
RPC CLIENT: A PATTERN FOR THE CLIENT-SIDE IMPLEMENTATION OF

A PIPELINED REQUEST/RESPONSE PROTOCOL

 Mark Heuser and Eduardo B. Fernandez

 Dept. of Computer Science and Eng.

 Florida Atlantic University

 Boca Raton, FL 33431

ABSTRACT

This is a design pattern for the client-side implementation of a pipelined request/response
protocol. The pattern is an elaboration of the Remote Proxy design pattern presented in the
GOF and POSA books. Its intent is to hide the fact that a service is remote and make a
remote service convenient to use.

1. INTENT

The RPC Client design pattern is an elaboration of the Remote Proxy design pattern ([3]
and [4]) for the case in which

• The proxy is a client-side proxy.

• The communication protocol is a pipelined request/response protocol.

• The execution environment consists of multiple threads of control in a single address
space.

• Performance considerations preclude simpler approaches.

The basic intent of the pattern is the same as that for Remote Proxy.

2. MOTIVATION

2.1 Problem

Firewall vendors use the term proxy to refer to a networking application interposed
between a client and a server. To the client, the proxy appears to be the server, and to the
server, the proxy appears to be the client. The proxy’s intervention can improve security by
restricting the ways in which the client and the server interact.

 Copyright © 1999, Eduardo B. Fernandez. Permission is granted to copy for the PloP 1999
 conference. All other rights reserved.

2

Consider integrating an HTTP proxy with a third-party URL filter. The URL filter
contains a database that categorizes URLs. Categories include pornography, drugs, weapons,
sports, job search, and others. Additionally, the URL filter contains an access policy. The
access policy defines the conditions under which access to a URL should be permitted (or
denied). The access policy considers such factors as the category of the URL, the time of the
access, and the identity of the client. When an HTTP client requests a document from an
HTTP proxy, the proxy sends the document’s URL and the client’s identity to the URL filter.
The URL filter returns a “permit” or “deny” verdict. If the verdict is “deny,” the proxy will

forward a “denied” message to the client. If the verdict is “permit,” the proxy will forward the
requested document to the client after fetching it from the HTTP server. Figure 1 illustrates
the participants and their interactions with a UML collaboration diagram.

The interface to the URL filter consists of a pipelined request/response protocol over a TCP
connection. For example, the manufacturer of the URL filter could choose this interface in
order to avoid integrating source code with other vendors' software. This means that the
proxy sends a URL to the filter in a request message, and the filter sends a verdict back to the
proxy in a response message. Each request message contains a distinguishing value known as a
request identifier. Furthermore, each response message echoes the request identifier from the

Figure 1: Interaction between an HTTP proxy and a URL filter.

:HttpProxy:HttpClient :HttpServer

:UrlFilter

:AccessPolicy:UrlDatabase

1:fetchDocument

2:filterUrl

3:categorizeUrl 4:testUrl

5:[verdict == permit]
fetchDocument

3

corresponding request message. This arrangement allows the proxy to send new requests
before previous requests have completed, and to associate responses with the proper requests.

2.2 Forces

The software that implements the client side of the URL filter protocol must resolve the
following forces:

• Efficiency. URL filtering directly affects the performance of the HTTP proxy. A
simple approach that used a different TCP connection for each request would result in
poor performance. Instead, it is necessary to multiplex requests from several threads
over a single TCP connection, and to demultiplex responses from that connection
back to the respective threads.

• Thread safety. The HTTP proxy uses multiple threads to handle multiple,
simultaneously active sessions. These threads will compete for access to a single TCP
connection when sending request messages. Furthermore, one thread must serve as the
demultiplexor.

• Encapsulation. The manufacturer of the URL filter could have chosen a different type
of interface. For example, the URL filter could have been packaged as a library that
accessed the URL database directly. In order to make the replacement of the URL
filter as easy as possible, the HTTP proxy must not be aware of the manufacturer’s
choice of interface.

• Extensibility. It should be possible to take advantage of new features in a future
version of the URL filter without having to rework existing software.

