The Last Two Test-Driven Development Step Patterns:
Bug Locator and Pause for Housekeeping

Eduardo Guerra, National Institute for Space Research, Brazil
Joseph Yoder, Refactory Inc., USA

Mauricio Finavaro Aniche, University of Sdo Paulo, Brazil
Marco Aurélio Gerosa, University of Sdo Paulo, Brazil

Abstract. Test-driven development (TDD) is a development technique often used to design
classes in a software system by creating tests before their actual code. The TDD Steps pattern
language is an effort to document the different kinds of actions that a developer can perform on
TDD to drive class behavior and design. In two previous papers, we introduced eight patterns of
this language. This paper aims to introduce the two remaining patterns. One pattern focuses on
the creation of a test to simulate the scenario of a known bug isolating it to a specific area of
code, and the other one a pause for a more deep refactoring before introducing a new
functionality.

1. Introduction

Test-driven development (TDD) is a technique in which the tests are written before the
production code (Beck 2002). By using it, the development occurs in cycles, comprised of the
creation of an automated test, an update on the developed software to make the test pass, and a
code refactoring to improve the solution. TDD can be used for many different goals: as a testing
technique, in which developers expect an improvement in the external quality; or as a design
technique, in which developers expect to improve class design (Beck, 2002; Martin, 2006;
Astels, 2003; Freeman, 2006).

The terminology used by the TDD community uses the metaphor “baby steps” (Beck 2002). It
refers to the fact that by using this technique the development advances continuously in small
steps. These patterns borrow the word “steps”, referring to actions that make the system
development and design to move forward. The goal is to take small steps towards a desired
design and implementation. In most of the patterns, a “step” refers to a TDD cycle, however it is
not true in all cases. For instance, the patterns Dive Deep and Pause for Housekeeping are
steps that should happen between TDD cycles.

Previous papers (Guerra 2013; Guerra et al. 2014) documented eight patterns of the proposed
pattern language. The goal of this paper is to present the last two patterns that are presented in
the current version of this language: Bug Locator and Pause for Housekeeping. The pattern
Bug Locator describe the step used to locate a new bug by using a test in order to start a TDD
session from this point. The Pause for Housekeeping describe an approach to be used when

the solution adopted by the class is not suitable for the next requirements.

This paper is part of a study that aims to identify recurrent TDD steps and how they can be used
in a TDD session to drive the developed class design in the desired direction. This study
comprehends a pattern mining effort which used as a source of research documented TDD
sessions in books and information about the usage of TDD in real projects where the authors
worked on. Next section describes briefly the pattern language and the further sections present
the patterns.

2. TDD Steps Pattern Language

The goal of this pattern language is to document the steps that the developer can take to move
forward in a TDD session. In this context, a TDD session can be defined a continue amount of
time where some implementation is performed by using TDD. Some developers face TDD only
as a testing technique, in which the functionality is created piece by piece by creating the tests
first. A developer who is not used to TDD, does not see naturally how these tests can be used
as a tool to drive the design in the desired direction. This pattern language aims to explicitly
present the steps that can be chosen to move forward on the system development.

The target audience of this pattern language are software developers interested in using TDD to
design and develop software. It can be used by beginners to understand the mechanics of this
design technique and, by more advanced practitioners to enable a better understanding of their
design choices. The discussions presented in each pattern intend to clarify the consequences of
each choice of step. The patterns names form a terminology to reference the alternative steps
that developers can perform.

Instead of being inflexible about the dynamics of a TDD process, this pattern language prefer to
present the different existing options, discussing their respective consequences. Some

practices documented by these patterns may look like as anti-patterns in the first impression.
However, if developers are aware of the consequences and of the other choices, they can be
valid choices. Future evolutions and additions for this pattern language may reveal other possible
steps that can complement and enhance the traditional TDD process.

Figure 1 presents a pattern map with the ones already identified for this pattern language. The
idea of this map is to show how to navigate through the patterns according to the scenario faced
in the TDD session. The patterns in grey have already been documented in (Guerra 2013) and
the ones in black are documented in (Guerra et al. 2014). The remaining ones, in white, are the
ones that are the focus of this paper.

