
1

 The Authenticator Pattern

F. Lee Brown, Jr.
James DiVietri

Graziella Diaz de Villegas
CyberGuard Corp.

Fort Lauderdale, FL 33309

Eduardo B. Fernandez
Dept. of Computer Science and Eng.

 Florida Atlantic University
Boca Raton, FL 33431

Abstract

A server system acting as a repository of objects available to a variety of unrelated distributed clients is likely to
require a means to restrict access based on the identity of the requesting client. Identification and authentication
protocols are often missing from currently available distributed object systems.

The Authenticator pattern describes a general mechanism for providing identification and authentication to a
server from a client. It has the added feature of allowing protocol negotiation to take place using the same
procedures. The pattern operates by offering an authentication negotiation object which then provides the protected
object only after authentication is successful.

1 Intent

The Authenticator pattern performs authentication of a requesting process before deciding access to distributed
objects .

2 Motivation

The registry services of commonly used distributed object systems generally allow any requestor with access to the
registry to obtain any distributed object whose name is known. Some means to grant or deny access to individual
requestors using a login-and-authenticate protocol is necessary for distributed object systems that service varied
requests.

This is particularly important in distributed systems with a variety of accesses, both internal (Intranet) and external
(Internet).

Remote objects may also need to be configured account for varying capabilities between the client and server
systems.

The forces behind this pattern include:

• The clients may have different rights on the remote objects. Before deciding access, the requestor must be
authenticated.

• The remote object needs to adapt to the capabilities of the two systems involved. Those must be reconciled
through a negotiating process prior to constructing the object.

• A generic approach, not dependent on specific authentication approaches, is necessary.

Copyright 1999, Eduardo B. Fernandez. Permission is granted to copy for the PloP 1999 conference. All other
rights reserved.

2

3 Applicability

The Authenticator pattern is useful

1. when identification and authentication is required for access to remote objects;

2. when a variety of authentication methods may be used;

3. when additional protocol negotiations (encryption selection, software version supported, etc.) is required prior
to obtaining a remote object; and the underlying distributed system does not support these requirements.

4 Structure and Participants

The Authenticator pattern uses a distributed object accessible remotely that will identify and authenticate the
requesting agent (“requestor”) and possibly perform some protocol negotiation. If and only if the authentication and
negotiation is successful will the authenticating object create and make available another distributed object
representing the object that the requestor really wants.

The Authenticator pattern consists of the following components.

1. Authenticator. This abstract class defines the interface used to authenticate a connection or negotiate session
parameters. An application defines a concrete class implementing this interface to provide a specific
authentication or negotiation protocol. The resulting class should be instantiated and registered with the
applicable naming service as a distributed object accessible throughout the network. The authenticate
method is used by the requestor after obtaining a reference to the Authenticator object. When authentication is
successful, the Authenticator class creates an instance of a distributed object that can now be accessed by the
remote requestor using the get method. The proposed implementation of the pattern uses an Object Factory
class passed to the Authenticator constructor to create the protected object.

2. Object Factory. This abstract class contains only one method, create. The implementation of this method
creates the protected object. It may also perform other actions specified by the Authenticator as a result of the
negotiations.

3. Requestor. Although not strictly a part of the pattern, the remote requestor object is assumed to be implemented
in a manner matching the implementation of the concrete Authenticator class, so that the values passed as
arguments to the authenticate method and the returned values can be used to complete the authentication.

Figure 1 shows the participants of the Authenticator pattern.

creates

Concrete
Authenticator

authenticate(s)

Concrete
ObjectFactory

create()

Authenticator {A}

authenticate(s)
get()

ObjectFactory {A}

create()

Remote Object

3

Figure 1 – Authenticator Pattern Participants.

5 Collaborations

There are four phases of operation for the Authenticator pattern.

1. Initialization. The Authenticator object must be registered with the distributed object system’s naming service
for remote access. This phase of the operation is system specific and external to the pattern, but nevertheless
tightly coupled with it.

2. Connection. When a remote object, a requestor, obtains a reference to the Authenticator object, it uses the
authenticate method to pass a string to the Authenticator implementation. The return value is another
string which the requestor uses to determine if the authentication or negotiation succeeded or failed, or whether
(and how) to construct another string for another use of authenticate. The requestor continues to call
authenticate until the authentication or negotiation is completed.

3. Creation. When the Authenticator implementation recognizes a successful authentication, it creates the
protected object in preparation for handing that to the requestor as a response to the get method. The expected
process is for the authenticate method to invoke an object factory method. However, the Authenticator
implementation and the object factory can use any means to make one or more objects accessible.

4. Acquisition. The requestor finally uses the get method to get a reference to the protected object.

The following diagram illustrates the operation of the pattern.

Figure 2 – Authenticator Pattern Sequence Diagram.