• Reusability. The software should be reusable by other proxies that encounter URLs.

• Usability. The software should be easy to use.

Note that many of the functional problems to be solved have nothing to do with URL
filtering. These problems include aspects such as how to identify servers, connection to
servers, recovery, fault tolerance, etc. Those aspects will not be discussed here.

2.3 Solution

The general structure of an RPC is shown in Figure 2. This uses two kinds of messages:
request and response. Request messages contain a request identifier, a procedure identifier, and
the procedure’s arguments. Response messages contain a request identifier, a procedure call
status, and the procedure’s results. Clients send unsolicited request messages to servers. Each
request message is distinguished by its request Id. Servers echo request Ids in the response
messages sent back to clients. The request Id is contained in a common header shared by all
response messages.

4

It should be possible to separate the service-dependent (URL filtering) aspects of the
software from the service-independent aspects, resulting in two distinct layers. The service-
independent layer should be able to solve functional problems found in the client-side
implementation of any RPC-like protocol. A solution that considers these forces is based on
the use of a remote proxy to implement the RPC.

 Figure 3 shows the structure of the pattern. The RpcConnection class describes how to
connect to the server, while the stub handles the distribution aspects. In the Consequences
section (Section 8), we show how this pattern balances the forces described earlier.

3. APPLICABILITY

Use the RPC Client pattern when:

• A client needs to communicate with a server using a pipelined protocol.

• An RPC protocol may be needed for compatibility reasons.

• The execution environment consists of multiple threads of control in a single address
space.

• Performance considerations make simpler approaches unacceptable.

procedure call status procedure results

Response Message

requestId

requestId procedureId procedure arguments

Request Message

Server

Figure 2: RPC communication pattern.

Client

5

4. STRUCTURE AND PARTICIPANTS

Figure 3 illustrates the participants in the RPC Client pattern. RpcClient, RpcConnection,
and RpcStub form an abstract, service-independent layer, while ConcreteClient,

ConcreteConnection, and the ConcreteStub classes form a concrete, service-dependent layer.

• RpcStub. RpcStub is an abstract base class representing an invocation of a remote
procedure. Its primary responsibility is thread synchronization. RpcStub provides a
way for a thread to await the completion of a remote procedure call. It also declares
two abstract operations: sendRequestMessage() and recvResponseBody().

• ConcreteStubA, ConcreteStubB. ConcreteStubA and ConcreteStubB are concrete,
service-dependent classes derived from RpcStub. Each (StubA/StubB) represents an
invocation of a particular remote procedure (operationA()/operationB()). Their
responsibilities include marshaling procedure arguments and unmarshaling procedure
results. Each contains the arguments and results of its procedure, and implements the
sendRequestMessage() and recvResponseBody() operations declared in RpcStub.
sendRequestMessage() marshals the procedure’s arguments and sends a request message.

executeRpc()
selectConnection()

RpcClient

executeRpc()
assignRequestId()
lookupRequestId()
handleInput()

connectToServer()
recvResponseHeader()

socket
nextRequestId
mutex

RpcConnection

waitForResponse()
signalResponse()

sendRequestMessage()
recvResponseBody()

conditionVar

RpcStub

sendRequestMessage()
recvResponseBody()

extractResults()

operationA arguments
operationA results

ConcreteStubA

sendRequestMessage()
recvResponseBody()

extractResults()

operationB arguments
operationB results

ConcreteStubB

operationA()
operationB()

ConcreteClient

*1 0..1
requestId

1

connectToServer()
recvResponseHeader()

serverAddress
responseHeader

ConcreteConnection

Figure 3: UML class diagram for the RPC Client pattern.

6

recvResponseBody() receives the body of a response message and unmarshals the
procedure’s results.

• RpcConnection. RpcConnection is an abstract base class representing a single
connection to a server. Although the pattern permits multiple connections to the same
server, such usage is not the norm. RpcConnection is responsible for overseeing the
execution of a remote procedure, including such tasks as allocating request Ids,
establishing connections, serializing access to connections, and matching responses to
requests. It contains the socket used to communicate with the server, and the next
available request Id. It also declares two abstract operations: connectToServer() and
recvResponseHeader().

