Object Lifecycle Manager

A Complementary Pattern for Controlling Object Creation and Destruction

David L. Levine, Christopher D. Gill, and Douglas C. Schmidt
{levine,cdgill,schmidt@cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA

July 21, 1999

To appear at the Pattern Languages of Programming Coreation of the instance until it is first accessed. If a singleton
ference, Allerton Park, lllinois, USA, 15 — 18 August 1999. is not needed during the lifetime of a program, it will not be
created. The Singleton pattern does not address the issue of
Abstract when its.instance is des_troyed, however, w.hich is problematic

for certain types of applications and operating systems.

Creational patterns, such as Singleton and Factory Method [1]T0 illustrate why it is important to address destruction se-

address object construction and initialization, but do not cdhantics, consider the following logging component that pro-

sider object destruction. In some applications, however, objgtes a client programming API to a distributed logging ser-

destruction is as important as object construction. Obgect Vice [2]. Applications use the logging component as a front-

Lifecycle Managerpattern addresses issues associated wihd to the distributed logging service to report errors and gen-
object destruction. Object Lifecycle Manager is also an extate debugging traces.

ample of acomplementary pattefrwhich completes or ex- .. Logger

tends other patterns. In particular, the Object Lifecycle Man-

ager pattern completes creational patterns by consideringﬂ'h‘/l/éicél bal o L nalet
L. . obal access point to Logger singleton.
entire lifecycle of objects. static Logger *instance (void) {

if (instance_ == 0)
instance_ = new Logger;
1 Intent return instance_;

}

The Object Lifecycle Managegpattern can be used to govern // Write some information to the log.
the entire lifecycle of objects, from creating them prior to their Int 109 (const char *format, ...);

first use to ensuring they are destroyed properly at program {#rected:

mination. In addition, this pattern can be used to replace stati¢ Default constructor (protected to
object creation (and destruction) with dynamic object preal-/L/ ensure S&ng'eton pattern usage).
location (and deallocation) that occurs automatically during ogger (void):

application initialization (and termination). static Logger *instance_;
/I Contained Logger singleton instance.

/I ... other resources that are

2 Example /] held by the instance ...
3

Smgletonl[l] is a common cregtlonal pattern that provides, g saiize the instance pointer.

global point of access to a unique class instance and defetger *Logger:instance_ = 0;

*This work was supported in part by Boeing, NSF grant NCR-962821Bhe Logger constructor, which is omitted for brevity, allo-

DARPA contract 9701516, and Nortel. ;
Copyright ©1999, David L. Levine, Christopher D. Gill, and Douglas Cpates various OS endSyStem resources, such as socket handles,

Schmidt. Permission is granted to copy for the PLoP 1999 conference. #f1ared memory segments, and/or_ SyStem_'Wide semaphores,
other rights reserved. that are used to implement the logging service.

To reduce the size and improve the readability of its logging// Interval timestamps.

records, an application may choose to log certain data, such dgeval start_tv, stop_tv;

timing statistics, in “batch” form rather than individually. For Logger, Stats singletons

instance, the following statistics class batches timing data for/ do not yet exist.

individual identifiers:)

/I Logger and Stats singletons created

/I during the first iteration.

for (int i = 0; i < argc; ++i) {
::gettimeofday (&start_tv);
/I do some work between timestamps ...
:gettimeofday (&stop_tv);
/I then record the stats ...
stop_tv.sec -= start_tv.sec;
StOp_tV.USEC -= start_tv.usec;
Stats::instance ()->record (i, stop_tv);

class Stats

{
public:
/I Global access point to the
/I statistics singleton.
static Stats *instance (void) {
if (instance_ == 0)
instance_ = new Stats;

retum instance_; /I ... and log some output.

} Logger::instance ()->

/I Record a timing data point. log ("Arg %d [%s]\n", i, argv(i));

int record (int id,

const timeval &), /I Logger and Stats singletons are not

/I Report recorded statistics /I cleaned up when main returns.

/I to the log. return 0;
void report (int id) { }
Logger:instance ()->
log ("Avg timing %d: " Note that thd.ogger andStats singletons are are not con-
"%Ild sec %Id usec\n”, P : - .
id structed or destroyed explicitly by the applicatiowm,, their
average_i (id).tv_sec, lifecycle managementis decoupled from the application logic.
average_i (id).tv_usec); It is common practice to not destroy singletons at program
} exit [3].
protected: Several drawbacks arise, however, from the fact that the
/I Default constructor. Singleton pattern only addresses theationof singleton in-
Stats (void): stances and does not deal with their destruction. In partic-
/I Internal accessor for an average. ular, when themain program above terminates, neither the
const timeval &average_i (void); Logger nor theStats singletons are cleaned up. At best,
/I Contained Stats singleton instance. this can lead to false reports of leaked memory. At worst, im-
static Stats *instance_; portant system resources may not be released and destroyed
i th that properly.
... other resources at are . . .
Il held by the instance .. For instance, problems can arise if thegger and/or
8 Stats singletons hold OS resources, such as system-scope

semaphores, I/O buffers, or other allocated OS resources. Fail-
ure to clean up these resources gracefully during program
shutdown can cause deadlocks and other synchronization haz-

When a user-defined threshold is reached, it usedpger ~ ards. To alleviate this problem, each singleton’s destructor
singleton to report average timing statistics for an identifier.should be called.

Both theLogger andStats classes provide distinct ser- One way of implementing the Singleton pattern that at-
vices to the application: theogger class provides generaltempts to ensure singleton destruction is to declare a static
logging capabilities, whereas ti&ats class provides spe-il’lStanCE of the class at file scope [3]. For example, the follow-
cialized batching and logging of time statistics. These clas#2@ Singleton Destroyer template provides a destruc-
are designed using the Singleton pattern, so that a singlet@i-that deletes the singleton.
stance of each is used in an application process.

The following example illustrates how an application mig

/I Initialize the instance pointer.
Stats *Stats::instance_ = 0;

mplate <class T>
ingleton_Destroyer

use the_ogger andStats singletons. {
public:
Singleton_Destroyer (void): t_ (0) {}
int main (int argc, char *argv[]) void register (T *) {t_ =1t }
{ “Singleton_Destroyer (void) { delete t_; }

private: 4 Problem

T *t_; // Holds the instance.
i Many applications do not handle the entire lifecycle of their
To use this class, all that's necessary is to modifylthgger objects properly. In particular, applications that use creational

and Stats classes by defining a static instance of tHatterns, such as Singleton, often fail to address object destruc-

Singleton Destroyer such as the following exampletion' Similarly, applications that use static objects to provide

for Logger destruction often suffer from inconsistent initialization and ter-

mination behavior. Both of these problems are outlined below.
static Singleton_Destroyer<Logger>
logger_destroyer; Problems with singleton destruction: Singleton instances
may be created dynamicafly.A dynamically allocated sin-

/I Global ‘access point to the gleton instance becomes a resource leak if it is not destroyed,

/I Logger singleton.

static Logger *instance (void) { however. Often, these types of leaks are ignored because (1)
if (instance_ == 0) { they aren't significant in many applications and (2) on most
nstance_ = new_Logger; multi-user general-purpose operating systems, such as UNIX
/I Register the singleton so it will be] 9 purp p g sy ! ’
/I destroyed when the destructor of or Windows NT, they are cleaned up when a process termi-
/I <logger_destroyer> is run. nates.
} logger_destroyer.register (instance_); Unfortunately, resource leaks can be troublesome in the fol-
return instance_; lowing contexts:
} . . .
o ¢ When graceful shutdown is required [3]: A singleton
/I... similar changes to Stats class ... may be responsible for system resources, such as system-wide
locks, open network network connections, and shared mem-
Note how logger _destroyer holds the single- OTY segments. Explicit destruction of these singletons may

ton and deletes it when the program exits. A simil&e desirable to ensure these resources are related at a well

Singleton _Destroyer could be used by thetats ~ defined point during program termination. For instance, if
singleton, as well. theLogger class in Section 2 requires system-wide locks or

Unfortunately, there are several problem with expliciti§hared memory, theogger must release these resources as
instantiating statiSingleton _Destroyer instances. In S00n as théogger is not needed.