To summarize:

Requestor Authenticator ObjectFactoryServer

new

authenticate
(continue)

authenticate
(continue)

authenticate
(continue)

authenticate

(success)

get

create

Initialization

Connection

Creation

Acquisition

new

4

- Initialization. Server creates and registers an Authenticator implementation object with the registry, passing an
object factory object to Authenticator as a constructor parameter.

- Connection. Requestor calls registry lookup to get a reference to the Authenticator implementation object.

- Requestor calls authenticate(string).

- Authenticator returns completion, failure, or continuation string.

- Previous two steps are repeated as necessary to complete authentication/negotiation.

- Creation. authenticate calls the object factory to create/initialize protected object prior to returning
successful completion.

- Acquisition. Requestor calls get to obtain reference to protected object.

6 Consequences

The Authenticator pattern provides the following benefits.

1. An option for applications that require complex identification and authentication. The Authenticator pattern
allows for the implementation of different authentication methods, thus allowing multiple clients to use their
own authentication methods.

2. An option for applications with complex protocol negotiation. An application may require some negotiation
with the server before it can be granted access to an object. The negotiation can support encryption method
negotiation, key exchange, greatest common denominator version negotiation, parameterization of the protected
object (i.e., a parameter to pass to the object factory for the protected object construction), and any other
requirements of the application.

3. Multiple clients accessing remote objects concurrently. Providing that the operating system and hardware
platform support multiple CPU’s, this pattern can allow multiple clients to be granted access to remote objects
concurrently.

4. It provides a generic approach, not dependent on the client or the accessed object.

The Authenticator pattern has the following liabilities:

1. The abilities of this pattern are logically features of the distributed object system. A distributed system may
already provide features that allow iterative authentication or protocol negotiation. This pattern may overlap
those features of the underlying system. However, if we are designing a new system, this is not a problem.

2. Complicated implementation and debugging. It may be complicated to program the authentication and
negotiation and then to debug the server side of the authentication pattern, especially if there is concurrent client
access.

7 Implementation

Some implementation issues to consider when designing an Authenticator pattern implementation are discussed
below.

1. Security. The object factory class is hidden within the Authenticator implementation for security. The
Authenticator implementation is a remote object accessible to the untrusted requestor client, the object factory is
not a remote object and is therefore inaccessible to the client. (If not remote objects, then some other means
may be necessary to restrict access to the object factory.) The Authenticator implementation must not provide a
means to invoke the object factory without completing the negotiation.

2. Negotiation. The design of the authentication and negotiation must take into account concurrent access from
multiple clients (if, for example, the Authenticator is a Singleton), the possibility of dropping a network
connection or timing out, incorrect or out of sequence responses, and other unintentional or intentional failures.
It must also provide an efficient means of indicating the current status of the negotiation to the client:, usually

5

one of succeeded, failed, or still in progress. The results of the authenticate method must be sufficient to
guide the client to the next step of the negotiation.

3. Parameterized object creation. It may be necessary to parameterize the creation of an object by the object
factory. The parameter list for the object factory’s create method shown in the example below is empty, but
that is not a requirement as long as the Authenticator implementation and the object factory class agree. The
Authenticator implementation may build a parameter list from data supplied by the client during negotiation, or
it may provide an additional method for the client to use to specify parameters.

4. Creation of multiple objects. Once the authentication is complete, is exactly one object accessible or can the
client create any number of objects? If any number of objects can be created, must they all be instances of the
same class? The example below shows exactly one object being made accessible. This is enforced by creating
the object in the authenticate method so that multiple calls to the get method return the same object.
Alternatively, the get method could construct a new instance each time it is called if the authenticate
method has indicated that the authentication has completed successfully.

8 Sample Code

A simple Java language implementation is shown here. The two abstract classes that form the basis of the pattern
are shown as Java interfaces.

// Object factory interface. The create method constructs and returns
// an object as determined by the implementing class.
//
public interface ObjectFactory
{

public Object create();
}

// Authenticator interface for a remote object. The implementation
// provides specific authentication requirements.
//
public interface Authenticator

extends Remote
{

// Potential response strings for the authenticate method.
//
public final static String AUTHENTICATED = “AOK”;
public final static String AUTHENTICATION_FAILED = “ERR”;
public final static String AUTHENTICATION_CONTINUE = “MORE”;

// Accept a key string that should be the next response from
// the client in the negotiation protocol, and return a prompt
// string or status indication.
//
public String authenticate(String key)

throws RemoteException;

// Return the protected object. This method returns null until
// the negotiation is successfully completed.
//
public Object get()

throws RemoteException;
}

6

An application must implement the Authenticator and ObjectFactory interfaces. The following Java code shows a
sample framework that might be used by an application-specific implementation.