• ConcreteConnection. ConcreteConnection is a concrete, service-dependent class
derived from RpcConnection. Its primary responsibility is to implement the
connectToServer() and recvResponseHeader() operations declared in RpcConnection.
connectToServer() establishes a connection with a server. By implementing this
operation in ConcreteConnection, RpcConnection remains independent of transport
protocols and addressing formats. recvResponseHeader() receives the header of a
response message and returns the request Id contained therein. Given the request Id,
RpcConnection can match the response to a request. ConcreteConnection contains
the server’s network address and a response message header.

• RpcClient. RpcClient is an abstract base class representing an RPC-based service. It is
responsible for assigning a procedure call to a server (selectConnection()) and for
recovering from network and server failures.

• ConcreteClient. ConcreteClient is a concrete, service-dependent class derived from
RpcClient. It provides the public interface seen by users; namely, operationA() and
operationB().

5. COLLABORATIONS

A remote procedure call executes in three distinct phases: sending the request message,
receiving the response message, and extracting the results. The first and last phase execute in
the same thread, while the middle phase executes in a different thread.

Sending the Request Message

This phase covers the transmission of the request message. It begins when a thread invokes
a remote operation, and ends when the thread blocks to await the response message. The
collaborations are described in the following paragraphs and are illustrated in Figure 4.

• When operationA() is invoked on ConcreteClient, a ConcreteStubA object is created
to hold the operation’s arguments and results.

• ConcreteClient selects a ConcreteConnection to execute the operation, and passes the
stub object to the connection.

7

• ConcreteConnection assigns a request Id to the operation and, if necessary, establishes
a network connection.

• ConcreteStubA sends the request message to the server and blocks the calling thread.

Receiving the Response Message

This phase covers the reception of the response message. It begins when data is available on
a connection, and ends when the calling thread is awakened. The collaborations are described
in the following paragraphs and are illustrated in Figure 5.

• When data is available on a connection, ConcreteConnection’s handleInput()
operation is invoked. ConcreteConnection receives the header of the response message
and uses the request Id contained therein to match the response to the appropriate
request.

:ConcreteStubA

:ConcreteConnection

operationA(args) new(args)

:ConcreteClient

executeRpc(StubA)

waitForResponse()

sendRequestMessage()

Figure 4: Sending the request message.

selectConnection()

executeRpc(StubA)

connectToServer()

assignRequestId()

8

• ConcreteStubA receives the response body, unmarshals the procedure’s results, and
awakens the calling thread.

Extracting the Results

This phase covers the extraction of the procedure’s results from the ConcreteStubA object.
It begins when the calling thread resumes execution, and ends when the thread returns from
operationA(). The collaborations are described in the following paragraphs and are illustrated
in Figure 6.

• When the calling thread resumes execution, it returns from the executeRpc()
operations in ConcreteConnection and ConcreteClient. ConcreteClient extracts the
procedure’s results from ConcreteStubA and deletes the stub.

:ConcreteConnection

handleInput()

lookupRequestId()

recvResponseBody()

signalResponse()

:ConcreteClient :ConcreteStubA

recvResponseHeader()

Figure 5: Receiving the response message.

9

6. VARIANTS

If it is not necessary to use multiple servers for fault tolerance or load balancing, the class
diagram can be simplified by merging the RpcClient and RpcConnection classes.

7. EXAMPLE

Figure 7 shows how the pattern can be applied to the URL filtering problem. The example
employs the simplification suggested in the previous section.

:ConcreteClient :ConcreteStubA :ConcreteConnection

extractResults()

delete

Figure 6: Extracting the Results.

10

8. CONSEQUENCES

Benefits

• The RPC Client pattern hides the fact that a service is provided remotely, and makes
the remote service as easy to use as a local service.

• The RPC Client pattern separates service-dependent issues and service-independent
issues into distinct layers. The service-independent layer should be reusable by
different service-dependent layers.

• The RPC Client pattern is extensible. To add a new remote procedure, one need only
add a new operation to ConcreteClient and derive a new class from RpcStub.