The arrows in this diagram represents the paths that you can follow to choose a pattern aiming
to move forward in a TDD session. The patterns with starting arrows are patterns where you
usually start a TDD session. If TDD were a dance, the Differential Test would be the basic

step. From it, you can decide to apply some other pattern based on the direction where do you
want to drive the design. After applying them, the developer should step back to the central
pattern and continue the “dance”.

to introduce a
programing element mﬂ a bug
f\ is found
to continue

APl to improve
Definition the code

fo introduce Limit
funtionality to introduce to define
Dive ap gfﬂ%‘iﬁ;ﬂg exceptional
Deep scenarios
Everything
' to add more . g , Working
simple o Differential to consolidate Together
Y Test features
if you need

complex auxiliary code

if the previous solution
is nof suitable

if something is

dependences
hard to test

Mock
Complexity

stable contract

and/or hotspot T TAIL[S (R 4

. localized and
Solution

internal detail

Figure 1 - TDD Step Patterns Map.
The following describes briefly each pattern in the language:

e API Definition: When you need to introduce a new programming element, such as a
class or a method, create a test with the simplest scenario that involves it.

e Differential Test: When you want to move forward in the TDD session, add a test that
increments a little the functionality verified by the previous tests.

e Exceptional Limit: When you have a scenario where the class functionality does not
work properly, create a test with that scenario verifying if the class is behaving
accordingly to these scenarios.

e Everything Working Together: When you have features in the same class that are

tested separately, create a more complex test scenario where these features should
work together.

e Bug Locator: When a bug is reported, either by an user or during an exploration test,
create a new test that fails because of it. By doing that the developer will be able to detect
the location of that bug. Then, the developer should fix the code in order to make this new
test to pass.

e Diving Deep: When the complexity of an implementation demands the creation of small
auxiliary methods or classes, ignore temporarily the current test and start an nested TDD
session to develop this auxiliary code.

e Pause for Housekeeping: When the application class needs a huge change to make
the current test to pass, ignore temporarily the current test and refactor the production
code considering the previous tests.

e Mock Complexity: When a test is complicated to create because it depend on an
external resource, define an interface that encapsulates the resource interaction and
mockK it in the test.

e Dependency Exposure: When you need to define an API from an explicit dependency of
the application class, create a test that creates a Mock Object and define the expected
calls to the dependency API.

e Hide Internal Solution: When there is no need to change an internal dependency
implementation and it has a simple and well-defined role in the class functionality,
encapsulate the implementation within the developed class and do not expose the
solution to the test class.

3. Bug Locator

Also Known as Isolate the Problem, Finding the Bug

To be able to eliminate a bug from your system, you should create a test that traps it
in an isolated place where you can easily find.

Developing an application by using TDD does not make it immune to bugs. So, an exploratory
testing might detect a bug, or an user can find that something was not working properly on a
given scenario. When a bug is detected on an application developed using TDD it is probably
because that scenario was not covered on the developed tests.

* * *

How to handle bug correction by using TDD?

When a problem happens in a software, usually there is a lot of pressure from the users and
product owners for a correction to be provided as soon as possible. Facing this pressure, some
teams and managers sometimes bypass the development process and techniques used in the
development of the target software in order to correct the software faster.

A TDD process leaves a suite of automated tests that can be used as regression tests to verify
if the behavior verified on them does not change after future changes. The behavior in scenarios
that are not covered by these tests cannot be verified in future code changes.

Sometimes, when the developer go straight to the code to correct the bug, he can change a
piece of code that is not responsible for the problem. Without being sure about the scenario in
which the problem happen, there can be waste of time by working on the wrong part of the

system.
Therefore:

Create an automated test which express the scenario in which the bug happens. If that
test fails, start by making it pass and proceed with the TDD session until the problem is
completely corrected.

A difficulty that happens when a bug is detected is to locate where it is in the source code. Since
unit tests focus on single classes, when a test with the failed scenario can be introduced in a
class tests and fail because of of the bug, it is clear that, at least, part of the problem is there. By
doing that, the bug is localized and contained, and now, what the developer needs to do is to
follow the TDD process making that test to pass with the simplest possible solution.

