
Object BehavioralAlternator
Alternator

An Object Behavioral

Design Pattern

John Liebenau

lieb@itginc.com

Copyright © 1999, John Liebenau. Permission is granted to copy

for the PLoP 1999 conference. All other rights reserved.
July 23, 1999 Page 1

Object BehavioralAlternator
1. Intent
Allow multiple alternative subtrees in a hierarchical structure, and make them transparent to clients
of the structure.

2. Motivation
Suppose we are developing a stock trading application. The main purpose of our application is to
provide a trader with visual access to groups of stocks, called portfolios, which can be bought and
sold by the trader. We will use an object-oriented GUI framework to build our application’s graphical
user interface. Each window will contain a hierarchy of visual components. A simple way of orga-
nizing the application is to display each portfolio in its own window. The trader can choose a portfolio
by selecting a window to work with. In general, mapping portfolios to windows seems to work well
but the trader’s work environment imposes additional requirements for our application.

The trader’s work environment already includes a variety of applications for displaying and analyz-
ing stock related information. A typical trader may require multiple workstations or dedicated news
displays in order to do his/her job. This proliferation of video displays and application windows in-
evitably leads to information overload. Traders prefer using applications that provide the right infor-
mation and minimize the amount of screen real estate needed for display in order to reduce the
effects of information overload.

Our stock trading application needs to provide a mechanism for a single window to select and dis-
play the portfolios one at a time. In essence, the window has to present several alternative views to
the trader based on the trader’s selections. The diagram below shows the component hierarchy for
our stock trading application with three portfolios.

Our stock trading application’s GUI consists of a single window containing a menu bar, labels that
display summary information about the current portfolio, and several widgets that display portfolio
information. We still need a mechanism for:

• managing the placement and sizing of the portfolio widgets,

• managing the visibility of the portfolio widgets, and

• managing the selection of a portfolio widget.

We could implement this mechanism in our window object by creating a subclass of Window that
provides the customized algorithms needed handle our special situation. However, this approach
has several drawbacks. It forces us to write a new subclass of Window for each situation where we
require alternative views. It prevents us from taking advantage of the algorithms that are already
provided by the object-oriented GUI framework.

:Window

p1:Portfolio-
Widget

:Label
or

:MenuBar

p2:Portfolio-
Widget

p3:Portfolio-
Widget
July 23, 1999 Page 2

Object BehavioralAlternator
To solve this problem, we can use an Alternator object to manage the selection, visibility, and ar-
rangement of alternative component groups. Alternators act as both place holders and containers
for their components. The diagram below expands upon the previous diagram by introducing the
Alternator component to manage the alternate views.

The following class diagram shows a small piece of a graphical user interface framework. The
framework provides a Viewable class which defines the common interface for graphical user inter-
face objects. The View class maintains references to the Viewable objects that make up the View’s
contents. The Viewable class interface is extended by the Label, Button, and ViewAlternator class-
es. These classes have operations specific to them. The ViewAlternator class maintains references
to its alternates and to the currently engaged alternate. The View class treats the ViewAlternator as
just another Viewable object and has no knowledge that it is a place holder for a group of alterna-
tives.

:Alternator

:Window

p1:Portfolio-
Widget

:Label:MenuBar

p2:Portfolio-
Widget

p3:Portfolio-
Widget

Portfolio1 Portfolio3Portfolio2
Sym Side Shares OrderType $Value

IBM Buy 100 Market $12450

ITG Buy 500 Limit $30 $15000

SUNW Buy 200 Limit $65 $13000

MSFT Sell 100 Limit $90 $9000

AAPL Sell 400 Market $17200

RATL Buy 200 Market $7000

File Edit Reports Execution Help

Buy Market Value: $47450.00
Sell Market Value: $26200.00
Total Market Value: $21250.00

The stock trading appli-
cation with Portfolio1
currently engaged.