C++, for example, eacBingleton _Destroyer couldbe 4 \when singletons maintain references to other single-
defined in a different compilation unit. In this case, there jgng: Explicitly managing the order of destruction of sin-

no guaranteed order in which their destructors will be Ca”eﬁetons may be necessary to avoid problems due to dangling
which can lead to undefined program behavior. In particular ffterences during program termination. For example, if the

singletons in different compilation units share resources, sughiis class in the example above usesltogger instance

as socket handles, shared memory segments, and/or sys{gifs report method, this method could be invoked during
wide semaphores, the program may fail to exit cleanly. Thgstats instance destruction, which renders the behavior of
undefined order of singleton destruction in C++ makes it hafth hrogram undefined. Likewise, to support useful behaviors,
to ensure these resources are released by the OS beforgdgﬁ as logging previously unreported values during program

the last singleton using the resource is completely destroyggsigown, the termination ordering of these singletons must
but not before (2) a singleton that has not exited uses the §g-controlled.

source(s).

In summary, the key forces that are not resolved in thesee When checking for memory leaks: Memory leak de-
examples above are: (1) ensuring resources allocated by at§igtion tools, such as NuMega BoundsCheck, ParaSoft In-
gleton are ultimately released when a program exits, (2) ma&hre++, and Rational Purify, are useful for languages, such as
aging the order of creation and destruction of static instancesand C++, that require explicit allocation and deallocation of

and (3) providing a framework that encapsulates these detéiigamic memory. Such tools will identify singleton instances
within a well-defined interface. as leaked memory, which make it hard to identify the relevant
memory leaks.

3 Context 1Singleton is used as an example in much of this pattern description be-
cause (1) it is a popular creational pattern and (2) it highlights challenging
L . object destruction issues nicely. However, Object Lifecycle Manager can

An application or system where full control over the IIfeCyCl@'ompIement other creational patterns, such as Factory Method, and does not

of the objects it creates is necessary for correct operation. assume that its managed objects are singletons or homogeneous types.

For instance, if a large number of identifiers is used toAnother problem in Java applications is the sharing of
recordStats data in our running example, it may appear thaamespaces, which allow sharing (intended or otherwise) be-
a sizeable amount of memory is leaking during program dpreen singletons in separate applets [7]. Again, the Object
eration. In large-scale applications, these “leaks” can reduifecycle Manager could be used to register singleton in-
in numerous erroneous warnings, thereby obscuring the actitahces. Applets would then access their singletons from this
memory leaks and hindering system debugging. registry.

e Dynamic memory allocation may be from a global e Poor support by embedded systems.Embedded
pool: Some real-time operating systems, such as Vgystems have historically used C. Therefore, they do not al-
Works [4] or pSOS [5], have only a single, global heap fatays provide seamless support for OO programming lan-
all applications. Therefore, application tasks must release guages features. For instance, the construction/destruction of
namically allocated memory upon task termination; otherwisgatic objects in C++ is one such feature that often compli-
it cannot be reallocated to other applications until the OSdstes embedded systems programming. The embedded OS
rebooted. For instance, failure to explicitly release memanay have support for explicit invocation of static construc-
that was dynamically allocated by thegger andStats tor/destructor calls, but this is not optimal from the program-
singletons in our running example represents actual resoyte&’s perspective.
leaks on such OS platforms. Some embedded operating systems do not support the no-

tion of a programthat has a unique entry point. For exam-
Problems with static object lifecycle: Some objects mustple, VxWorks supports multipléasks which are similar to
be created prior to any use. In C++, such instances traditithreads because they all share the address space. However,
ally have been created asatic objectswhich are intended to there is no designatedaintask for each application. There-
be constructed prior to invocation of the main program entigre, these embedded systems platforms can be configured
point and destroyed at program termination. However, thépecall static constructors/destructors at module (object file)
are several important drawbacks to static objects: load/unload time, respectively. On such platforms, it is not
otherwise necessary to unload and load between repeated exe-

only specifies the order of construction/destruction of stafi%t'ons' To properly destroy and canstruct static objects, how-

objectswithin a compilation unit (file): the construction ordesVer the static object destructors/constructors must either be

matches the declaration order and destruction is the revecr"’llé:ed manually, or the module unloaded and loaded again,

order. However, there is no constraint specified on the or&"e['Ch hinders repeated testing.

of construction/destructiobetweerstatic objects in different n al.dd',t'on’tﬁ Iaceme?t ctthgiataljlp r(:adéonlyﬂrr e;jnotry (RO{VIt))
files. Therefore, construction/destruction ordering is implgEJmp cates the use ot static o- jects [8]. € data must be
mentation dependent. placed in ROM prior to run-time; however, static constructors

For example, the versions of tHeogger and Stats ?re ca(ljled att run—tlmte. ﬁherfef(t)r;a_, embetddetd systzrr:js stome—
classes that use tHgingleton Destroyer in Section 2 1MEs do not support calls ot stalic constructors and destruc-

illustrate the problems that arise due to the undefined ordeF%r . Mqreover, i thgy are suppor'ted '.t may be under explicit
destruction of th&tats andLogger singleton instances. application control, instead of by implicit arrangement of the

It is difficult to write portable C++ code that uses static Otg;_ompller and run-time system.
jects possessing initialization dependencies. Often, it is SimOne or more of these drawbacks of static objects typically
pler to avoid using static objects altogether, rather than tryipgbvides sufficient motivation for removing them from a pro-
to analyze for, and protect against, such dependencies. Haim. Often, it is better not use them in the first place, but to
approach is particularly appropriate for reusable componeggply the following solution instead.
and frameworks, which should avoid unnecessary constraints
on how they are used and/or initialized.

On some platforms, explicit singleton management is ndg- Solution
essary for correct program operation because some platforms
destroy singletons prematurely. For instance, the garbage &mfine anObject Lifecycle Managewhich is a singleton that
lector in older Java Development Kits (JDKs) may destroy aontains a collection oPreallocated Objectand Managed
object when there are no longer any references to it, eve®lijects The Object Lifecycle Manager is responsible for con-
the object was intended to be a singleton [6]. Though thegucting and destroying the Preallocated Objects at program
deficiency has been fixed in later JDKs, the Object Lifecydlatialization and termination, respectively. It is also responsi-
Manager could solve it, under application control, by maibie for ensuring all of its Managed Objects are destroyed prop-
taining singleton references. erly at program termination.

e Unspecified order of construction/destruction. C++

6 Applicability Lifecycle Manager delays singleton destruction until program
termination.
Use Object Lifecycle Manager when:

Singletons and other dynamically created objects must be 7 Structure and Participants
removed without application intervention at program ter-
mination: ~ Singleton and other creational patterns do nghe sirycture and participants of the Object Lifecycle Manager

typically address the question of when the objects they Cfitern are shown using UML in Figure 1 and described below.
ate should be removed, or who should remove them. Object

Lifecycle Manager provides a convenient, global object that T
deletes dynamically created objects. Creational pattern objects Application
can then register with the Object Lifecycle Manager for dele- i

tion, which usually occurs at program termination.

