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Software analytics is a data-driven approach to decision making, which allows software practitioners to leverage valuable insights from data
about software to achieve higher development process productivity, and improve many aspects of the software quality. Although widely
adopted by large companies, software analytics has not yet reached its full potential for broad industrial adoption. Usually, software prac-
titioners do not use analytics of data generated during the software development process to inform their decisions. Decisions based on
practitioners’ feeling and intuition can lead to wasted resources and increase the cost of building and maintaining the software. This paper
introduces three patterns focusing on how to incorporate software analytics into agile practices on a continuous basis to inform the decision-
making process of the software practitioners. These patterns are part of a pattern language that intends to present recurrent solutions in
software analytics area.
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1. INTRODUCTION

Nowadays, being able to gain insightful information from data and use it in decision making is becoming more and
more critical. Increasingly companies around the world seek information on data to make decisions about their
business. Most companies adopt processes and analytical methods to become more competitive. Data analytics
plays a significant role in this context and has been widely used in marketing to achieve and better understand
customer behavior and their consumption patterns. The concept of analytics is related to the use of analysis, data,
and systematic reasoning to make better decisions [Davenport 2009].
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More recently, researchers and professionals in the software development area have been using analytics on
data generated during the software development process [Buse and Zimmermann 2010]. By software data, we
mean the data generated from source code, bug reports, and test executions recorded in software repositories
such as version control systems and issue-tracking systems, as well as the information about usage data typically
stored in the log files. Software Analytics (SA) emerged within this context as a data-driven approach to decision
making, which allows software practitioners to leverage valuable insights from software data to improve their
process and many aspects of software quality.

Software analytics involves monitoring, analysis, and understanding of data extracted from the software
development context. This approach is focused on getting insightful and actionable insight for informing the
decision making. Insightful information refers to accurate and in-depth information, while actionable information
refers to information with real practical value [Zhang et al. 2011].

Although widely adopted by large companies, software analytics has not yet reached its full potential for broad
industrial adoption. For small companies, software analytics is an open question and rarely addressed [Robbes
et al. 2013]. In a software development context, many decisions related to a software system, such as allocation
of development and tests resources can be based on software data analysis. However, software practitioners –
owners, maintainers, and developers – tend to make many daily decisions based on their experience, feelings, and
intuitions – e.g., determining which parts of software need to increase test coverage, or which parts of software
should be refactored. This lack of decisions that are evidence-based, that is, strategies that are not derived from or
informed by software data or metrics can lead to waste of resources and an increase in the cost of building and
maintaining the software [Hassan and Xie 2010].

We argue that making good use of software analytics can help development teams to drive their decisions
better and save efforts in the course of the project. To date, however, there is no consolidated approach on how to
introduce software analytics concepts and practices into an agile development context.

Agile development supports change guided by values and principles focused on value delivery [Beck et al.
2001]. Thus, agile development is driven by iterative enhancement improvement of both software products and
processes. In agile projects, the measurement is mainly used as a tool to focus on improvement and to ensure
that value is achieved [Hartmann and Dymond 2006]. Metrics can be used to assess different aspects of agile
projects [Downey and Sutherland 2013] [Destefanis et al. 2014].

Considering software analytics an essential practice for leveraging value delivery in agile contexts, we have
identified a set of patterns based on experience reports in this area. As previously published in [Choma et al. 2017],
our patterns focus on how to incorporate software analytics into agile practices on a continuous basis to inform the
decision-making process of the software practitioners. These patterns are intended for software practitioners —
including project managers, analysts and software developers from small, large, or multiple teams.

Furthermore, we emphasize that these patterns can address different types of concerns. For example, such
issues may be related to the source code (e.g., code quality, bug proneness, number of defects, and amount of
effort to fix bugs); development process (e.g., productivity and ROI); product business (e.g., usage of features,
data quality and user satisfaction); and software runtime properties (e.g., performance, number of transactions
and error log).