// Object factory implementation. The create method returns a remote
// object of a predetermined type.
//
class ObjectFactoryImpl

implements ObjectFactory
{

public ObjectFactoryImpl()
{
}

public Object create()
{

MyRemoteObject obj = null;
try
{

obj = new MyRemoteObject();
}
catch (RemoteException x)
{

System.err.println(“RemoteException error: “ + x);
return null;

}
return ((Object) obj);

}
}

// Authenticator implementation. This implementation defines the
// authentication requirements and any other protocol negotiation.
// Successful completion of the negotiation immediately creates an
// instance of the protected object which can then be retrieved
// using the get method.
//
class AuthenticatorImpl

extends UnicastRemoteObject
implements Authenticator

{
private ObjectFactory factory;
private Object robject;

public AuthenticatorImpl(ObjectFactory inFactory)
throws RemoteException

{
super();
factory = inFactory;
robject = null;

}

public Object get()
throws RemoteException

{
return robject;

}

7

public String authenticate(String key)
throws RemoteException

{
String response = new String(“”);

/* Application-specific authentication */

if (response.equals(Authenticator.AUTHENTICATED))
{

robject = (Object) factory.create();
}

return response;
}

}

The Authenticator implementation would be registered with the Java RMI naming service [9] using a statement such
as the following:

Naming.rebind(name, new AuthenticatorImpl(new ObjectFactoryImpl()));

Because the constructor and the get method of the Authenticator interface are likely to be implemented the same
way regardless of the application, it would be useful to supply a DefaultAuthenticator class that implements the
Authenticator interface. Applications could then derive from that class.

The Authenticator implementation will surely need to take into account sequential and concurrent authentication
requests. The framework shown above implies a single object used by all remote clients; multiple threads or a
means to obtain separate remote Authenticator objects will be required in most real-world applications.

9 Known Uses

Most HTTP servers allow free access to any resource they control, or control access based on the (possibly forged)
source address of the requestor. In spite of this, many web resources have found it useful to employ a login and
password dialog. An equivalent or even more powerful authentication mechanism, such as is provided by the
Authenticator pattern, is similarly useful for non-interactive access to remote resources.

The Authenticator pattern can be used to create a dialog between the requestor and the server prior to creating or
granting access to a protected object. The negotiation can support identification (e.g., login), authentication (e.g.,
simple password, challenge response, multiple challenge responses), encryption method negotiation, key exchange,
greatest common denominator version negotiation, parameterization of the protected object (i.e., a parameter to pass
to the object factory for the protected object construction), and any other requirements of the application.

This approach was used in the design of some internal software at Cyberguard, Fort Lauderdale, FL, and is being
considered for some products. It is clear that, because it satisfies a very basic need, there must be other
implementations in practice.

10 Related Patterns

Authentication is just one aspect of security. It must be complemented with some authorization mechanism that
determines role rights or a similar security mechanism [2]; a pattern such as the Bodyguard [1] could be used for
that purpose.

The Authenticator pattern is a variation on the Abstract Factory pattern [3] in that it is basically a factory class.
However, instead of an Abstract Factory implementation that statically determines what object to create, the
Authenticator uses an iterative negotiation to determine if an object (and perhaps also what object) it should provide.

8

Because of the separation of distribution aspects from application aspects, this pattern is in the same category as
Schmidts' patterns [4-8].

References

[1] F. Das Neves and A. Garrido, "Bodyguard", Chapter 13 in Pattern Languages of Program Design 3, Addison-
Wesley 1998.

[2] E.B. Fernandez and J. C. Hawkins, "Determining role rights from use cases", Procs. 2nd ACM Workshop on
Role-Based Access Control, 1997, 121-125.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison-Wesley, 1995.

[4] D. C. Schmidt. “Reactor: An Object Behavioral Pattern for Concurrent Event Demultiplexing and Event
Handler Dispatching.” Pattern Languages of Program Design (J. O. Coplien and D. C. Schmidt, eds.), Reading,
MA: Addison-Wesley, 1995.

[5] D. C. Schmidt. “Acceptor: A Design Pattern for Passively Initializing Network Services.” C++ Report, vol. 7,
November/December 1995.

[6] D. C. Schmidt,. “Connector: A Design Pattern for Actively Initializing Network Services.” C++ Report, vol. 8,
January 1996.

[7] D. C. Schmidt. “A Family of Design Patterns for Application-Level Gateways.” Theory and Practice of Object
Systems, J. Wiley & Sons, vol. 2, no. 1, December 1996.

[8] D. C. Schmidt. “Acceptor and Connector: Design Patterns for Initializing Communication Services.” The 1st

European Pattern Languages of Programming Conference (Washington University technical report #WUCS-
97-07), July 1997.

[9] “Java Remote Method Invocation.” http://java.sun.com.products/jdk/1.2/docs/guide/rmi/spec/rmi-
intro.doc1.html. Sun Microsystems, Inc., Redmond, Washington, 1977.