Static objects must be removed from the application: As Object Lifecycle
described in Section 4, static objects can be troublesome, espe- "M anager

cially in some languages and on some platforms. Object Lif it 0

cycle Manager provides a mechanism to replace static objechhi 0

with Preallocated Objects. Preallocated Objects are dynarné—t atic starting_up ()
cally allocated before the application uses them, and deal OS-t atic shutting_ down ()
cated at program termination. tatic at exit 6 *

The platform does not support static object construc- | static instance () —| Preallocated Object
tion/destruction: Some platforms, such as VxWorks and gt exit i ()
pSOS, do not always construct static objects at program st atic instance
and destroy them at program terminatfohgeneral, it is best =
to remove all static objects,g, to support repeated testing of ~ Figure 1: Object Lifecycle Manager Pattern Structure

a program. Another situation where static objects can cause

difficulty is when they are placed in ROM. Objects in RONbbject Lifecycle Manager: EachObject Lifecycle

cannot be initialized at run-time, because they cannot be mpinager is a singleton that contains collections of Managed
ified at all. Objects and Preallocated Objects.

The underlying platform does not provide a notion of a Managed Objects: Any object may beegisteredwith an
program, though the application needs it: The root cause Object Lifecycle Manager, which is responsible for destroying
for lack of support for static object construction/destruction ehe object. Object destruction occurs when the Object Lifecy-
some platforms is their lack of support for the notion of a prale Manager itself is destroyed, typically at program termina-
gram, as discussed in Section 4. The Object Lifecycle Maion.

ager pattern can be used to emulate programs by partitior}g?ganocated Objects: An object may be hard-coded for

this address space. The scope of each Object Lifecycle M&%struction and destruction by an Object Lifecycle Manager.

ager delineates a program, from the application PErspectives qaliocated object have the same lifetime as the Object Life-
Destruction order must be specified by the application: cycle Manageri.e, the lifetime of the process that executes
Dynamically created objects can temjisteredwith the Object the program.

Lifecycle Manager for destruction. The Object Lifecycle Mankppication: The Application initializes and destroys its
ager can be implemented to destroy objects in any deswed(%]ect Lifecycle Manager s, either implicitly or ex-
der. plicitly. In addition, the application registers its Managed Ob-
The application requires explicit singleton management: jects with anObject Lifecycle Manager , which may

As described in Section 4, singletons may be destroyed prentain Preallocated Objects.

maturely, for example, on earlier Java platforms. The Object

o
Singleton

20n certain platforms, such as VxWorks and pSOS, static objects cane DynamiCS
constructed when the module is loaded and destroyed when it is unloaded.

After loading, an entry point can be called more than once before unloadi%e dynamic collaborations among participants in the Object
Therefore, gorogramcan be run more than once after constructing static op-

jects, without ever destroying them. Conversely, static object constructors l}#@?yc'e Manager patterlj are shown in Figure 2. The diagram
destructors can be invoked explicitly. depicts four separate activities:

Application Object Managed Preallocated i i
Lifecydle Objot Object The following substeps can be used to implement the

M anager Object Lifecycle Manager
Pvbuimblatlv ‘i”it | instance () ; e Migrate common interfaces and implementation de-
! ! create () ! tails into a base class: Factoring common internal details
PREALLOCATED OBJECTS | | =—Lu X B)
into an Object Lifecycle Manager Base class can
MANAGED OBJECTS create) | - make theDbject Lifecycle Manager implementation

simpler and more robust. Defining &bject Lifecycle
Manager Base class also supports the creation of multiple
Object Lifecycle Manager s, each of a separate type.

[%‘ instance ()
[i‘ at_exit ()

I=—————~%

OBJECT OPERATION i 22::02 8 ; =Ql To simplify our discussion, we only touch on the use of multi-
| 0 g ! ple Object Lifecycle Manager s briefly. They do not
add consequences to the pattern, but are useful for partitioning
OBJECT CLEANUP fini () w1 destroy () libraries and applications.

| | |

[»h |

| |

! HJ -t e Define a cleanup function interface: The Object

! ‘ ' Lifecycle Manager should allow applications to regis-

Figure 2: Object Lifecycle Manager Pattern Collaborationger arbitrary types of objects. When a program is shut down,
the Object Lifecycle Manager cleans up these ob-

cts automatically.

The following example illustrates a specialized

CLEANUPFUNC used in ACE to register an object or

2. Managed Object creation by the Application, and regigrray for cleanup:

tration with the Object Lifecycle Manager;

|
|
|
Il destroy ()
i

1. Object Lifecycle Manager creation and initircllizatior{(,a
which in turn creates the Preallocated Objects;

. typedef void (*CLEANUP_FUNC)(void *object,
3. Use of Preallocated and Managed Objects by the App)il- void *param);

cation; and))
class Object_Lifecycle_Manager

4. Destruction of the Object Lifecycle Manager, which ir-
cludes destruction of all Managed and Preallocated CPHL/’/"C:

jects. static int at_exit (void *object,
CLEANUP_FUNC cleanup_hook,
Within each activity, time increases down the vertical axis. void *param);
h
9 Implementation The staticat _exit method registers an object or ar-

ray of objects for cleanup at process termination. The
The Object Lifecycle Manager pattern can be implemented gfeanup _hook argument points to a global function or
ing the steps presented below. This implementation is bagestic member function that is called at cleanup time to de-
on the Object Manager provided in the ACE framework [9troy the object or array. At destruction time, tB®ject
which motivates many of the interesting implementation igifecycle Manager passes thebject andparam ar-
sues in this section. ACE is written in C++, so some of thfiments to thecleanup _hook function. Theparam ar-
steps discussed below are language specific. Appendix Agllment contains any additional information needed by the
lustrates even more concretely how the Object Lifecycle Magleanup _hook function, such as the number of objects in
ager pattern has been implemented in ACE. the array.
1. Define the Object Lifecycle Manager. This component Anot'her alternative to reglsterlng(aLEANUB:UNC\Mth

jhe object manager would be to use the C-libratgxit

provides applications with an interface with which to regi tion to invoke the termination functi ¢ it
ter objects whose lifecycle must be managed to ensure pr getion fo Invoke the termination functions at program €xit.
owever, not all platforms supposdtexit . Furthermore,

destruction upon program termination. In addition, this co it impl tati v h limit of 32 registered
ponent defines a repository that ensures proper destructiotﬂ oF! t.lmpfem(ta.n ations usually have a imit 0 registere
its managed objects. Tl@bject Lifecycle Manager ermination functions.

is a container for theéPreallocated Object s and for e Define a cleanup base class interface:This allows
the Managed Object s registered for destruction at termiapplications to register for destruction with tt@bject
nation. Lifecycle Manager any object whose class derives from

aCleanup base class. Theéleanup base class should have static Singleton<TYPE> *singleton_;
a virtual destructor and @eanup method that simply calls *

delete this; , Which in turn invokes all derived class de-]))
structors. The Singleton class template is derived from the

The following code fragment illustrates the interface usé&leanup class. This allows th8ingleton instance to reg-

for such registrations in ACE: ister itself with theObject Lifecycle Manager . The
class Object_Lifecycle_Manager iject Lifecycle Manager' then assumes responsibil-
{ ity for dynamically deallocating th8ingleton instance and
public: with it the adapted YPEinstance.

