Handling Leg =
Cargo Delivery History % Entry g
[y
—
role |« - g
]
Destination

Specification |nad orto

0.1
2 ©
Carrier =
Customer Movement E
1]
=
=]
o

Policy in the Shipping Model

Pricing and bill collecting policy are classic policies. Since we don’t want to
add a commitments layer, Customer Agreements also constitute.

<< The following refers to an example in “Constructing the Domain”;
Incidentally, using the structure gives us a shortcut to the earlier discussed
decision not to have cargo derive enterprise zones. Enterprise zones, which
represent corporate strategy, are part of the policy layer. Cargo (operations) is
not supposed to be dependent on higher layers. The original justification is the
fundamental one, but shortcuts, or at least hints, to the right decision are
important when hundreds of decisions like this one have to be made. It is also
an important validation of the choice of structure when you find that the
modeling decisions it pushes you toward make sense in their own right. >>

© Eric Evans, 1998

29

Decision Mechanisms in the Shipping Model

The original requirements listed didn’t have any obvious decision making. In
this kind of system, likely uses of decision making would be automatic routing
of cargoes (Router) and listing the order of loading of cargoes (Loader).

A Final Look at the Shipping Model

We’ve modularized, distilled, and layered the shipping model, and come up
with something like this.

Roufing

Router — Loader ——
T

[Commitments Roufing Policy iming Plic

Invoicing
Cheapest
Clggemar Routing

Agreement

Favered Dellgﬂ:.;ency
Pricing Carrier

Shipment |
*
role Cargo ——— Delivery History FTaVAT
*
I [—

(—bloney | I
Bill of
Lading
Money Currency . Handling Log
Delivery Goal Entry

[Custbmer fanspo

Geograph 0.1
| | | customer grapny 1 =
Cartier

N |nri in Equipment Inventory
Location ‘ 1o1d Movement
destination

On a real project, there would be additional iterations that would embellish and
refine it, of course, but here we’ve almost come to the end of the line.

I I

An Unexpected New Feature

Ah, but we simply wouldn’t have covered the territory without dealing with an
unexpected change. Enterprise systems are never conceived initially in their
entirety. They grow. Our example shipment system started with just these
requirements:

1. Track customer cargo
2. Book cargo in advance
3. Send invoices to customers

© Eric Evans, 1998

30

A simple object model emerged. Now the first major new functions are going to
be added: Allocation Checking.

The sales division of our imaginary shipping company uses other software to
manage their client relationships, sales projections, and so forth. One feature
they use supports yield management, which is a process of choosing which
cargoes to accept to maximize profit. Shipping companies don’t want to fill a
ship with discount cargo, but they don’t want to sail with empty space, either.

They want to integrate with our system in a limited way. They will use their
current software to work out the allocations, which will be exported into our
system. The allocations will regulate which bookings the company accepts.
When each new cargo will be profiled and categorized. If the allocation for its
category has been used up, the booking will be rejected. Otherwise, it is
accepted and the allocation remaining is reduced.

The first issue is unification context. The “alien” software will be taken as a
separate unification context. The model needed for allocation checking, we’'ll
incorporate into our main unification context.

Keeping in mind our layering scheme, the team decides to model it something
like this:

lw) Allocation

D Checker

o,

0

—_ carga profile

Q

=5

>

] Allocation

2]

s

o

o

®

o Cargo

=

Q

=5

1. approve(aCaryo)
Booking i Allocation 3. compute profile
Application Checker look up allocation
4. boolean
lQ requast same attributes
alargo: Cargo

The only remaining issue is the translation between the two contexts. In this
case, the only information that is being exchanged is (as modeled in our
context) the Allocation and the Cargo Profile. Translations must be defined
between these and the equivalent representations in the alien tool.

© Eric Evans, 1998

Conclusion

Using these principles provides many advantages. It gives guidance that may lead more
quickly to good factoring, and it gives consistency that can help coordinate the work of
different people over long spans of time. It help keep the focus on the main goals of the
system.

It is not meant to be a rigid methodology, but a box of tools, to be used when needed,
individually and in combination.

And, as a pattern language, it also adds to the vocabulary of the project team, allowing better
analysis and discussion of the state of the model regardless of whether any of the patterns are
actually applied.

Vocabulary of the Pattern Language

The Context

Some combination of the following contextual elements appear in most enterprise modeling
situations. Enterprise system modeling shares much with other software design, and these
patterns should be applicable in other situations where these contextual elements dominate

1. Large Model: Specifically, when a model becomes too complex for its own designers to
understand in detail and as a whole at the same time.

2. Multiple Design Teams: When more than one team is working in parallel on different
parts of the system.

3. Alien Components: When the new system must integrate with a system over whose
design the designers of the current system have little control. Typically, these would be
legacy systems or external systems.

4. Serving Many Masters: Different users of the system will have different demands that
are not just different steps in the same business process but actually distinct business
goals.

The Problems

Problems of modeling usually revolve around trying to meet one or more of these goals.

1. Correct

2. Integrated

3. Understandable
4. Flexible

The Tools

The patterns in this paper present solutions base on these four tools, or principles, each of
which is defined in its own section.

1. Explicit Unification Context
2. Distillation

3. Modularity

4. Large-scale Structure

© Eric Evans, 1998

32

References

[BMRSS96] Bushman, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 1996.
P. A System of Patterns. Wiley.
[Fowler96] Fowler, M., 1996. Analysis Patterns: Reusable Object Models. Addison-
Wesley.
[GHJV95] Gamma, E. Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns.
Addison-Wesley.
[Larman98] Larman, C. 1998. Applying UML and Patterns. Prentice Hall.
Acknowledgements

Several people have helped to read and critique this paper. I particularly want to thank Rob
Mee and Alistair Cockburn for reading early drafts and giving valuable feedback. Thanks
also to Gerard Meszaros for acting as shepherd for the paper in preparation for PLoP 1999.

© Eric Evans, 1998

33