According to the proposed patterns, the first step towards to implement software analytics process is to define
WHAT YOU WANT TO KNOW. After that, with the purpose to answer the raised issues, the team needs to CHOOSE

THE MEANS that will be used to data gathering. During the SOFTWARE ANALYTICS PLANNING, the team plans
the analytics activities and prioritizes the tasks in their to-do list along with other development tasks. Because
analytics activities can be time-consuming, the team do not have to be deployed them at once. Then, the team can
plan the ANALYTICS IN SMALL STEPS, according to their workload. From the software analytics insights, the team
needs to define REACHABLE IMPROVEMENT GOALS to implement the improvements in software or its development
process. A brief description of solutions for each pattern is presented in Appendix A.
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In this paper we expand on ways for implementing software analytics in development teams by writing three
additional patterns: LEARNING FROM EXPERIMENTS, DEFINE QUALITY STANDARDS, and SUSPEND MEASUREMENT.
An overview of the SA patterns showing how they relate to each other is depicted in Figure 1. The blocks in
gray represent the five patterns documented in previous study [Choma et al. 2017], while the ones in black are
documented in this paper. The blocks in white represent the expected outputs from the application of the patterns.
Questions included among the patterns refer to factor that motivates the application of the pattern. Each pattern
represents a step recommended for implementation of software analytics.

Fig. 1. Overview of the patterns and their relationships.

2. LEARNING FROM EXPERIMENTS

Also known as Achieve Experiments, Test a Hypothesis, Explore Experiments, Run Experiments

The issues that emerge in software analytics can be related to different levels of needs. At the development
process level, the team may need to evaluate for instance new methods, tools, or practices. At the product level,
the team may need to evaluate the requirements, features, or usage data. At the user experience level, they may
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need to evaluate product usability, user satisfaction, design aspects, etc. Some of these issues can be investigated
through data collected from the development environment and software artifacts such as source code, bug reports,
test cases, usage logs, documentation, etc. For other issues, however, the team may need to evaluate the usability
of a feature that has not yet been implemented. Even further, the team may have implemented a feature that
needs to be improved but does not know how to improve it. In both these situations, the team has nowhere yet to
collect and analyze data to support their decisions.

How can we obtain information to make informed decisions about software issues on some aspect we
have not yet implemented or we need to redesign?

—The team often has more than one way of implementing the same feature, using different methods and tools for
development, and adopting different alternatives of architectural design, but they need to seek to make their
choices as successful as possible.

—Sometimes the team makes a decision that will be simple to reverse if it does not work out, but some solutions
are worth experimenting before implementation to avoid wasting resources and rework.

—Experiments can fail, but learning from both failure and success is important.
—Sometimes, experiments can produce inconsistent results, but the team should investigate the cause of such

inconsistencies and then conduct new experiments if they are feasible.

Therefore:

Create an alternative solution and perform an experiment collecting data that allow the comparison
with the current solution.

Experiments allow us to test our hypotheses for better decision making. Results from experiments can provide
us with relevant information to find the best alternatives for design, tools, approaches to development, test methods,
among others. Through experiments, we can compare two different approaches, where the control group can be
an existing solution in use. That is, we can verify whether an idea is promising or it makes no sense to continue
with it.

Moreover, experiments can have a low cost of implementation. However, before opting for experimentation,
the team always needs to weight the cost of doing one or more experiments with the cost of re-engineering or
redesigning after you implement something. The team needs to have a clear purpose for the experiment and have
a reasonable hypothesis to test. The experimental design should be carefully planned, and the experimenters
should know which aspects of the software or process will be observed.

The results should be analyzed without bias by the development team to ensure successful experimentation.
During the experimental design planning, the team should be especially careful also to define the experiment size.
Large experiments can be costly and unfeasible. Both ROI and the time to implement an experiment are important
factors to be considered by the team before adopting them.

Sometimes experiments may not work out, and sometimes they can produce conflicting or unclear results. When
an experiment did not provide useful information or has unclear results, the team decides if new experiments
should be carried out from the lessons learned. Replicating an experiment may be impractical depending on its
cost and size. Small experiments tend to be cheaper and easier to replicate. About experimenting and learning,
worth taking into consideration Linda Rising’s advice:

“You can’t realistically plan anything from the beginning; the only way to reach your long-term goals
or solve your big problems is to try a small thing and learn from the experience. That’s how we have
always learned. Babies do this from the start. It’s the basis for the scientific approach. Experiment and
learn.” [Rising 2011]
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As an example, imagine that a development team wants to increase the number of hits/clicks on related products
in an e-commerce application. Currently, in this application, the products are merely recommended according to
the category. The team has the following idea: an algorithm to recommend products that were recently bought
with the product being searched. Additionally, the team wants to change position the related products in the user
interface. They do not know how much it will be pleasing to the end-user. In order to save development effort, the
team develops some prototypes and runs an experiment with a limited number of users, representing the target
audience. From the experiment results, they were able to know which was the best option for the user interface
redesign.