After the implementation of the first test, some Differential Tests could also be introduced to
explore other similar scenarios that could also contain bugs. A unadvisable approach can be to
try to handle bug scenarios without having a failed test, because the developer can try to correct
an error that does not exist in the target class.

To exemplify the usage of this pattern, consider that an user see in the system a vehicle licence
plate with a invalid character and report a bug about it. When trying to solve this issue, the first
assumption is that the problem is in the class which validate licence plates. Since there were no
tests that focus on this scenario, a new test, such as the one presented on Listing 1, is added to
try to locate the bug on the suspect class. If the test fail, the source of the problem is found and
the developer just need to make this test to pass.

If the test pass, that means that the test does not captured the right failed scenario or that the
problem is somewhere else. If the problem is on the chosen scenario, the test should be
changed in order to try to provoke the bug appearance. If the developer thinks that the problem
might be on another class, a new test should be introduced on the test suit that cover that other
class.

Listing 1 - Adding a test to verify a wrong licence plate found by an user

o @D
KP=C>> QID? @ >@ Q@ DOC DHEJGY £
D@>@&E0@<@P<AIMQ O 1| @R D-@>@ O@ <@D?<QIMY
<NN@D <CNYQRXEP<0@™ © ARy~ t

A good consequence of this pattern is that the developer avoids messing with code that are not

related to the bug, since the test should be detecting it. Another benefit is that because there is a
new automated test that will be executed in future regression tests, if the bug returns it will be
caught by the test.

The negative side of this pattern is when the bug happens in a scenario that is hard to represent
in automated tests. For instance, a bug in the synchronization mechanism of a parallel
processing software, may be hard to provoke in an automated test, and would be easier to fix
directly. Other problems related to non-functional requirements also fall in this scenario.

For bugs hard to simulate in the current test suite, the developer might explore other testing
approaches. For instance, a error in a thread synchronization might manifest by performing a
load test. It is important to state that the testing approach used in these cases may not be fully
automated.

As with API Definition, this pattern usually is a starting point in a TDD session. After the first
test, if there is any other scenario to be implemented, a Differential Test should be introduced
and a new TDD cycle begins. It is pretty common for a Bug Locator to define an Exceptional
Limit for a scenario that was not previously predicted.

In a blog post (Sobral 2012), the application of this pattern is described. The developer found the
bug motivated by a piece of data that was not being produced by the software. He described that
it uses an automated test to reproduce the bug and then find where it is located.

In Alura (Caelum, 2012), an e-learning system, the pattern is always applied. Every time a bug
happens in production, the team is expected to write an automated test to reproduce the bug,
and then fix it.

O Esfinge QueryBuilder (Guerra 2014) a bug was found during integration testing. This bug was
about a parameter that was not being included on a query. In order to locate the bug, a test was
introduced on the unit testing of the class that generated the query, however surprisingly the test
passed. The next guess was the class that generated the parameters, and a new test was
introduced in its unit tests. This test failed, revealing that there was a collision on the name given
to the parameters in that case.

3. Pause for Housekeeping
Also Known as First Refactor and Then Add Functionality, Prepare for Changes

Before adding new functionality to a class, it should be clean and prepared to receive it.

The TDD technique states that the simplest solution should always be adopted in order to make
the current test suite to pass. However, sometimes, the simplest solution for the previous
implementations, makes impossible to implement the next requirements.

* * *

How to proceed with the implementation when the current class solution is not suitable
for the next functionality?

When a developer knows the functionality he needs to implement in a TDD session, it is very
improbable that he will adopt a solution that is completely incompatible with the next
requirements. However, new unexpected requirements can arise from customer feedback or in
the next iteration that will make the current solution unsuitable. An example of this scenario
occurs when the current data structure is not enough to store all the information needed by the
next requirement.

Searching always for the simplest solution for the current requirements, opens the possibility to
reach a design "dead end", and the need to search for another solution that will be suitable for
the next ones.

If the developer tries to add new functionality that will demand huge changes in the class, he
creates risk to breaks the previous tests by making the current one to pass. When these
changes are big, it is hard to know exactly which part was responsible for the failure.