" ..
static int at_exit (C'ea”“pv;?jbjfct . e Define a termination function interface: Lifecycle
"o param = 0): management functionality has been discussed so far in terms

3 of destruction of objects at program termination. However,
the Object Lifecycle Manager can provide a more

eneral capability — the ability to call a function at program

Sfmination — using the same internal implementation mecha-
nism. For example, to ensure proper cleanup of open Win32
WinSock sockets at program termination, iMSACleanup
function must be called. This capability is described in more

detail in Appendix A.

This staticat _exit method registers €leanup object
for cleanup at process termination. At destruction time, t
Object Lifecycle Manager calls the theCleanup
object'scleanup function, passing in thparam argument.
The param argument contains any additional informatio
needed by theleanup function.

¢ Define a singleton adapter: Although it is possible to i)) L
¢ Define a preallocation mechanism: Some application

explicitly code singletons to use ti@bject Lifecycle e
Manager this is tedious and error-prone. Therefore, it is usli[rgsources, such as synchronization locks, must be created be-

ful to define aSingleton adapter class template that ed°"® their first use in order to avoid race conditions. En-
capsulates the details of creating singleton objects and re§fSulating their creation within thebject Lifecycle
tering them with theDbject Lifecycle Manager ~|n Manager’s own initialization phase ensures this will occur,

addition, theSingleton adapter can ensure the thread-safdtnout adding complexity to application code. TBeject

Double-Checked Locking pattern [10] is used to construct a'n'éeCyCIe Manager should be able to preallocate objects

access an instance of the type-spe@iitgleton or arrays. Thébject Lifecycle Manager can either

The following code fragment illustrates how a singleto‘ﬁerfc,’rm these preallocations statically in global data or dy-
adapter is implemented in ACE: namically on the heap.

¢ Determine the destruction order of registered objects:
As noted in Section 6, th®bject Lifecycle Manager
{ can be implemented to destroy registered objects in any de-
p”t/)/"célobal access point to the sired order. For example, priority levels could be created, and
Il wrapped singleton. destruction could proceed in decreasing order of priority. An

St<’i/t/iCDTYF_’IE *icn%tangle (\éorid) I({ g interface could be provided for objects to set and change their
etalls o ouble ecke . P
/I Locking omitted . destruction priority. o .

if (singleton_ == 0) We have found that destruction in reverse order of registra-

template <class TYPE>
class Singleton : public Cleanup

singleton_ = new Singleton<TYPE>; tion has been a sufficient policy. An application can, in effect,
/I Register with the Object Lifecycle spequ dest.ructlon. order l_)y con.trolllng the order in which it
Il Manager for destruction. registers objects with th@bject Lifecycle Manager
Object_Lifecycle_Manager::) .
at_exit (singleton_); 2. Determine the set of Preallocated Objects. Preallocated

_ _ Objects must always be created before the application’s main
return &singleton_->instance_;

}

protected:
/I Default constructor.
Singleton (void);

/I Contained instance.
TYPE instance_;

/I Instance of the singleton adapter.

processing begins. Thus, these objects must be hard-coded
into eachObject Lifecycle Manager class. An effi-
cient implementation is to store each Preallocated Object in
an array. Certain languages, such as C++, do not support ar-
rays of heterogeneous objects, however. Therefore, in these
languages pointers must be stored instead of the objects them-
selves. The actual objects are dynamically allocated by the
Object Lifecycle Manager when it is instantiated,

and destroyed by th®bject Lifecycle Manager de- return &((Cleanup_Adapter<TYPE> *)

structor. Object_Lifecycle_Manager::
. . reallocated_object[id])->object ();
The following substeps should be used to implement preal} P -objectfid])->object (
located objects: Il ... other methods omitted.

e Limit exposure: To minimize the exposure of heade}r'

files, identify the Preallocated Objects by enumerated I|tera§§, Determine how to manage the lifecycle of the Object

€.9, Lifecycle Manager itself. The Object Lifecycle
enum Preallocated_Object_ID quaggr is responsible for initializing other glo_bal and static
{ objects in a program. However, that begs the important boot-

ACE_FILECACHE_LOCK, strapping question of how this singleton initializes and de-
ACE_STATIC_OBJECT_LOCK,) . . o
ACE_LOG_MSG_INSTANCE_LOCK, stroys itself. The following are the alternatives for initializing
ACE_DUMP_LOCK, theObject Lifecycle Manager singleton instance:
ACE_SIG_HANDLER_LOCK, o I :
ACE_SINGLETON_NULL_LOCK, e Static initialization: If an application has no static ob-
ACE_SINGLETON_RECURSIVE_THREAD_LOCK, jects with constraints on their order of construction or de-

ACE_THREAD_EXIT_LOCK, struction, it's possible to create ti@bject Lifecycle

Manager as a static object. For example, ACEXbject
Lifecycle Manager can be created as a static object. The
"ACE library has no other static objects that have constraints on
order of construction or destruction.

¢ Use cleanup adapters: Next, use template functions o
macros for allocation/deallocatioa.g,

#d%fline PR%LL?CATTYEESBJEET(T\YPE' ID) {\ e Stack initialization: In this approach, create the
eanup_Adapter< > *obj_p; : : ;
obj p = new Cleanup_Adapter<TYPE>\ Object Lifecycle Ma_nager on .th.e_ s?a_ck of th_e main
preallocated_object{ID] = obj_p;\ program thread. This approach to initializing tBdject
} Lifecycle Manager assumes that there is one unique
#define DELETE_PREALLOCATED_OBJECT(TYPE, ID)\ maln.thr.ead per program. Th.IS thread glefmes the.program: itis
cleanup_destroyer (\ runningif, and only if, the main thread is alive. This approach
(Cleanup_Adapter<TYPE> *) has a compelling advantage: th@bject Lifecycle
prea”gg’t‘ggciﬁggf[%ﬁci['Do];’)\ Manager instance is automatically destroyed via any path out
- of main .2
The Cleanup Adapter adapts any object to use the Stack initialization is implemented transparently in ACE
simpler Object Lifecycle Manager registration in- Via a preprocessor macro nammdin . The macro renames

terface, discussed in Appendix A. Similarlgleanup themain program entry point to another, configurable name,
Destroyer uses theC|eanup Adapter to destroy the such asnain _i . It prOVideS amain function that creates the

object. Object Lifecycle Manager instance as a local object (on the
An analogous array, enum, and macro pair can be suppféack) and then calls the renamed application entry point.
for preallocated arrays, if necessary. There are two drawbacks to the Stack initialization ap-
proach:

e Define an accessor interface to the Preallocated Ob-
jects: Applications need a convenient and typesafe interfac&. main (int, char *[]) must be declared with ar-
to access Preallocated Objects. The following code fragment guments, even if they’re not used. All of ACE is con-
illustrates how this interface is provided via a class template verted to this, so only applications must be concerned

adapter in ACE: with it.
template <class TYPE> 2. If there are any static objects that depend on those that
class Managed_Object are destroyed by th@bject Lifecycle Manager ,
_ their destructors might attempt to access the destroyed
p“Z't';’;ic TYPE * objects. Therefore, the application developer is respon-
get_preallocated_object sible for ensuring that no static objects depend on those
(Object_Lifecycle_Manager:: destroyed by th©bject Lifecycle Manager