As a consequence, the results of experimentation can produce insightful information about the product or the
development process, that is, the reliable and valuable knowledge needed to make better decisions.

Sometimes, team members can be biased in how they interpret the results of an experiment. If it doesn’t produce
the results they expect, they may discount the results or find ways to invalidate the experiment. Other times, the
results of an experiment may be inconclusive. In that case, the team must decide whether to perform another
experiment to pick among equally viable options. Also, an experiment can provide misleading information which
did not test the hypothesis. In that case, the team may have to spend time figuring out why something you thought
would improve the system did not.

� � �

The interaction patterns in user interfaces proposed by Welie and Trætteberg [2000] are focused on solutions
to problems end-users have when interacting with systems. These patterns can help to analyze the results of
the experiment by identifying usability issues essential to interaction design quality. Furthermore, Perzel and
Kane [1999] and Montero et al. [2003] proposed a set of patterns focused on website design that can be used in
experiments as support to evaluate user interfaces under usability criteria and facilitate communication between
stakeholders and end-users.

3. DEFINE QUALITY STANDARDS

Also known as Define Quality Boundaries, Maintain Quality Level, Set Quality Thresholds

From data collected about an issue addressed by software analytics, the team analyzes their findings and
discusses possible solutions and insights to make better decisions. From their insights, the team defines which goals
they want to achieve concerning emerging issues, considering the improvements that can be made incrementally.
After implementing the improvements via informed decision making, the team can evaluate the impact of the
changes by collecting feedback from stakeholders. Once the goals have been achieved, the challenge will be to
maintain the quality level achieved. The quality metrics can be used to assess different software aspects such as
code quality, testing coverage, performance, bug fixing, productivity, and user satisfaction.

How you can achieve and maintain a good level of quality for important software aspects?

—By analyzing software data, developers can make better decisions about improving the development process
and software quality, but the quality of some aspects will need to be continuously inspected.

—The culture of continuous improvement is stimulated by achieved goals and satisfaction of stakeholders, but it
may not be easy to convince stakeholders about the tradeoffs of continuous inspection.

—The process of continuous improvement helps sustain the software evolution and maintenance; the team must
have actionable goals and establish quality standards.
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Therefore:

Define quality standards and then establish minimal or maximum thresholds for any software aspect
that the team intends to monitor.

By continuing to collect data, the team will have enough information to decide whether to consider an issue to
be resolved, or whether the issue should be monitored for longer. Concerning unresolved issues, the team will
need to decide whether these issues will be re-analyzed using new data, or put on hold.

Taking into account the metrics that were adopted, the team should establish a minimum or maximum thresholds
for any issue that the team decides to evaluate or to keep in monitoring. For example, for issues related to coverage
testing, the response time cannot exceed 2 seconds (maximum acceptable value) or the test coverage must be at
least 70% (minimum acceptable value).

In general, the team must establish its quality thresholds whenever there is a need for continuous inspection.
However, the minimum or maximum value established for an attribute should be periodically analyzed and can
be redefined focusing on continuous improvement. Moreover, the team may need to make trade-offs between
different software aspects – e.g., performance, security, and usability. Thus, the threshold value of an aspect can
be redefined so that another aspect can work.

As an example, let’s suppose that the team wants to automate more of their tests, but they do not know where
to start, once the software has an immense amount of classes. Their key issue is “Where should we focus our test
efforts?”. To answer this question, they identified the need to investigate two data sources: the code-source to
verify current test coverage, and the code repository to verify the percentage of commits related to fixing bugs and
the classes with the highest number of changes to identify the classes with more problems. As data gathering
mechanisms they decided (a) to adopt SonarQube for code coverage; (b) to find a tool to collect the number of
changes, and (c) to develop a script to relate commit messages with bug issues. When analyzing the collected
data looking for insights, the team found that “Web controllers have a high change rate and a low coverage” and
“many changes in DAOs were related to bug fixes”. Then, as incremental goals, they established a minimum class
coverage for Web Controllers of 60%; and a minimum class coverage for DAOs of 80%. Going forward for new
classes, they set a threshold to reach at least 80% coverage.