Therefore:

Ignore temporarily the test that represents the new functionality, and refactor the
current code to be more suitable for its needs. Then, reintroduce the test and follow the
TDD cycle based on the most suitable step pattern.

This pattern proposes the division between the refactoring task and the introduction of new
functionality. During the first step, it is advisable to skip the test that introduces the new class
scenario to focus only on making the previous test suite to work on the refactored solution. For
instance, in JUnit that can be done by adding the @Ignore annotation on that test. That will avoid
the "psychological pressure" of seeing a failing test, and sending a message that it is not the
focus to make it pass right now.

The refactoring should be done in small steps in order to make the test suite to pass between
their implementation. This practice will avoid errors happening after a change that involved
several code changes, making hard to identify which modification was responsible for it. After the
refactoring, the test is reintroduced in the test suite and the TDD process will follow its regular
path.

This situation often happen when it is necessary to change the data structure used internally by
the class. For instance, consider the class presented in Listing 2, which uses a list to store the
items of a shopping cart. Imagine that a future requirement to access the items based on their ID
make this data structure not suitable for the next steps.

Listing 2 - ShoppingCart using a list as data structure

KP=GD> >G<NN CJKKDI B <MCE
KMDQxO@ DNOO Q@ DO@N O «i

KP=>> QID? <?? O@iY O@i DOaH £
DO@N\s??YDOGH T
o]
KP=GD>> ?JP=G@ QIO<GY £
2JP=G@ QIO<G O »%
AIMY Q@1 D~ DO@N £
QG | O DEMD>@ ¥ DhO?Y t

o]

MaPM QIC<GE

To perform a Pause for Housekeeping, the developer should introduce the new data structure
in small steps in order to make the tests still run between them. The next listings presents a path
that can be followed to perform this refactoring: [a] introduce the new data structure (Listing 3);
[b] update the new data structure when data is inserted and updated (Listing 4); [c] substitute the
usage of the old data structure for the new one (Listing 5); [d] remove the old data structure
(Listing 6).

Listing 3 - Refactoring step 1: add new data structure

KP=@> >G<NN CIJKKD B <ME
KMDQxO@ DNOO Q@O DO@N O «i
KMDQxO@ <KO OVDI Bt Q@0 DO@H <K O «it

KP=>> QID? <?? O@iY O@i DOaH £
DO@N\s??YDOGH T
o]
KP=GD>> ?JP=G@ QIO<GY £
2IP=G@ QIO<G O »%
AIMY Q@1 D~ DO@N £
QG | O DEMD>@ ¥ DhO?Y t

o]

MaPM QIC<GE

Listing 4 - Refactoring step 2: add logic in data insertion and update

KP=@> >G<NN CIKKD B <ME
KMDQxO@ DNOO Q@O DO@N O «i
KMDQxO@ <KO OVDI Bt Q@0 DO@H <K O «it

KP=>> QID? <?? O@iY O@i DOaH £
DO@N\s??YDOGH T
DOGH <KIKPOYDO@PB@ ?Y T DO@H t
o]
KP=GD>> ?JP=G@ QIO<GY £
2JP=G@ QIO<G O »t
AIMY O@H D~ DO@N £
QICG 1O DM@ ¥ DhOPY

MaPM QIC<GE

Listing 5 - Refactoring step 3: changing code that uses the data

KP=@> >G<NN CIJKKD B <ME
KMDQxO@ DNOO Q@O DO@N O «i
KMDQxO@ <KO OVDI Bt Q@0 DO@H <K O «it

KP=>> QID? <?? 0@y O@i DOaH £
DO@N\s??YDOGH T
DO@H <K¥POYDO@PB@ ?Y T DO@H t
o]
KP=GD>> ?JP=G@ QIO<GY £
2JP=G@ QIO<G O »t
AIMWY Q@1 D~ DO@H <K%<GP@Y £
QICG 1O DM@ ¥ DhOPY

o]

MaIPM QIC<GE

Listing 6 - Refactoring step 4: remove old data structure

KP=CD> >G<NN CJKKDI B <ME
KMDQ<O0@ <KO OMDI Bf Q@D DOaH <K O «i

KP=> QID? <?? O@iY O@H DO@H £
DO@H <K¥POYDO@PB@ ?Y T DO@H t
o]
KP=GD>> ?JP=G@ QIO<GY £
2JP=G@ QIO<G O »t
AIMY Q@1 D~ DO@H <K%<GP@Y £
QICG 1O DM@ ¥ DhOPY

o]

MaIPM QIC<GE

To finalize the example, it is important to state that the tests should be executed after every
refactoring step. This practice will give confidence that the behavior does not change on it and he
can proceed to the next one.