Preallocated_Object_ID id)

30n platforms such as VxWorks and pSoS that have no designated

/I Cast the return type of the object main function, we simulate the main thread by instantiating @tgect
/I pointer based on the type of the Lifecycle Manager on the stack of one thread, which is denoted by con-
/I function template parameter. vention as thenainthread.

e Explicit initialization: In this approach, create the stats (void)

ijeCt LIf(TCy_IC_:Le Ol\/tl).anagil"f | eXI\FA)“CItIy undgr applica- /I Ensure the <Logger> instance
tion pqntro. eObject 'ecyc_e .anager Init Il is registered first, and will be
andfini methods allow the application to create and destroy // cleaned up after, the <Stats>
the Object Lifecycle Manager when desired. This option was / instance. _

. . : . L . Singleton<Logger>::instance ();
provided primarily to alleviate complications when using dy- }
namically loaded libraries. However, it should not be used
frequently, given the availability of the dynamically loaded li- // Internal accessor for an average.

LT . const timeval &average_i (void);

brary initialization mechanism, below.

. . C L . /I ... other resources that are
e Dynamically loaded library initialization: In this ap- held by uthe instance ...

proach, create and destroy the Object Lifecycle Manager when
its dynamic library is loaded and unloaded, respectively. Most

Qyngmlc I|br§1ry facilities |n.clude 'the ability to call an "?'“a'.' Notice that the singleton aspects have been factored out
ization function when the library is loaded, and a terminatio

function when the library is unloaded. Oq. the original Stats class and are now pro.vllde(.j by the
Singleton adapter template. Similar modifications can
be made to the origindlogger class so that it uses the
10 Example Resolved Singleton adapter template.
Finally, the following example shows how an application
The discussion in Section 9 demonstrates how the Object LA#ght use the.ogger andStats classes.
cycle Manager pattern can be used to satisfy a variety of de-
sign forces related to managing object lifecycles. In particulat, main (int argc, char *argv])
the unresolved forces described in Section 2 can be adequa{telly _
. . . F Interval timestamps.
addressed by applying the Object Lifecycle Manager pattern.imeval start tv, stop_tv;
The following example shows how the Object Lifecycle _
Manager pattern can be applied to the origibagjger and / <Logger> and <Stats> singletons
. . . /I do not yet exist.
Stats examples from Section 2. Using ti&ngleton
adapter template described in Section 9 greatly simplifies mar# <Logger> and then <Stats> singletons
aged object implementations by encapsulating key implemer{-j ft‘;eraggiated and registered on the first
tation details, such as registration with the Object Lifecyclefor (int i = 0; i < argc; ++i) {
Manager. For instance, the originatats class can be re-

:gettimeofday (&start_tv);
placed by a managestats class, as follows. i "do some work befween timestamps ...
class Stats :gettimeofday (&stop_tv);
/I then record the stats ...
stop_tv.sec -= start_tv.sec;
stop_tv.usec -= start_tv.usec;
Singleton<Stats>::instance ()->

record (i, stop_tv);

L
public:
friend class Singleton<Stats>;

/I Destructor: frees resources.
“Stats (void);

- . /I ... and log some output.
/I Record a timing data point. Singleton<Logger>::instance ()->

int record (int id, I "Arg %d [%sh\n" i .
const timeval &tv); } 09 ("Arg %d [eshn”, i, argviil);

/I Report recorded statistics

/I to the log.

void report (int id) {
Singleton<Logger>::instance ()->

/I <Logger> and <Stats> singletons are
/I cleaned up by Object Lifecycle Manager
/I upon program exit.

o return O;
log ("Avg timing %d: " }

"%Ild sec %Id usec\n”,

id, . L

i,iverage_i (id).tv_sec, The following key forces are resolved in this example: (1)

average_i (id).tv_usec); ensuring resources allocated by an instance are subsequently
} released, (2) managing the order of creation and destruction

protected: of singletons, and (3) providing a framework that encapsulates

/I Default constructor. these details within a well-defined interface.

11 Known Uses The Object Lifecycle Manager pattern differs from the Man-
ager pattern in the types of the managed objects. Where
Object Lifecycle Manager is used in the Adaptive Commthe Manager pattern requires that the managed objects have
nication Environment (ACE) [9, 11] to ensure destruction af common base type, the Object Lifecycle Manager pattern
singletons at program termination and to replace static objeaitsws objects of unrelated types to be managed. The Man-
with dynamically allocated, managed objects. ACE is used ager pattern relies on inheritance for variations in the manager
many different OS platforms, some of which do not suppand managed object classes. In contrast, the Object Lifecycle
static object construction/destruction for every program inglanager relies on object composition and type parameteriza-
cation. ACE supports placement of objects in ROM. Theriien to achieve greater decoupling of the manager from the
fore, it cannot contain any objects that must be initialized mianaged objects.
run-time. The Object Lifecycle Manager pattern also differs from the
Gabrilovich [12] augmented the Singleton pattern to peévlanager pattern in the management services it provides the
mit applications to specify destruction order. A local stat@pplication. The Manager pattern provides search, iteration,
auto _ptr 4 is responsible for the destruction of each singl@énd deletion services for managed objects, which the Object
ton instance. Destruction of singleton instances proceeddfgcycle Manager pattern does not provide. The application
phase; an application may optionally register its singleton i@an register a pre-existing object with the Object Lifecycle
stances for destruction in a specific phase. Manager, which then assumes responsibility for the remaining
An interesting example of a “small” Object Lifecycle Manlifecycle of the managed object. The Manager pattern only
ager is thestrong pointer{13, 14]5 A strong pointer man- allows on-demand creation of objects, so that the lifecycle of
ages just one object; it destroys the object when its scépdects is managed in an “all-or-none” manner. Fundamen-
is exited, either normally or via an exception. There can Edly, the Manager pattern focuses on the repository aspects of
many strong pointers in a program, behaving as Function-88ject management, while the Object Lifecycle Manager pat-
Owner (or Block-as-Owner). Moreover, the strong pointei@ emphasizes the lifecycle aspects instead.
themselves have transient lifetimes,, that of their enclosing ~ Object Lifecycle Manager complements creational patterns,
blocks. such as Singleton, by managing object instance destruction.
In contrast, there is typically just one Object Lifecycle ManSingleton addresses only part of the object lifecycle because it
ager per-program (or per-large-scale-component). Likewilt manages instance creation. However, destruction is usu-
Object Lifecycle Managers live for the duration of the prlly not an important issue with Single because it does not
gram invocation. This reflects the specific intent of the Objegtain ownershipof created objects [3]. Ownership conveys
Lifecycle Manager to destroy objects at program terminatidi® responsibility for managing the object, including its de-
but not sooner. Such objects may be used after the cun@hiction. Singletonis the prototypical example of a creational

block or function has been exited, and destruction/creation Bitern that does not explicitly transfer ownership, yet does
cles are not possible or desired. not explicitly arrange for object destruction. Object Lifecycle