As a consequence, as new requirements come in, the team is engaged in evolving the software, while maintaining
a quality standard. By setting the boundary values, the team assumes a commitment to meet some pre-established
quality standards. If these boundaries do not comply, the team must identify the causes because they have failed
and if necessary redefine their achievable goals. Sometimes, trying to reach any threshold, the team may focus on
it and ignore other issues.

� � �

The SYSTEM QUALITY DASHBOARDS pattern [Yoder and Wirfs-Brock 2014] recommends the use of dashboards
to monitor important qualities aspects from values established by the team. Tools for monitoring systems such
as SonarCube allow you to configure alerts and notifications when measured values cross a threshold. The
CONTINUOUS INSPECTION pattern [Merson et al. 2014] captures the overall practice of continuous inspection to
preserve the quality of the source code and its alignment to the architecture in an agile environment.

4. SUSPEND MEASUREMENT

Also known as Standby Measurement, Hold Measurement
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When investigating a potential problem related to software building and maintaining, the team first performs data
gathering and then analyzes the data to find relevant information. If there are significant findings, the team can
propose REACHABLE IMPROVEMENT GOALS to solve the problems found. Sometimes, some effort is necessary to
automate or continuously monitor this data gathering and analysis. Especially when the information obtained was
enough for the answers needed or the problems have a low possibility of recurrence, it might have a low priority for
the team.

What should the team do when an implemented measurement is not a priority in the current project
and takes some effort to be continuously monitored?

—It is critical that the development team make decisions in its process based on evidence, but the software
analytics activities need to be carefully planned because they can consume a lot of team effort.

—Emerging issues need an immediate investigation to avoid software operation failures and information inconsis-
tency, but the team has other priorities in the project.

—A given issue that has been the subject of measurement may have achieved the primary goal and, for the
next interactions new measurements will be unnecessary. Achieve a goal could be to prioritize the software
maintenance tasks by identifying classes with the highest number of bugs, for example.

—Once a metric has been obtained through scripts, such as a static log analysis or a SQL query, it can be costly
to add it into a continuous monitoring mechanism or to execute it frequently. The integration of this measurement
in the deployment or build environment collecting live data might demand a considerable effort.

—It may be difficult for the team to maintain continuous monitoring of a particular aspect of software, but the
amount of value added may outweigh the team effort. Moreover, some tools can facilitate the process of
automating that reducing the effort significantly in the continuous monitoring implementation.

Therefore:

Put on standby the measurements that already fulfilled their initial goal, are costly to be continuously
monitored, or that do not represent a value to the team at that moment.

When facing problems related to the software usage, the team may need to check specific issues. The team is
suspicious of some flaws in the system, but they have no idea about the dimension of the problem, nor the real
impact upon system operation. They decide to investigate the issue through further analysis. In one-off action, they
detect the problem through software analytics. Then, they define the next steps to solve the problem and put the
process used to collect and analyze information on hold. The team can suspend measurement of the issues with a
low possibility of recurrence. However, some issues may need monitoring for a more extended period in order to
avoid flaws recurring in system operation. At that moment, however, the team has defined that, for some reason
(e.g., effort, cost or other project constraints), the monitoring of these issues cannot be implemented immediately.

When investigating and detecting potential problems, the team can establish metrics to monitor them continuously.
In many cases, the team may not yet have a monitoring system. Or it could be that the current system is overloaded
monitoring other issues that are more important, or the monitoring system does not provide resources to monitor a
particular type of problem.

The cost of collecting data either manually or in a one-off way may be less than implementing a continuous
monitoring solution. For instance, consider a data extracted from the database using an SQL query or information
extracted from a log analysis using a simple script. It demands an effort to create a feature that continuously
extracts that information and provide it to the team. So, the team needs to assess when it is feasible or not to
continuously monitor that metric taking into account their priorities and the cost of implementation.
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As a practical example of when to SUSPEND MEASUREMENT, let’s suppose that a team is using software
analytics to know about the consistency of the information stored in the database where data are provided daily
(minute by minute) from a distributed sensors network. The team suspects data inconsistency caused by sensor
failures, but they do not know the extent of the problem. From the analysis of data, the team has obtained evidence
to prove their suspicions and make some decisions about what to do to resolve this problem. In contact with the
domain experts, they discuss mechanisms to normalize the data before the information is delivered to the end user
of the application. They envisage the possibility of implementing continuous monitoring on the issue, but currently,
they have other higher priorities and demands. Because of this, they decide to put the measurements on hold. As
an advantage, after this experience, the team already knows how to collect and analyze sensor data any moment
they need to in the future.