• The RPC Client pattern should give good performance in a multithreaded execution
environment, although we don't have experimental data to prove it.

executeRpc()
assignRequestId()
lookupRequestId()
handleInput()

connectToServer()
recvResponseHeader()

socket
nextRequestId
mutex

RpcClient

waitForResponse()
signalResponse()

sendRequestMessage()
recvResponseBody()

conditionVar

RpcStub

sendRequestMessage()
recvResponseBody()

extractVerdict()

url
clientId
verdict

FilterUrlStub

sendRequestMessage()
recvResponseBody()

extractLicensedHosts()

nLicensedHosts

LicenseInfoStub

0..1
requestId

1

connectToServer()
recvResponseHeader()

filterUrl()
licenseInfo()

serverAddress
responseHeader

UrlFilter

Figure 7: UML class diagram for the URL filter.

11

Liabilities

• The RPC Client pattern is only applicable to RPC-like communication protocols in a
multithreaded execution environment. More general patterns are described in Section
11.

• An application that relies heavily on remote procedure calls should use a standard RPC
toolkit, such as Sun RPC, DCE RPC, or CORBA. This pattern may, in that case,
overlap with some existing functions.

• To simplify programming, the RPC Client pattern uses a synchronous procedure call
model wherein the calling thread blocks until it receives a response from the server. In
some cases, performance can be improved with an asynchronous procedure call model
that allows the calling thread to overlap execution with the server.

• Some consideration must be given to limiting the data copying overhead that occurs
during the final phase of remote procedure call execution. See Figure 6.

9. IMPLEMENTATION

The following paragraphs discuss some implementation issues.

• Because the lifetime of ConcreteStubA matches the lifetime of operationA(),
ConcreteStubA can be allocated in the activation record of operationA(). Allocation
from the stack is faster than allocation from the heap.

• Figure 5 shows the handleInput() operation being invoked by an external agent when
data becomes available on a connection. There are at least three choices for the
external agent.

1. A dedicated thread. Each RpcConnection object could dedicate a thread to the
demultiplexor role. Although this approach is simple, it is also costly.

2. A Reactor [1]. Each RpcConnection object could be registered with a Reactor
(RpcConnection would have to be derived from EventHandler). The thread
executing the reactor’s event loop would invoke the handleInput() operation. This
approach allows a single thread to serve as the demultiplexor for several
RpcConnection objects, but creates dependencies on Reactor and EventHandler.

3. A client thread. Data can arrive on a connection only while a remote procedure
call is in progress. Instead of blocking to await the completion of its call, one
thread could assume the role of demultiplexor. The demultiplexor must be able to
recognize when its response message arrives, and if other remote procedure calls
are still in progress, must nominate another thread for the job. Although this
approach adds a small amount of complexity, it does not increase resource usage
and it does not create additional dependencies on other objects.

12

• As shown in Figure 4, each thread that invokes a remote procedure sends a request
message. In order to guarantee the proper interleaving of multiple request messages
from multiple threads over a single connection, request message transmission must be
serialized. This task is the responsibility of RpcConnection.

As shown in Figure 5, response message reception is serialized by limiting the number
of demultiplexors at any given time to one.

Request message transmission and response message reception do not need to be
serialized, and in fact should not be serialized if performance is important. However,
the two algorithms may contend for access to the data structure that implements the
mapping from request Ids to RpcStubs. For example, a mapping may be added during
request message transmission, and deleted during response message reception.

The preceding discussion shows the need for two mutexes1: one to serialize request
message transmission and one to serialize map changes.

Because of its length, we show our sample code as an Appendix.

10. KNOWN USES

The motivation section describes a use of the pattern in CyberGuard’s firewall product.
General uses of the Remote proxy are shown in [3],[4], and [5].

11. RELATED PATTERNS

• RPC Client is an elaboration of Remote Proxy.

• The Strategy pattern could be used to vary the load balancing or error recovery
algorithms employed by the RpcClient class.