Manager complements Singleton by managing the destruction
portion of the object lifecycle.
Object Lifecycle Manager can complement other creational
12 SeeAlso patterns, such as Abstract Factory and Factory Method. Im-

. . . lementations of these patterns could register dynamically al-
The Object Lifecycle Manager pattern is related to the Ma% b g y caty

r 1151 patt In both patt lient licati cated objects for deletion at program termination. Alterna-
age [.] pa ern. n both patierns, a client application useg ly (or additionally), they could provide interfaces for object
collection of objects, relying upon a manager to encapsulﬁ]ge

. . struction, corresponding to those for object creation.
the details of how the objects themselves are managed. 'éargill presented a taxonomy of the dynamic C++ object

separation of concerns makes the application more robustm%?me [16]. The Localized Ownership pattern language

potentially error-prone management aspects are hidden beril lides patterns, such as Creator-as-Owner, Sequence-of-

a type-safe interface. Using these managers also makes ers, and Shared Ownership, which primarily address

application more extensible, as certain details of the managed, . ownership. Ownership conveys the responsibility for
objects can be varied independent of the manager implemg 3

. . ruction.
tation. For example, a manager for a certain class can be us

{0 manaqe obiects of classes derived from that base class reator-as-Owner is further subdivided into Function-as-
9 J v "Owner, Object-as-Owner, and Class-as-Owner. The Single-

4Theauto _ptr is a local static object in the singleton instance accesstoorn qutrUCtlon capablllty of ObJeCt LIfeCyCle Manager may
method. be viewed as new category of Creator-as-Owner: Program-as-

S5AC++auto _ptr is an implementation of a strong pointer. Owner. It is distinct from Function-as-Owner, because static

10

objects outlive the program entry poimhéin). Object Life- Section 9, simple mechanisms are generally sufficient in prac-
cycle Manager's Preallocated Objects similarly can be viewsck.
logically, at least, as outliving the main program function.

When Singleton is used on multi-threaded platforms, a nﬁjemoval.of static objects from libraries and applicgtions: '
tex should be used to serialize access to the instance poirREHiC Objects can be replaced by Preallocated Objects. This

Double-Checked Locking [10] greatly reduces the use of tmggvents applications from relying on the order iq which static
mutex by only requiring it prior to creation of the singletoerJeCtS are constructed/destructed. Moreover, it allows code

However, the mutex is still required, and it must be initiaf® targét embedded systems, which sometimes have little or

ized® Object Lifecycle Manager solves the chicken-and-e§g SUPPOrt for constructing/destructing static objects.
prOblem of initialization of the mutex by preallocating one for The following liabilities must be considered when USing the

each singleton. Object Lifecycle Manager pattern:
Object Lifecycle Manager uses Adapter for type-safe

storage of objects of any class. By using inline funtifecycle of the manager itself: The application must en-
tions, the Managed Object Adapter should have nosure thatis respects the lifecycle of the Object Lifecycle Man-
size/performance overhead. We confirmed this with thger, and does not attempt to use its services outside that life-
GreenHills 1.8.9 compiler for VxWorks on Intel targets. Howeycle. For example, the application must not attempt to access
ever, some compilers do notinline template member functioRseallocated Objects prior to the complete initialization of the
Fortunately, the size overheadMfnaged Object isvery Obiject Lifecycle Manager. Similarly, the application must not
small,i.e,, we measured 40 to 48 bytes with g++ on Linux argkstroy the Object Lifecycle Manager prior to the application’s
LynxOS. The ACECleanup Adapter template class haslast use of a managed or preallocated object. Finally, the im-
a bit higher size overhead, about 160 bytes per instantiatioplementation of the Object Lifecycle Manager is simplified if

it can assume that it will be initialized by only one thread. This

preclude the need for a static lock to guard its initialization.
13 Consequences _ o

Use with shared libraries: On platforms that support load-
The consequences of using Object Lifecycle Manager d@d and unloading shared libraries at run-time, the application
rive from its complete control over the entire object lifecyTust bevery careful of platform-specific issues that impact
cle. Object Lifecycle Manager may retain this contia, for the lifecycle of the Object Lifecycle Manager itself. For ex-
Preallocated Objects. Or, it may provide control only for tf&mple, on Windows NT, the Object Lifecycle Manager should
destruction portion of the lifecycle. In the latter case, it worl initialized by the application or by a DLL that contains it.
in concert with other creational patterns, such as Singletonlé¥iS avoids potential a deadlock situation due to serialization,
Factory Method. within the OS, of DLL loading.

The benefits of using Object Lifecycle Manager include: A related issue arises with singletons that are created in

DLLs, but managed by an Object Lifecycle Manager in the
Destruction of Singletons and other Managed Objects at main application code. It the DLL is unloaded before program
program termination: The Object Lifecycle Manager al-termination, the Object Lifecycle Manager would try to de-
lows the program to shut down cleanly, releasing memory fgfoy it using code that is no longer linked into the application.
these objects along with the resources they hold at progrest this reason, we have added an unmana&jegleton
termination. All heap-allocated memory can be released diss to ACE. An unmanaged Singleton is of the conventional
the application. This supports repeated testing on platforfissign;j.e., it does not provide implicit destruction. ACE uses
where heap allocations outlive the progrénit also elimi- 3 managed Singleton by default because we found the need for

nates reports of memory in use for singletons at program efiflnanaged Singletons to be very unusual.
by memory access checkers.

Specification of destruction order: The order of destruc- .
tion of objects can be specified. The order specification megh4 Concludlng Remarks

anism can be as simple or as complex as desired. As noted in . . .
Many creational patterns specifically address only olgest

6POSIX 1003.1c [17] mutexes can be initialized without calling a stat@tion. They do not consider when or how tiestroyobjects
constructor. However, they are not available on all platforms. that are no longer needed. Object Lifecycle Manager pro-

’On some operating systems, notably some real-time operating systeii§as mechanisms for object destruction at program termina-
there is no concept ofgrogram There are taskse., threads, but no one task .

has any special, main identity. Therefore, there is no cleanup of dynamic&“}n- Thus,' it complements many creational patterns by cover-
allocated memory, open filesic, at task termination. ing the entire object lifecycle.