As a consequence, through leaner methods, the team acts quickly to gather evidence on issues of concern,
which can have an irreparable effect if they are ignored for a long time. Thus, more sophisticated solutions to the
measurement of the problems can be best planned to occur at the most appropriate time. Moreover, the team can
perform this process once more when necessary to verify the same type of problem.

Sometimes, the team may postpone the continuous monitoring of essential metrics for maintaining the proper
functioning of the application.

� � �

The RECALIBRATE THE LANDING ZONE pattern [Yoder and Wirfs-Brock 2014] is related to this pattern by
addressing the implementation of decisions when resources are incrementally implemented. It is natural that
criteria adopted in the course of the project need to be adjusted over time. These decisions can affect or limit the
ability to achieve new goals and meet other demands. Thus, measurements may be provisionally suspended and
then refined in future actions. The ARCHITECTURAL TRIGGER pattern [Wirfs-Brock et al. 2015] suggests that when
the team does not know when to evolve the architecture, they can develop architectural triggers. Similarly, the team
can define triggers to warn them when a certain condition may require immediate action to treat a particular issue.

5. SUMMARY

In this paper, we have presented three more patterns in a Software Analytics pattern language. Taking into account
the different levels of decision-making, the proposed patterns describe steps to integrate analytics activities into
the development process.

Appendix A: Summary of Patterns Collection.

Next, we present a summary of the eight patterns containing a brief description of each of them.

(1) WHAT YOU WANT TO KNOW: To solve how to drive the process of selecting and collecting metrics so that
they are useful to the team for decision making, in a context where there is a large amount of software data
that can inform the decisions of the team, the solution is to define the key issues that the development team
wants to focus on, in order to guide their selection of the appropriate means for measurement, assessment and
monitoring these issues throughout the project.

(2) CHOOSE THE MEANS: To solve how to gather data about the issues that you intend to answer during the
project, in a context where there are various possibilities of choice, the solution is to define the data sources and
most appropriate means, such as tools, techniques and other approaches for selecting and collecting data that
will be useful for future decisions.

(3) SOFTWARE ANALYTICS PLANNING: To solve how the tasks of software analytics should be implemented along
with the other tasks, and fitted appropriately into the project planning, in the context where the tasks directly
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related to the implementation of software features has high priority, the solution is add tasks related to the
software analytics on the to-do list to be prioritized with the regular project tasks according to the team’s demand
for information.

(4) ANALYTICS IN SMALL STEPS: To solve how to implement software analytics at a pace that it does not impact
project activities and provide enough information for decision making, in the context where much information
at the same time can confuse and make the team lose focus, the solution is to distribute tasks related to the
software analytics throughout the project, adding information to the team about the system at small portions by
adjusting the granularity of the analytic activities.

(5) REACHABLE IMPROVEMENT GOALS: To solve how to turn insights from software analytics into actions to
incrementally improve the characteristics of the software system in a short time, in a context where to perform all
improvements based on the analytics automated feedback might lead the team to act without focus, the solution
is define reachable improvement goals from the software analytics findings, and break the activities down into
smaller tasks to fit together with the other tasks.

(6) LEARNING FROM EXPERIMENTS: To solve how to obtain information to make informed decisions about software
issues on some aspect we have not yet implemented or we need to redesign, in a context where the team
has nowhere yet to collect and analyze data to support their decisions, the solution is to create an alternative
solution and perform an experiment collecting data that allow the comparison with the current solution.

(7) DEFINE QUALITY STANDARDS: To solve how to achieve and maintain a good level of quality for important
software aspects, in the context where the improvements can be made incrementally, the solution is to define
quality standards and then establish minimal or maximum thresholds for any software aspect that the team
intends to monitor.

(8) SUSPEND MEASUREMENT: To solve if an issue still need to be continually monitored after some initial
measurements, in a context where the team does not yet have a monitoring system, or the current system
is overloaded with other issues, the solution is to suspend measurement of the issues with a low possibility
of recurrence, or of the issues that need to be continually monitored but the team has defined that, for some
reason (e.g., effort, cost or other project constraints), the monitoring of these issues cannot be implemented
immediately.
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