Button

• show()

• hide()

• arrange()

Viewable

• show()

• hide()

• arrange()

ViewAlternator

• show()

• hide()

• arrange()

• setAlternates(alts)

• setCurrent(i)

Label

• show()

• hide()

• arrange()

alternatives/current

1

NView

if (current)
 current->hide();

current = alternatives[i];
current->show();

if (current)
 current->arrange();

N

July 23, 1999 Page 3

Object BehavioralAlternator
3. Applicability
Use the Alternator pattern when:
• an object is part of a hierarchy

• an object is composed of several sub-objects with only one sub-object engaged at any given time

• you want multiple objects to exist in the logical space of a single object

• you want a way of selecting between alternatives

• alternative objects have some form of common interface

4. Structure

5. Participants
• AbstractInterface (Viewable)

• provides the common interface between Alternators and Alternates

• provides engage and disengage operations (e.g. show and hide) as part of the common
interface

• Alternator (ViewAlternator)

• provides an interface for setting alternatives and selecting a current alternative

• provides a mechanism for transitioning from one alternative to another (i.e. disengaging
one component and engaging another)

• Alternate (Button,CheckBox,...)

• provides a concrete implementation of the AbstractInterface

• may provide additional interfaces specific to each Alternate

AlternateB

• engage()

• disengage()

• operation()

AbstractInterface

• engage()

• disengage()

• operation()

Alternator

• engage()

• disengage()

• operation()

• setAlternates(alts)

• setCurrent(i)

AlternateA

• engage()

• disengage()

• operation()

alternatives/current

1

NAbstractClient

if (current)
 current->disengage();

current = alternatives[i];
current->engage();

if (current)
current->operation();

ConcreteClient
July 23, 1999 Page 4

Object BehavioralAlternator
• AbstractClient (View)

• uses Alternators and Alternates through the AbstractInterface

• ConcreteClient (SpecificView)

• uses Alternators and Alternates directly through their specific interfaces

• may be responsible for creating and configuring Alternates and Alternators

6. Collaborations
• Clients use the AbstractInterface to manipulate objects. If the receiver object is an Alternate, the

operation is handled directly by the Alternate object. If the receiver object is an Alternator, the op-
eration is forwarded to the currently engaged Alternate object.

• Clients may use more specific interfaces of the Alternator and Alternate classes. In particular, cli-
ents may configure the Alternates using their specific interfaces and then configure the Alternator
with a list of Alternates. The current Alternate is also set by Clients.

7. Consequences
The Alternator design pattern has the following benefits:

• Allows several alternatives to appear as a single object. This simplifies the structure of
algorithms that use components in the object hierarchy because the algorithms can treat
all of the components in a uniform manner.

• Transparently manages the activation and deactivation of alternative objects. These mul-
tiple objects occupy the same logical place in the object hierarchy. In a GUI context, this
logical place is a component’s arrangement on the screen. When a new alternate is se-
lected to be currently engaged, the Alternator automatically disengages the previously
engaged alternate.

• Conserves resources. In some domains such as user interfaces, the Alternator pattern
can allow an application to conserve resources like screen real estate in an efficient and
flexible manner.

Alternator has the following liabilities:
• Could force alternates to be too general. Alternates are manipulated through their com-

mon interface. This interface may be very general depending on the class hierarchy.
Downcasting or maintaining additional reference may be required to access the special-
ized interfaces of alternates.

• May prevent or hinder access to disengaged alternates. Alternators are designed to ap-
pear like a single component in a hierarchy but some clients may need to have access to
an alternator’s disengaged components as well as its engaged one. This can break the
Alternator’s appearance as a single component, negating some of its benefits.
July 23, 1999 Page 5

Object BehavioralAlternator
8. Implementation
The following implementation issues should be considered when using the Alternator design pat-
tern:

• Creating alternates and configuring alternators. Typically, alternate and alternator com-
ponents are created directly by a client or on behalf of a client by an Abstract Factory
[GHJV95]. The client will then configure an alternator with its alternate components.
Some situations may require an alternator to create its own alternate components. These
kinds of alternators will typically encapsulate their alternate components and prevent any
direct access to them.

• Consistent engage and disengage behavior. The components that will act as alternates
should have consistent or compatible behavior in their engage/disengage methods. Typ-
ically, components should have some form of “on” and “off” states. In the example de-
scribed in the Motivation, GUI components are either visible on the screen or invisible.
Visible components can accept input while invisible components can not.