• RPC Client uses the Half-Sync/Half-Async architectural pattern presented in [2]. The
RpcConnection and RpcStub classes implement the queueing layer between the
synchronous and asynchronous task layers.

REFERENCES

[1] D.C. Schmidt, “Reactor: An Object Behavioral Pattern for Concurrent Event
Demultiplexing and Event Handler Dispatching,” in Pattern Languages of Program Design
(J.O. Coplien and D.C. Schmidt, eds.), pp. 529-545, Reading, MA: Addison-Wesley, 1995.

[2] D.C. Schmidt and C.D. Cranor, “Half-Sync/Half-Async: An Architectural Pattern for
Efficient and Well-structured Concurrent I/O,” in Pattern Languages of Program Design 2
(J. Vlissides, J.O. Coplien, and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

1 A mutex is a synchronization object that provides exclusive access to shared data.

13

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented
Software Architecture: A System of Patterns. New York, NY: John Wiley & Sons, 1996.

[5] A.R.Silva, F.A.Rosa, and T. Goncalves, "Distributed Proxy: A design pattern for
distributed object communication", Procs. of PLOP'97,
http://jerry.cs.uiuc.edu/~plop/plop97

APPENDIX : SAMPLE CODE

/*
 * Client software for ad hoc RPC.
 *
 * INTENT: RpcStub and RpcClient together constitute a service-independent
 * layer/framework for the client-side implementation of an RPC-like
 * protocol.
 *
 * CONTEXT: An RPC-like protocol, or a pipelined request/response protocol,
 * is one that consists of two kinds of messages: request and response.
 * Clients send unsolicited request messages to servers. Request messages
 * contain a distinguishing value known as a request Id. Request Ids are
 * generated by the client. Servers send response messages to clients. A
 * response message echoes the request Id from a prior request message.
 * All response messages have a common header containing the request Id.
 * Communication occurs over a reliable, bidirectional, byte stream
 * (SOCK_STREAM).
 *
 * The execution environment consists of multiple threads of control in a
 * single address space.
 */

/*
 * CLASS: RpcStub
 *
 * PURPOSE: RpcStub is an abstract base class that represents an invocation
 * of a remote procedure. Its primary responsibility is thread
 * synchronization. RpcStub provides a way for the thread making a remote
 * procedure call to await the completion of the call.
 *
 * Service-dependent subclasses represent an invocation of a particular
 * remote procedure. They should contain the procedure's arguments and
 * results, and should implement the mashaling and unmarshaling routines
 * declared here: SendRequestMessage() and RecvResponseBody().
 *
 * COLLABORATORS: RpcClient
 */
class RpcStub : public dll_node
{

RpcStub (RpcStub const &);
RpcStub& operator= (RpcStub const &);

int st_error; // status
size_t st_requestId; // request Id
int st_wakeupReason; // wakeup reason
ThreadAutoResetEvent st_event; // wakeup event

public:
// Construct/destroy an RpcStub object.

14

RpcStub ();
virtual ~RpcStub () {}

// Get/set status.
int Error () const { return (st_error); }
void Error (int error) { st_error = error; }

// Get/set request Id.
size_t RequestId () const { return (st_requestId); }
void RequestId (size_t requestId) { st_requestId = requestId; }

/* Wakeup reasons.
 */
enum {

WR_DONE = 1, // you're done
WR_RETRY, // try try again (error recovery)
WR_DISPATCH // assume the role of dispatcher

};

// Wait for an RPC to complete. Return the wakeup reason.
int WaitForResponse ();

// Signal the completion of an RPC.
void SignalResponse (int reason);

/* SendRequestMessage(), defined in a class derived from RpcStub, sends
 * a request message to a server via frame buffer "fb." Return 0 if
 * successful, an error code otherwise.
 */
virtual int SendRequestMessage (SocketFrameBuf &fb) = 0;

/* RecvResponseBody(), defined in a class derived from RpcStub,
 * receives a response body from a server via frame buffer "fb." The
 * response header has already been received and is referenced by
 * "hdr." Return 0 if successful, an error code otherwise.
 */
virtual int RecvResponseBody (void *hdr, SocketFrameBuf &fb) = 0;