11

The Singleton pattern provides a notable example where Aa@:knowledg ments
ordinated object lifecycle management is important. In partic-
ular, deletion at program termination ensures that prografi¥nks to Matthias Kerkhoff, Per Andersson, Steve Huston,
have no memory leaks of singletons. Moreover, applicatidnkas Sreih, and Liang Chen for many helpful discussions
that employ the Object Lifecycle Manager pattern do not red the design and implementation of ACE’s Object Lifecycle
quire use of static object constructors and destructors, whidanager. And thanks to Brad Appleton, our PLoP '99 shep-
is important for embedded systems. In addition, the Objdwrd, and Evgeniy Gabrilovich for many helpful suggestions
Lifecycle Manager pattern supports replacement of static 6t-the content and presentation of this pattern.
jects with dynamically Preallocated Objects, which is useful
on embedded platforms and with OO languages, such as CFTeferences

ne of Object Lif le Manager’'s more interestin
. o e.o Object Lifecycle Manager's more interest gaSpecsi?L} E. Gamma, R. Helm, R. Johnson, and J. Vlissid&ssign Pat-
is that it addresses weaknesses of another pattern, at least .« Ejements of Reusable Object-Oriented Softw&ead-
some contexts. Our initial motivation was to remedy these jng, MA: Addison-Wesley, 1995.

weaknesses by registering and deleting singletons at progragsjl p ¢ schmidt, “Reactor: An Object Behavioral Pattern for
termination. The utility, applicability, novelty, and complexity ~ Concurrent Event Demultiplexing and Event Handler Dispatch-
of Object Lifecycle Manager seemed to be on par with those of ing,” in Pattern Languages of Program Desi¢h O. Coplien
Singleton, so we felt that it deserved consideration as a pattern. and D. C. Schmidt, eds.), pp. 529-545, Reading, MA: Addison-
Because it can address just part of the object lifetime, however, Vesley, 1995.

we consider Object Lifecycle Manager to beamplementary [3] J. Vlissides, “To Kill a Singleton,C++ Report, vol. 8, pp. 10—
pattern 19, June 1996.

[4] Wind River Systems, “VxWorks 5.3.” http://www.wrs.com/-
Another interesting question was: “how do we categorize products/html/vxworks.html.
Object Lifecycle Manager?” It was not (originally) a Cre-[5] Integrated Systems, Inc., “pSOSystem.” http://www.isi.com/-
ational pattern, because it handled only object destruction, not Products/psosystem/.
creation. Again, it seemed appropriate to refer to Object Lifd6] “fava Singleton.” http://c2.com/cgi/wiki?JavaSingleton, May

cycle Manager as complementing Singleton. 999.
.]) [7] “Another Java Singleton Problem.” http://c2.com/cgi/-
During the shepherding process, it became apparent that wiki?AnotherJavaSingletonProblem, Jan. 1999.

Object Lifecycle Manager had another use that was very reg] D. Saks, “Ensuring Static Initialization in C++Embedded
lated to destroying singletons. Static objects create problems Systems Programmingol. 12, pp. 109-111, Mar. 1999.
similar to those of singletons.e., destruction, especially on [9] D. C. Schmidt, “ACE: an Object-Oriented Framework for
operating systems that have no notion of a program, and or- Developing Distributed Applications,” ifProceedings of the
der of construction/destruction. Object Lifecycle Manager's 6" USENIX C++ Technical ConferencgCambridge, Mas-
Preallocated Objects were added to support removal of static Sachusetts), USENIX Association, April 1994.

objects. Our first Preallocated Object was the mutex used il D- C. Schmidt and T. Harrison, “Double-Checked Locking —

) . . . : An Object Behavioral Pattern for Initializing and Accessing
Double-Checked Locking [10] in the ACE implementation of Thread-safe Objects Efficiently,” iRattern Languages of Pro-

... Singleton. gram Design(R. Martin, F. Buschmann, and D. Riehle, eds.),

. . . Reading, MA: Addison-Wesley, 1997.
Current development efforts include breaking the one in- eading, ddison-Wesey, 199

stance into multiple Object Lifecycle Managers, to supp] &gE-)S,F mzsm‘fsﬁzgﬁggfmﬁgﬁné?Li?;'logggn;/ ronment
SUbS.ettmg' Each layer of ACE,g, QS’ logging, threads, C.Ongl%_] E. Gabrilovich, “Controlling the Destruction Order of Singleton
nection management, sockets, interprocess communicatio » Objects,"C/C++ Users Journa) Oct. 1999. To appear.
,SferVICe_Conflgu,ratlon’Stre_ams’ memory management, and 5] B. Milewski, “Strong Pointers and Resource Management in
ities, will have its own Object Lifecycle Manager. When any ~ .+ c++ Report, vol. 10, pp. 23-27, Sept. 1998.

Object Lifecycle Manager is instantiated, it will instantiatﬁ4]

- -) B. Milewski, “Strong Pointers and Resource Management in
each dependent Object Lifecycle Manager, if not already done. c++, Part 2,C++ Report, vol. 11, pp. 36-39,50, Feb. 1999.

And similar, configured-in cooperation will provide gracefyhs) p. sommerland and F. Buschmann, “The Manager Design Pat-
termination. tern,” in Proceedings of thg"¢ Pattern Languages of Program-
. ming ConferenceSeptember 1996.
A highly portable implementation of the Object I‘Ife_[16] T. Cargill, “Localized Ownership: Managing Dynamic Objects
cycle Manager pattern and th&ingleton adapter X ’ '

X h in C++,” in Pattern Languages of Program Design(2 M.
template is freely available and can be downloaded from \vjissides, J. O. Coplien, and N. L. Kerth, eds.), Reading, MA:

www.cs.wustl.edu/ ~schmidt/ACE-obtain.html . Addison-Wesley, 1996.

12

class Object_Lifecycle_Manager_Base

{

public:

virtual int init (void) = O;

/I Explicitly initialize. Returns O on success,

/I -1 on failure due to dynamic allocation

/I failure (in which case errno is set to

/I ENOMEM), or 1 if it had already been called.

A Detailed Implementation virtual int fini (void) = 0;
/I Explicitly destroy. Returns O on success,

: . - . e/l -1 on failure because the number of fini ()
This section pr_owdes an ex_am.ple of a congrete_ObJect. Life I calls hasn't reached the number of init ()
cyple Manager implementation in C++.desc'r|bed in Section 94/ calls, or 1 if it had already been called.

It is based on the The ACE [9, 11] Object Lifecycle Manager _ _
implementation. The ACE implementation reveals some in-enum Object_Lifecycle_Manager_State {
teresting design issues. Its most visible purpose is to man- OBI-MAN_UNINITIALIZED,

9 gn K ' purpos OBJ_MAN_INITIALIZING,
age cleanup of singletons at program termination, and cre- ogj_MAN_INITIALIZED,
ate/destroy Preallocated Objects. In addition, it performs other OBJ_MAN_SHUTTING_DOWN,
cleanup actions, such as shutdown of services provided by th}e_: OBJ_MAN_SHUT_DOWN
ACE library, at program termination. '

The Object Lifecycle Manager Base abstract protected:
base class, shown in Figure 3, provides the initialization andbject_Lifecycle_Manager_Base (void) :
finalization mechanisms for an Object Lifecycle Manager. ©biect manager_state_ (OBJ_MAN_UNINITIALIZED),

. . . . dynamically_allocated_ (0),
Subclasses must specialize and provide implementations, de- e, (o) g
scribed below.

In addition, Object Lifecycle Manager Base virtual "Object_Lifecycle_Manager_Base (void) {
supports chaining of Object Lifecycle Managers. Object x géii;,:hge{sg 23;2“ <fini>
Lifgcycle Managers _are.SingIetons, each with its own locus gynamically allocated_ = 0
of interest. An application may have a need for more than}
one Object Lifecycle Manageg.g, one per major compo- © start | woid) {

_ . starting_up_i (voi
nent. Chaining permits ordered shutdown of the separat& return object_manager state_ <
components. _ _ OBJ_MAN_INITIALIZED;

Figure 4 shows an exampl®bject Lifecycle }

Manager class. It is a Singleton, so it provides a /I Returns 1 before Object_Lifecycle_Manager_Base
_ s . . . Il has been constructed. This flag can be used

statlt?lnstance accessor. In addition, it provides static |, . ™ icrmine if the program is_ constructing

starting _up andshutting _down state accessors. An / static objects. If no static object spawns

enumeration lists identifiers for the Preallocated Objects that/ any threads, the program will be

it owns. /I single-threaded when this flag returns 1.