A positive consequence of this pattern is that the class solution evolves to a more suitable
internal structure, and by running the tests it is possible to make sure that it is compatible to the
previous test scenarios. By doing that, it is possible to avoid introducing functionality and
restructure the code at the same time.

Despite an eventual Pause for Housekeeping is natural on a TDD process, a frequent need of
it is a hint that something is not right. If you need big refactorings on the same point of the
system frequently, may be it is a sign that a better understanding of that part of the domain is
necessary.

This pattern can be necessary when a Bug Locator or a Differential Test is introduced in the
test suite, when the production class solution is not suitable anymore.

When the API Definition pattern is applied, usually a trivial solution is used in order to make the
test pass and continue the development with a new Differential Test. In the next tests, it is
common to change the data structure and the previous solutions until having a significant
amount of implemented functionality. When the amount of functionality is small, is is safe to
implement directly the functionality without making a Pause for Housekeeping.

In the development of Esfinge QueryBuilder (Guerra 2014), an implementation of the Visitor
pattern generated a query for the database while it receives the method invocation. The next
requirement makes the query to be generated dependent on the next call, which makes
unsuitable the query generation on the fly. Based on that, a Pause for Housekeeping was
made to refactor the solution in order to store the information and then generate the query in the
end. After that, the new functionality was implemented.

During the development of MetricMiner (Sokol, 2013), we needed to implement a highly flexible
way to calculate different code metrics for the same source code. As soon as we finished it, the
next requirement was to implement metrics for a group of files. Based on that, we decided to
stop the implementation and refactor the solution to create two different subsets of metrics. After
that, we continue the implementation.

4. Conclusion

This paper finished the documentation of the initial set of patterns of the TDD Steps Pattern
Language. This pattern language does not intend to be complete, and it is expected that
other patterns complements and enhance it in the future. However the intent was to
capture the current knowledge about designing by using TDD.

References
Astels, D. 2003. Test-Driven Development: A Practical Guide. Second edition, Prentice Hall.
Beck, K. 2002. Test Driven Development: By Example. Addison-Wesley Professional.

Caelum. Alura, E-Learning System. http://www.alura.com.br, 2012.

Freeman, S. and Pryce, N. 2006. Evolving an Embedded Domain-Specific Language in Java. In
Proceedings of the Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA) 2006.

Guerra, E. 2012. Fundamental Test Driven Development Step Patterns. Proceedings of the 19th
Conference on Pattern Languages of Programs.

Guerra, E., Yoder, J., Aniche, M., Gerosa, M. 2013. Test-Driven Development Step Patterns For
Designing Objects Dependencies. Proceedings of the 20th Conference on Pattern Languages of

Programs.

Guerra, E., 2014 . Designing a Framework with TDD: A Journey. IEEE Software, v. Jan/Fe, p.
9-14.

Martin, R. 2006. Agile Principles, Patterns, and Practices in C#. First edition, Prentice Hall.

Sobral, D. 2012. Bugs, TDD and Functional Programming, available at
http://dcsobral.blogspot.com.br/2012/09/bugs-tdd-and-functional-programming.html

Sokol, F. Z., Aniche, M. F., & Gerosa, M. A. (2013, September). MetricMiner: Supporting
researchers in mining software repositories. In Source Code Analysis and Manipulation
(SCAM), 2013 IEEE 13th International Working Conference on (pp. 142-146). IEEE.

http://www.google.com/url?q=http%3A%2F%2Fwww.alura.com.br&sa=D&sntz=1&usg=AFQjCNGMVo8aSOR3Yyshgtau-bGz8h77Xg
http://dcsobral.blogspot.com.br/2012/09/bugs-tdd-and-functional-programming.html