• Maintain additional references to the alternates. In strongly typed languages (C++, Java),
the Alternator will only provide an interface that is common to all of the components in the
hierarchy (i.e. AbstractInterface). If you need to access methods that are specific to an
alternate, you will either need an additional reference (of the specific type) to an alternate
or you will need to downcast to the specific type.

• Managing the state of alternates. Sometimes alternates will be completely independent
of each other. Their state will only be updated when they are engaged. In other scenarios,
the alternates are dependent on each other. When the currently engaged alternate’s
state is updated, the other alternates’ state must be updated as well. This can be handled
by the Alternator component. All operations that modify the alternates’ state are forward-
ed to each of the alternates. For example, if the ViewAlternator class described in the Mo-
tivation implements a method for setting its x or y coordinates, the coordinates of all its
alternates need to be updated:

void

ViewAlternator::setX(int x)

{

 for (

 vector<Viewable*>::iterator alternate(alternatives.begin());

 alternate != alternatives.end();

 alternate++

)

 (*alternate)->setX(x);

}

• Alternator is implemented with Composite. Alternator is used in hierarchical object struc-
tures. These object structures are implemented using the Composite design pattern
[GHJV95]. Alternator is a kind of Composite but differs in that Alternator introduces the
notion of selecting a child to be the currently active or engaged component while the oth-
er children are inactive.

• Engaging multiple alternates simultaneously. Some situations may call for more than one
alternate to be engaged at the same time. This can be accomplished by maintaining a list
of the engaged alternates instead of a single reference. An additional method for setting
the currently engaged alternates should also be provided.
July 23, 1999 Page 6

Object BehavioralAlternator
9. Sample Code.
The sample code is taken from the example given in the motivation section. The Viewable abstract
class specifies the common interface of all GUI components.

class Viewable

{

public:

 // ...

 // Modifiers

 virtual void setX(int x);

 virtual void setY(int y);

 virtual void setHeight(int h);

 virtual void setWidth(int w);

 // Selectors

 virtual int getX()const;

 virtual int getY()const;

 virtual int getHeight()const;

 virtual int getWidth()const;

 // Actions

 virtual void arrange()=0;

 virtual void show()=0;

 virtual void hide()=0;

};

The Button class extends the Viewable abstract class by providing methods specific to button com-
ponents. The Button class also implements the pure virtual methods declared in Viewable.

class Button: public Viewable

{

public:

 // ...

 // Modifiers

 void setLabel(const string& lbl);

 void setCommand(Command* cmd);

 // Action

 void doCommand();

};

The ViewAlternator class is a GUI component that manages other GUI components (even other
ViewAlternators). The ViewAlternator allows clients to select the alternate they wish to be visible
and active. The other alternates are automatically hidden and deactivated.
July 23, 1999 Page 7

Object BehavioralAlternator
class ViewAlternator : public Viewable

{

private:

 vector<Viewable*> alternatives;

 Viewable* current;

public:

 // ...

 // Viewable: Actions

 void arrange();

 // Modifiers

 void setAlternatives(vector<Viewable*>& alt);

 void setCurrent(Viewable* v);

 // Selectors

 Viewable* getCurrent()const;

 int getNumAlternatives()const;

};

The ViewAlternator delegates method calls to its currently engaged alternate.

void

ViewAlternator::arrange()

{

 if (current)

 current->arrange();

}

When setting the alternatives, the ViewAlternator engages (shows) one of the alternates and dis-
engages (hides) all of the others.

void

ViewAlternator::setAlternatives(const vector<Viewable*>& alt)

{

 vector<Viewable*>::iterator alternate;

 alternatives = alt;

 alternate = alternatives.begin();

 if (alternate != alternatives.end())

 {

 current = *alternate;

 current->show();

 alternate++;

 }

 for (

 ;

 alternate != alternatives.end();

 alternate++

)

 (*alternate)->hide();

}

July 23, 1999 Page 8

Object BehavioralAlternator
When setting a new current alternate, the ViewAlternator hides the old current and makes the new
current visible. If the old current and the new current are the same, the method returns without per-
forming any changes.