};

RpcStub::RpcStub ()
{

st_error = 0;
st_requestId = 0;
st_wakeupReason = 0;

}

void
RpcStub::SignalResponse (int reason)
{

st_wakeupReason = reason;
st_event.Signal ();

}

int
RpcStub::WaitForResponse ()
{

st_event.Wait ();
return (st_wakeupReason);

}

/*
 * CLASS: RpcClient
 *
 * PURPOSE: RpcClient is an abstract base class that represents an
 * RPC-based service. Its responsibilities include allocating request Ids,
 * handling network and server failures, and coordinating the use of a
 * single stream socket by multiple threads.
 *
 * Service-dependent subclasses provide the public interface of a

15

 * particular RPC-based service. They should contain the header of a
 * response message and the network address of a server, and should
 * implement the abstract routines declared here: RecvResponseHeader() and
 * ConnectToServer().
 *
 * COLLABORATORS: RpcStub
 */
class RpcClient
{

RpcClient (RpcClient const &);
RpcClient& operator= (RpcClient const &);

ThreadMutex cl_sendMutex; // socket serializer
StreamSock cl_serverSocket; // connection to server
SocketFrameBuf cl_serverBuf; // socket frame buffer
bool cl_serverUp; // connection is up
StopWatch cl_downInterval; // time spent down

ThreadMutex cl_stubMutex; // stub serializer
size_t cl_nextRequestId; // next request ID
dll<RpcStub> cl_stubList; // list of pending stubs
size_t cl_maxStubListLen; // max queue length
RpcStub *cl_stubDispatcher; // current dispatcher
size_t cl_nDispatchSwitches; // # dispatcher switches

int OpenConnection ();
void CloseConnection (int error);
int DispatchStubs ();

protected:
/* ConnectToServer(), defined in a class derived from RpcClient,
 * establishes a connection with the RPC server. Return 0 if
 * successful, an error code otherwise.
 */
virtual int ConnectToServer (StreamSock &s) = 0;

/* RecvResponseHeader(), defined in a class derived from RpcClient,
 * receives a response header from a server via frame buffer "fb."
 * Return 0 if successful, an error code otherwise. If successful, an
 * opaque pointer to the header is returned in "hdr," and the request
 * Id is returned in "requestId."
 */
virtual int RecvResponseHeader (SocketFrameBuf &fb, void *&hdr,

size_t &requestId) = 0;

/* Execute the specified RPC. Return 0 if successful, an error code
 * otherwise.
 */
int ExecuteRpc (RpcStub *pStub);

public:
// Construct/destroy an RpcClient object.
RpcClient ();
virtual ~RpcClient ();

// Return the total number of RPCs performed.
size_t TotalRpcs () const { return (cl_nextRequestId); }

// Return the maximum observed length of the RPC queue.
size_t MaxRpcQueueLength () const { return (cl_maxStubListLen); }

// Convert an error code into a string.
char const *ErrorMsg (int code);

};

TimeValue const MIN_DOWN_TIME (15, 0);

RpcClient::RpcClient ()
{

16

cl_serverUp = 0;

cl_nextRequestId = 0;
cl_maxStubListLen = 0;
cl_stubDispatcher = 0;
cl_nDispatchSwitches = 0;

cl_downInterval.Set (MIN_DOWN_TIME);
cl_downInterval.Start ();

}

RpcClient::~RpcClient ()
{

assert (cl_stubList.empty ());
CloseConnection (-1);

}

int
RpcClient::OpenConnection ()
{

// assert (caller holds cl_sendMutex);

// If the connection is up, there is nothing to do.

if (cl_serverUp)
return (0);

// Re-connect at most once every MIN_DOWN_TIME seconds.

if (cl_downInterval.TotalTime () < MIN_DOWN_TIME)
return (RpcError::ERR_SOCKET);

// Ask derived class to connect to the server.

int error = ConnectToServer (cl_serverSocket);
if (error) {

cl_downInterval.Reset ();
return (error);

}

cl_serverBuf.Attach (cl_serverSocket);