An interesting dgtall is the' (booleap) reference count logic;,, shutting_down_i (void) {
provided by the derived clagsit andfini methods. There return object_manager_state_ >
are several alternatives for constructing an Object Lifecycle = OBJ_MAN_INITIALIZED;

I\r/llanager, tc)illscussfed |nISectlon 9. T.he relference counéi eNSUres_ s 1 after Object_Lifecycle_Manager Base
that an Object Lifecycle Manager is only constructed oncey; pas peen destroyed.
and destroyed once.

The implementations of thastance ,init , andfini Object_Lifecycle_Manager_State object_manager_state_;
methods are shown in Figure 5 and Figure 6. istance /I State of the Object_Lifecycle_Manager;
me.thod is typical of Singleton instgnce accessors, bgt includes int dynamically_allocated_ ;
logic to support static placement instead of dynamic alloca+/ Flag indicating whether the
tion. In addition, it is not thread safe, requiring construction/; dObJeCt__L'TFCYﬁ'Ie_'V'tagageft;]”Stf_lgce was

. : ynamically allocated by the library.
before the program spawns any threads. This avoids the neé)d(If it was dynamically allocated by the
for alock to guard the allocation. /I application, then the application is

The init and fini methods show creation and de- // responsible for deleting it.)
struction of Preallocated Objects, respectively. They showOb_ ¢ Lifecvle M Base “next

S o . ject_Lifecycle_Manager_Base *next_;
appl|cat|0_n specific startup a.nd shutdown code. Finally, they, "\~ mext Object Lifecycle Manager.
show maintenance of the Object Lifecycle Manager state. j for chaining.

g

[17] “Information Technology — Portable Operating System Inter-
face (POSIX) — Part 1: System Application: Program Interface
(API) [C Language],” 1995.

8This should be moved up to the base class.

13 Figure 3: Object Lifecycle Manager Base Class

class Object_Lifecycle_Manager :
public Object_Lifecycle_Manager_Base

Object_Lifecycle_Manager *

public: Object_Lifecycle_Manager::instance_ = 0;
virtual int init (void); /I Singleton instance pointer.
virtual int fini (void); Object_Lifecycle_Manager *

Object_Lifecycle_Manager::instance (void)

static int starting_up (void) { { . . .

return instance = ? /I This function should be called during
instance —>st_arting wpli 0 ;1 /I construction of static instances, or
} - - ' /I before any other threads have been created

static int shutting_down (void) {
return instance_ ?
instance_->shutting_down_i () : 1;

}

enum Preallocated_Object

{
if defined (MT_SAFE) && (MT_SAFE != 0)
OS_MONITOR_LOCK,
TSS_CLEANUP_LOCK,
else
/I Without MT_SAFE, There are no
/I preallocated objects. Make }
/I sure that the preallocated_array

/I in the process. So, it's not thread safe.

if (instance_ == 0) {
Object_Lifecycle_Manager *instance_pointer =
new Object_Lifecycle_Manager;

/I instance_ gets set as a side effect of the
/I Object_Lifecycle_Manager allocation, by

/I the default constructor. Verify that . . .
assert (instance_pointer == instance_);

instance_pointer->dynamically_allocated_ = 1,

}

return instance_;

/I size is at least one by declaring i”t_ . . .
/I this dummy. Object_Lifecycle_Manager::init (void)
EMPTY_PREALLOCATED_OBJECT, {

endif /* MT_SAFE */
/I This enum value must be last!
PREALLOCATED_OBJECTS
h

/I Unique identifiers for Preallocated Objects.

static Object_Lifecycle_Manager *instance (void);
/I Accessor to singleton instance.

public:
/I Application code should not use these
/I explicitly, so they’re hidden here. They're
/I public so that the Object_Lifecycle_Manager
/I can be onstructed/destructed in <main>, on
/I the stack.
Object_Lifecycle_Manager (void) {
/I Make sure that no further instances are
/I created via <instance>.

if (instance_ == 0)
instance_ = this;
init ();

“Object_Lifecycle_Manager (void) {
/I Don't delete this again in <fini>
dynamically_allocated_ = 0;
fini ();

private:
static Object_Lifecycle_Manager *instance_;
/I Singleton instance pointer.

static void * }
preallocated_objectfPREALLOCATED_OBJECTS];
/I Array of Preallocated Objects.

Figure 4: Object Lifecycle Manager Class
14

#

if (starting_up_i () {
/I First, indicate that this
/I Object_Lifecycle_Manager instance
/I is being initialized.

object_manager_state_ = OBJ_MAN_INITIALIZING;

if (this == instance_) {
if defined (MT_SAFE) && (MT_SAFE != 0)
PREALLOCATE_OBJECT (mutex_t,
OS_MONITOR_LOCK)
/I Mutex initialization omitted.

PREALLOCATE_OBJECT (recursive_mutex_t,
TSS_CLEANUP_LOCK)
/I Recursive mutex initialization omitted.

endif /* MT_SAFE ¥

/I Open Winsock (no-op on other
/I platforms).
socket_init (/* WINSOCK_VERSION */);

/I Other startup code omitted.
/I Finally, indicate that the

/I Object_Lifecycle_Manager instance
/I has been initialized.

object_manager_state_ = OBJ_MAN_INITIALIZED;

return O;

} else {
/I Had already initialized.
return 1;

}

Figure 5: Object Lifecycle Method Implementations

int
Object_Lifecycle_Manager::fini (void)

if (shutting_down_i ())
/I Too late. Or, maybe too early. Either
/I fini () has already been called, or
/I init () was never called.
return object_manager_state ==
OBJ_MAN_SHUT_DOWN ? 1 : -1;

/I Indicate that the Object_Lifecycle_Manager

/I instance is being shut down.

/I This object manager should be the last one

/I to be shut down.

object_manager_state_ = OBJ_MAN_SHUTTING_DOWN;

/I If another Object_Lifecycle_Manager has
/I registered for termination, do it.
if (next) {

next_->fini ();

/I Protect against recursive calls.

next_ = 0;

/I Only clean up Preallocated Objects when
/I the singleton Instance is being destroyed.
if (this == instance_) {

/I Close down Winsock (no-op on other

/I platforms).

socket_fini ();

/I Cleanup the dynamically preallocated
/I objects.
if defined (MT_SAFE) && (MT_SAFE != 0)
/I Mutex destroy not shown . . .
DELETE_PREALLOCATED_OBJECT (mutex_t,
MONITOR_LOCK)

/I Recursive mutex destroy not shown . . .
DELETE_PREALLOCATED_OBJECT (
recursive_mutex _t,
TSS_CLEANUP_LOCK)
endif /* MT_SAFE */

}

/I Indicate that this Object_Lifecycle_Manager
/I instance has been shut down.
object_manager_state_ = OBJ_MAN_SHUT_DOWN;

if (dynamically_allocated_)
delete this;

if (this == instance_)
instance_ = 0;

return O;

Figure 6: Object Lifecycle Method Implementations, contd.

15