void

ViewAlternator::setCurrent(Viewable* v)

{

 if (current != v)

 {

 for (

 vector<Viewable*>::iterator alternate(alternatives.begin());

 alternate != alternatives.end();

 alternate++

)

 {

 if (*alternate == v)

 {

 current->hide();

 current = *alternate;

 current->show();

 break;

 }

 }

 }

}

10. Known Uses
The Alternator pattern is used in several places in the GUI Framework 2.0, a graphical user inter-
face framework developed for internal use at ITG. The GUI Framework provides a ViewAlternator
class which manages alternate Viewable objects. A more specific implementation of the Alternator
pattern is the Selector class which can present itself alternatively as a ScrollingList, CheckBox, Op-
tionMenu, or MultipleChoice.

Java contains at least two examples of the Alternator pattern. The Java Swing Library has a class
called JTabbedPane [Topley98], a component which lets the user switch between a group of com-
ponents by clicking on a tab with a given title and/or icon. The Java AWT Library has a class called
CardLayout [CL98], a container which shows only one of its components at a time; all other com-
ponents in the container are hidden. The CardLayout provides methods to set the currently visible
component.

The Microsoft Foundation Class Library provides a class called CPropertySheet [Microsoft95], a
container of one or more CProperyPage components which in turn contain other widgets. The
CPropertySheet lets the user select a CPropertyPage by clicking on its associated tab.

Motif provides a Notebook widget [OSF94] which contains multiple pages of other widgets. Each
page can be selected by clicking on a tab.
July 23, 1999 Page 9

Object BehavioralAlternator
11. Related Patterns
The Alternator is implemented using the Composite design pattern [GHJV95].

The Alternator pattern is similar to the Backup pattern [ST95] except it solves a more general prob-
lem. Backup is concerned with providing alternatives for a given function that can automatically be
engaged if the primary function fails, while Alternator is concerned with the general task of providing
a place holder for alternatives and a means of selecting an alternative to be engaged.

The Alternator is related to the Sponsor-Selector pattern [Wallingford98] in that both patterns han-
dle the selection of alternate resources that can change dynamically. The difference between the
two patterns is that Alternator focuses on managing the alternate components so that they appear
as a single component of an object hierarchy in order to simplify algorithms that operate on the hi-
erarchy. Sponsor-Selector focuses on selecting the best resource for a given task from a set of re-
sources.

The Alternator pattern is similar to the State pattern [GHJV95] in that it the Alternator object appears
to alter its class at runtime based on which Alternate is currently engaged. The difference is be-
tween Alternator and State is that transitions from one state to another in the State pattern have
some regular well defined ordering while Alternator has no notion of transition but rather engages
and disengages Alternates through its select operation.

References

CL98 Chan, Patrick and Rosanna Lee. The Java Class Libraries Second Edi-
tion, Volume 2. pp 208-220, Addison-Wesly Longman Inc. 1998.

GHJV95 Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesly Publishing Co. 1995.

Microsoft95 Microsoft Foundation Class Library Reference: Part Two, Volume Four.
pp 1350-1368, Microsoft Press. 1995.

OSF94 OSF/Motif User’s Guide: Revision 2.0. pp 3.28-3.29, Open Software
Foundation, Inc. 1994.

ST95 Subramanian, Satish, and Wei-Tek Tsai. Backup Pattern: Designing Re-
dundancy in Object-Oriented Software. Pattern Languages of Program
Design 2, Addison-Wesly Longman Inc. 1996.

Topley98 Topley, Kim. Core Java Foundation Classes. pp 566-582. Prentice Hall
Inc. 1998.

Wallingford98 Wallingford, Eugene. Sponsor-Selector. Pattern Languages of Program
Design 3, Addison-Wesly Longman Inc. 1998.
July 23, 1999 Page 10

	1. Intent
	2. Motivation
	3. Applicability
	4. Structure
	5. Participants
	6. Collaborations
	7. Consequences
	8. Implementation
	9. Sample Code.
	10. Known Uses
	11. Related Patterns