// Mark the connection up.

cl_serverUp = 1;
return (0);

}

void
RpcClient::CloseConnection (int error)
{

// assert (caller holds cl_sendMutex);

// If the connection is down, there is nothing to do.

if (! cl_serverUp)
return;

// Close the connection.

cl_serverSocket.Close ();
cl_serverUp = 0;

// Wake all waiting threads.

cl_stubMutex.WriteLock ();
while (1) {

RpcStub *pStub = cl_stubList.pop_front ();
if (pStub == 0)

17

break;
pStub->Error (error);
pStub->SignalResponse (RpcStub::WR_DONE);

}
cl_stubMutex.Unlock ();

}

int
RpcClient::ExecuteRpc (RpcStub *pStub)
{

// assert (caller holds no locks);

while (1) {
cl_sendMutex.WriteLock ();

// Assign a request Id to the stub object and put the
// object in the list of pending stubs.

cl_stubMutex.WriteLock ();
pStub->RequestId (cl_nextRequestId++);
cl_stubList.push_back (pStub);
if (cl_stubList.size () > cl_maxStubListLen)

cl_maxStubListLen = cl_stubList.size ();
cl_stubMutex.Unlock ();

// Send the request message to the server.

int error = OpenConnection ();

if (error == 0)
error = pStub->SendRequestMessage (cl_serverBuf);

if (error) {
cl_stubMutex.WriteLock ();
cl_stubList.remove (pStub);
cl_stubMutex.Unlock ();

CloseConnection (error);
cl_sendMutex.Unlock ();
return (error);

}

// Wait for the response message.

int wakeupReason = 0;

if (cl_stubDispatcher == 0) {
++cl_nDispatchSwitches;
cl_stubDispatcher = pStub;
cl_sendMutex.Unlock ();
wakeupReason = DispatchStubs ();

}
else {

cl_sendMutex.Unlock ();
wakeupReason = pStub->WaitForResponse ();
if (wakeupReason == RpcStub::WR_DISPATCH)

wakeupReason = DispatchStubs ();
}

if (wakeupReason == RpcStub::WR_DONE)
return (pStub->Error ());

// not currently used
assert (wakeupReason == RpcStub::WR_RETRY);

}

// Should never get here.
// assert (0);
// return (-1);

18

}

int
RpcClient::DispatchStubs ()
{

// assert (caller holds no locks);

int error = 0;

while (1) {
// Receive a response header.

void *hdr;
size_t requestId;

try {
error = RecvResponseHeader (cl_serverBuf, hdr, requestId);

}
catch (...) {

error = RpcError::ERR_RESOURCE;
}

if (error)
break;

// Find the matching stub object.

RpcStub *pStub = 0;

cl_stubMutex.WriteLock ();
for (dll<RpcStub>::iterator it (cl_stubList.begin ());

it != cl_stubList.end (); ++it)
{

if ((*it).RequestId () == requestId) {
pStub = cl_stubList.remove (it);
break;

}
}
cl_stubMutex.Unlock ();

if (pStub == 0) {
error = RpcError::ERR_PROTOCOL;
break;

}

// Receive the response body.

try {
error = pStub->RecvResponseBody (hdr, cl_serverBuf);

}
catch (...) {

error = RpcError::ERR_RESOURCE;
}

pStub->Error (error);

// Check whether the dispatcher's duty is done.

if (pStub != cl_stubDispatcher)
pStub->SignalResponse (RpcStub::WR_DONE);

else {
cl_sendMutex.WriteLock ();
if (cl_stubList.empty ())

cl_stubDispatcher = 0;
else {

++cl_nDispatchSwitches;
cl_stubDispatcher = cl_stubList.back ();
cl_stubDispatcher->SignalResponse (RpcStub::WR_DISPATCH);

}

19

cl_sendMutex.Unlock ();

return (RpcStub::WR_DONE);
}

}

assert (error);
cl_sendMutex.WriteLock ();
CloseConnection (error);
cl_stubDispatcher = 0;
cl_sendMutex.Unlock ();

return (RpcStub::WR_DONE);
}

